Unique Prime Factorization Theorem Jayadev Misra 2/4/2006, corrected 4/3/2022

The Unique Prime Factorization Theorem For every positive integer there is a unique bag of primes whose product equals that integer. The fact that there is a bag of primes corresponding to every positive integer is readily proven using induction. I prove the uniqueness part in this note.

Notation Henceforth, lower case letters like p and q denote primes, and upper case ones, such as, S and T denote finite bags of primes. We write ΠS for the product of the elements of S, and $(p \mid \Pi S)$ for "p divides ΠS ". By convention, $\Pi \phi = 1$; thus the unique bag corresponding to 1 is ϕ .

Lemma 1 $p \mid \Pi S \equiv p \in S$.

Proof: It is easy to see the proof in one direction: $p \in S \Rightarrow p \mid \Pi S$. I prove $p \mid \Pi S \Rightarrow p \in S$, i.e. every prime divisor of a positive integer is in every factorization bag of it, by induction on the size of S.

- $S = \{\}$: Then, $p \mid \prod S$ is *false* for every prime p, and the hypothesis is true vacuously.
- $S = T \cup \{q\}$, for some bag of primes T and prime q: If p = q then $p \in S$, so the result holds trivially. For $p \neq q$ employ Bézout's identity: for any pair of positive integers m and n there exist integers a and b such that $a.m + b.n = \gcd(m, n)$. Using p and q for m and n, respectively, and noting that $\gcd(p, q) = 1$ for distinct primes, we have a.p + b.q = 1 for some a and b.

$$\begin{array}{l} p \mid \Pi \ S \\ \Rightarrow \quad \left\{ p \mid a.p.\Pi \ T \ \text{and} \ p \mid \Pi \ S. \ \text{So}, \ p \mid (a.p.\Pi \ T + b.\Pi \ S) \right\} \\ p \mid (a.p.\Pi \ T + b.\Pi \ S) \\ \Rightarrow \quad \left\{ S = T \cup \left\{ q \right\}. \ \text{So}, \ \Pi \ S = q.\Pi \ T \right\} \\ p \mid \Pi \ T(a.p + b.q) \\ \Rightarrow \quad \left\{ a.p + b.q = 1 \right\} \\ p \mid \Pi \ T \\ \Rightarrow \quad \left\{ \text{inductive hypothesis} \right\} \\ p \in T \\ \Rightarrow \quad \left\{ T \subseteq S \right\} \\ p \in S \end{array}$$

Theorem 1 (Unique prime factorization) $(R = S) \equiv (\Pi R = \Pi S)$. Proof: We can argue inductively, based on Lemma 1, that the bag corresponding to a number x is unique: if $p \mid x$ then p is in the bag and x/p has a unique bag, by induction; and if p does not divide x then p is not in the bag. So, the bag corresponding to x is unique. I show a formal proof next. Obviously $(R = S) \Rightarrow (\Pi R = \Pi S)$. I prove that if $(\Pi R = \Pi S)$ then R and S are equal as bags. It is easy to show that for any $p, (p \in R) \equiv (p \in S)$. This only proves that R and S have the same *set* of elements, as in $R = \{2, 2, 3\}$ and $S = \{2, 3, 3\}$, not the same *bag* of elements ¹. The following proof uses induction on n, the size of R.

• n = 0: Then R is the empty bag, so $\Pi R = 1 = \Pi S$. Then S is the empty bag.

• n > 0: R, being non-empty, has an element p.

$$p \in R$$

$$\equiv \{\text{from Lemma 1}\}$$

$$p \mid \Pi R$$

$$\equiv \{\Pi R = \Pi S\}$$

$$p \mid \Pi S$$

$$\equiv \{\text{from Lemma 1}\}$$

$$p \in S$$

Let $R' = R - \{p\}$ and $S' = S - \{p\}$. Inductively, R' = S' as bags. So, R = S as bags because $R = R' \cup \{p\}$ and $S = S' \cup \{p\}$.

Alternate Proof shown to me by J Moore Moore gives the following proof of

 $p \mid ab \Rightarrow (p \mid a) \lor (p \mid b)$

where a and b are positive integers, and p is prime.

Assume $\neg(p \mid a)$. Since $p \mid ab, pc = ab$, for some c.

c $= \{ \text{from } \neg(p \mid a) \text{ and } p \text{ prime, } \gcd(p, a) = 1 \}$ $c \times \gcd(p, a)$ $= \{ \text{multiplication distributes over } \gcd \}$ $\gcd(pc, ac)$ $= \{ pc = ab \}$ $\gcd(ab, ac)$ $= \{ \text{multiplication distributes over } \gcd \}$ $a \times \gcd(b, c)$

From $c = a \times \operatorname{gcd}(b, c)$,

$$\begin{array}{l} pc = p \times a \times \gcd(b,c) \\ \Rightarrow \quad \{pc = ab\} \\ ab = p \times a \times \gcd(b,c) \\ \Rightarrow \quad \{\text{Cancellation}, \ a \neq 0\} \end{array}$$

¹This mistake in my original proof was spotted by Rutger Dijkstra.

$$b = p \times \gcd(b, c)$$

$$\Rightarrow \quad \{\text{definition}\} \\ p \mid b$$