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The Unique Prime Factorization Theorem For every positive integer
there is a unique bag of primes whose product equals that integer. The fact
that there is a bag of primes corresponding to every positive integer is readily
proven using induction. I prove the uniqueness part in this note.

Notation Henceforth, lower case letters like p and q denote primes, and upper
case ones, such as, S and T denote finite bags of primes. We write Π S for the
product of the elements of S, and (p | Π S) for “p divides Π S ”. By convention,
Πφ = 1; thus the unique bag corresponding to 1 is φ.

Lemma 1 p | Π S ≡ p ∈ S.
Proof: It is easy to see the proof in one direction: p ∈ S ⇒ p | Π S. I prove
p | Π S ⇒ p ∈ S, i.e. every prime divisor of a positive integer is in every
factorization bag of it, by induction on the size of S.

• S = {}: Then, p | Π S is false for every prime p, and the hypothesis is
true vacuously.

• S = T ∪ {q}, for some bag of primes T and prime q: If p = q then p ∈ S,
so the result holds trivially. For p 6= q employ Bézout’s identity: for any
pair of positive integers m and n there exist integers a and b such that
a.m + b.n = gcd(m,n). Using p and q for m and n, respectively, and
noting that gcd(p, q) = 1 for distinct primes, we have a.p + b.q = 1 for
some a and b.

p | Π S
⇒ {p | a.p.Π T and p | Π S. So, p | (a.p.Π T + b.Π S)}

p | (a.p.Π T + b.Π S)
⇒ {S = T ∪ {q}. So, Π S = q.Π T}

p | Π T (a.p+ b.q)
⇒ {a.p+ b.q = 1}

p | Π T
⇒ {inductive hypothesis}

p ∈ T
⇒ {T ⊆ S}

p ∈ S

Theorem 1 (Unique prime factorization) (R = S) ≡ (Π R = Π S).
Proof: We can argue inductively, based on Lemma 1, that the bag corresponding
to a number x is unique: if p | x then p is in the bag and x/p has a unique bag,
by induction; and if p does not divide x then p is not in the bag. So, the bag
corresponding to x is unique. I show a formal proof next.
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Obviously (R = S)⇒ (Π R = Π S). I prove that if (Π R = Π S) then R and
S are equal as bags. It is easy to show that for any p, (p ∈ R) ≡ (p ∈ S). This
only proves that R and S have the same set of elements, as in R = {2, 2, 3}
and S = {2, 3, 3}, not the same bag of elements 1. The following proof uses
induction on n, the size of R.

• n = 0: Then R is the empty bag, so Π R = 1 = Π S. Then S is the empty
bag.

• n > 0: R, being non-empty, has an element p.

p ∈ R
≡ {from Lemma 1}

p | Π R
≡ {Π R = Π S}

p | Π S
≡ {from Lemma 1}

p ∈ S

Let R′ = R−{p} and S′ = S−{p}. Inductively, R′ = S′ as bags. So, R = S
as bags because R = R′ ∪ {p} and S = S′ ∪ {p}.

Alternate Proof shown to me by J Moore Moore gives the following
proof of

p | ab ⇒ (p | a) ∨ (p | b)

where a and b are positive integers, and p is prime.
Assume ¬(p | a). Since p | ab, pc = ab, for some c.

c
= {from ¬(p | a) and p prime, gcd(p, a) = 1}

c× gcd(p, a)
= {multiplication distributes over gcd}

gcd(pc, ac)
= {pc = ab}

gcd(ab, ac)
= {multiplication distributes over gcd}

a× gcd(b, c)

From c = a× gcd(b, c),

pc = p× a× gcd(b, c)
⇒ {pc = ab}

ab = p× a× gcd(b, c)
⇒ {Cancellation, a 6= 0}

1This mistake in my original proof was spotted by Rutger Dijkstra.
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b = p× gcd(b, c)
⇒ {definition}

p | b
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