Unique Prime Factorization Theorem
 Jayadev Misra

2/4/2006, corrected 4/3/2022

The Unique Prime Factorization Theorem For every positive integer there is a unique bag of primes whose product equals that integer. The fact that there is a bag of primes corresponding to every positive integer is readily proven using induction. I prove the uniqueness part in this note.

Notation Henceforth, lower case letters like p and q denote primes, and upper case ones, such as, S and T denote finite bags of primes. We write ΠS for the product of the elements of S, and $(p \mid \Pi S)$ for " p divides ΠS ". By convention, $\Pi \phi=1$; thus the unique bag corresponding to 1 is ϕ.

Lemma $1 \quad p \mid \Pi S \equiv p \in S$.

Proof: It is easy to see the proof in one direction: $p \in S \Rightarrow p \mid \Pi S$. I prove $p \mid \Pi S \Rightarrow p \in S$, i.e. every prime divisor of a positive integer is in every factorization bag of it, by induction on the size of S.

- $S=\{ \}$: Then, $p \mid \Pi S$ is false for every prime p, and the hypothesis is true vacuously.
- $S=T \cup\{q\}$, for some bag of primes T and prime q : If $p=q$ then $p \in S$, so the result holds trivially. For $p \neq q$ employ Bézout's identity: for any pair of positive integers m and n there exist integers a and b such that $a . m+b . n=\operatorname{gcd}(m, n)$. Using p and q for m and n, respectively, and noting that $\operatorname{gcd}(p, q)=1$ for distinct primes, we have $a \cdot p+b . q=1$ for some a and b.

$$
\begin{array}{cc}
& p \mid \Pi S \\
\Rightarrow & \{p \mid a . p . \Pi T \text { and } p \mid \Pi S . \text { So, } p \mid(a . p . \Pi T+b . \Pi S)\} \\
& \quad p \mid(a . p . \Pi T+b . \Pi S) \\
\Rightarrow & \{S=T \cup\{q\} . \text { So, П } S=q . \Pi T\} \\
\Rightarrow & \quad p \mid \Pi T(a . p+b . q) \\
& \quad p \mid \Pi T \\
\Rightarrow & \{\text { inductive hypothesis }\} \\
& p \in T \\
\Rightarrow & \{T \subseteq S\} \\
& p \in S
\end{array}
$$

Theorem 1 (Unique prime factorization) $(R=S) \equiv(\Pi R=\Pi S)$.
Proof: We can argue inductively, based on Lemma 1, that the bag corresponding to a number x is unique: if $p \mid x$ then p is in the bag and x / p has a unique bag, by induction; and if p does not divide x then p is not in the bag. So, the bag corresponding to x is unique. I show a formal proof next.

Obviously $(R=S) \Rightarrow(\Pi R=\Pi S)$. I prove that if ($\Pi R=\Pi S)$ then R and S are equal as bags. It is easy to show that for any $p,(p \in R) \equiv(p \in S)$. This only proves that R and S have the same set of elements, as in $R=\{2,2,3\}$ and $S=\{2,3,3\}$, not the same bag of elements ${ }^{1}$. The following proof uses induction on n, the size of R.

- $n=0$: Then R is the empty bag, so $\Pi R=1=\Pi S$. Then S is the empty bag.
- $n>0: \quad R$, being non-empty, has an element p.

$$
\begin{array}{cc}
& p \in R \\
\equiv & \{\text { from Lemma } 1\} \\
& p \mid \Pi R \\
\equiv & \{\Pi R=\Pi S\} \\
& p \mid \Pi S \\
\equiv & \{\text { from Lemma } 1\} \\
& p \in S
\end{array}
$$

Let $R^{\prime}=R-\{p\}$ and $S^{\prime}=S-\{p\}$. Inductively, $R^{\prime}=S^{\prime}$ as bags. So, $R=S$ as bags because $R=R^{\prime} \cup\{p\}$ and $S=S^{\prime} \cup\{p\}$.

Alternate Proof shown to me by J Moore Moore gives the following proof of

$$
p \mid a b \Rightarrow(p \mid a) \vee(p \mid b)
$$

where a and b are positive integers, and p is prime.
Assume $\neg(p \mid a)$. Since $p \mid a b, p c=a b$, for some c.
c
$=\{$ from $\neg(p \mid a)$ and p prime, $\operatorname{gcd}(p, a)=1\}$
$c \times \operatorname{gcd}(p, a)$
$=\{$ multiplication distributes over gcd $\}$
$\operatorname{gcd}(p c, a c)$
$=\{p c=a b\}$
$\operatorname{gcd}(a b, a c)$
$=\{$ multiplication distributes over gcd $\}$
$a \times \operatorname{gcd}(b, c)$
From $c=a \times \operatorname{gcd}(b, c)$,

$$
\begin{aligned}
& p c=p \times a \times \operatorname{gcd}(b, c) \\
\Rightarrow & \{p c=a b\} \\
\Rightarrow & a b=p \times a \times \operatorname{gcd}(b, c) \\
\Rightarrow & \{\text { Cancellation, } a \neq 0\}
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& b=p \times \operatorname{gcd}(b, c) \\
& \Rightarrow \quad\{\text { definition }\} \\
& p \mid b
\end{aligned}
$$
\]

[^0]: ${ }^{1}$ This mistake in my original proof was spotted by Rutger Dijkstra.

