
Orc Notation

Structured Wide-Area Programming

Jayadev Misra

Department of Computer Science
University of Texas at Austin

http://orc.csres.utexas.edu

April 12, 2010
Rennes, France

Orc Notation

Features needed in a Concurrent Programming Language

• Describe entities and their interactions.

• Describe passage of time.

• Allow birth and death of entities.

• Allow programming novel interactions.

• Support hierarchical structure.

Orc Notation

Orc

• Goal: Internet scripting language.

• Next: Component integration language.

• Next: A general purpose, structured “concurrent programming
language”.

• A very late realization: A simulation language.

Orc Notation

Internet Scripting

• Contact two airlines simultaneously for price quotes.

• Buy a ticket if the quote is at most $300.

• Buy the cheapest ticket if both quotes are above $300.

• Buy a ticket if the other airline does not give a timely quote.

• Notify client if neither airline provides a timely quote.

-

Orc Notation

Structured Concurrent Programming

• Structured Sequential Programming: Dijkstra circa 1968
Component Integration in a sequential world.

• Structured Concurrent Programming:
Component Integration in a concurrent world.

Orc Notation

OrcBasics

• Site: Basic service or component.

• Concurrencycombinatorsfor integrating sites.

• Theory includes nothing other than the combinators.

No notion of data type, thread, process, channel,
synchronization, parallelism· · ·

New concepts are programmed using the combinators.

Orc Notation

Examples of Sites

• + − ∗ && || < = ...

• println, random, Prompt, Email ...

• Ref, Semaphore, Channel, Database ...

• Timer

• External Services:Google Search, MySpace, CNN, ...

• Any Java Class instance, Any Orc Program

• Sites that create sites: MakeSemaphore, MakeChannel ...

• Humans
...

Orc Notation

Sites

• A site is called like a procedure with parameters.

• Site returns at most one value.

• The value ispublished.

Site calls arestrict.

Orc Notation

Overview of Orc

• Orc program has
• agoalexpression,
• a set of definitions.

• The goal expression is executed. Its execution

• callssites,
• publishesvalues.

Orc Notation

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

Orc Notation

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

Orc Notation

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

Orc Notation

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

Orc Notation

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

Orc Notation

Symmetric composition:f | g

• Evaluate f and g independently.

• Publish all values from both.

• No direct communication or interaction betweenf and g.
They can communicate only through sites.

Example: CNN(d) | BBC(d)

callsboth CNN and BBC simultaneously.
Publishes values returned by both sites. (0, 1 or 2 values)

Orc Notation

Sequential composition:f >x> g

For all values published byf do g.
Publish only the values fromg.

• CNN(d) >x> Email(address, x)

• Call CNN(d).
• Bind result (if any) tox.
• Call Email(address, x).
• Publish the value, if any, returned byEmail.

• (CNN(d) | BBC(d)) >x> Email(address, x)

• May call Email twice.
• Publishes up to two values fromEmail.

Notation: f ≫ g for f >x> g, if x unused ing.

Orc Notation

Schematic of Sequential composition

f

g1g0 g2

Figure:Schematic off >x> g

Orc Notation

Pruning: (f <x< g)

For some value published byg do f .

• Evaluate f and g in parallel.

• Site calls that needx are suspended.
• see (M() | N(x)) <x< g

• When g returns a (first) value:

• Bind the value tox.
• Terminateg.
• Resume suspended calls.

• Values published byf are the values of(f <x< g).

Orc Notation

Example of Pruning

Email(address, x) <x< (CNN(d) | BBC(d))

Binds x to the first value fromCNN(d) | BBC(d).
Sends at most one email.

Orc Notation

Some Fundamental Sites

• if (b): booleanb,
returns asignalif b is true; remainssilent if b is false.

• Rtimer(t): integer t, t ≥ 0, returns a signalt time units later.

• stop: never responds. Same asif (false).

• signal: returns a signal immediately. Same asif (true).

Orc Notation

Expression Definition

def MailOnce(a) =
Email(a, m) <m< (CNN(d) | BBC(d))

def MailLoop(a, t) =
MailOnce(a) ≫ Rtimer(t) ≫ MailLoop(a, t)

def metronome() = signal | (Rtimer(1) ≫ metronome())
metronome() ≫ stockQuote()

• Expression is called like a procedure.
It may publish many values.MailLoop does not publish.

• Site calls are strict; expression calls non-strict.

Orc Notation

Functional Core Language

• Data Types: Number, Boolean, String, with usual operators

• Conditional Expression: if E thenF elseG

• Data structures: Tuple and List

• Pattern Matching, Clausal Definition

• Function Definition; Closure

Orc Notation

Variable Binding; Silent expression

val x = 1 + 2

val y = x + x

val z = x/0 -- expression is silent

val u = if (0 < 5) then0 elsez

Orc Notation

Comingling with Orc expressions

Components of Orc expression could be functional.
Components of functional expression could be Orc.

(1 + 2) | (2 + 3)

(1 | 2) + (2 | 3)

Convention: whenever expressionF appears in contextC where a
single value is expected fromF, convert it to C[x] <x< F.

1 + 2 | 2 + 3 is add(1, 2) | add(2, 3)

(1 | 2) + (2 | 3) is (add(x, y) <x< (1 | 2)) <y< (2 | 3)

Orc Notation

Example: Fibonacci numbers

def H(0) = (1, 1)
def H(n) = H(n − 1) >(x, y)> (y, x + y)

def Fib(n) = H(n) >(x, _)> x

{- Goal expression -}
Fib(5)

Orc Notation

Some Typical Applications

• Adaptive Workflow(Business process management):
Workflow lasting over months or years
Security, Failure, Long-lived Data

• Extended 911:
Using humans as components
Components join and leave
Real-time response

• Network simulation:
Experiments with differing traffic and failure modes
Animation

Orc Notation

Some Typical Applications, contd.

• Grid Computations

• Music Composition

• Traffic simulation

• Computation Animation

Orc Notation

Some Typical Applications, contd.

• Map-Reduceusing a server farm

• Thread managementin an operating system

• Mashups(Internet Scripting).

• Concurrent Programmingon Android.

Orc Notation

Time-out

Publish M’s response if it arrives before timet,
Otherwise, publish0.

z <z< (M() | (Rtimer(t) ≫ 0)), or

val z = M() | (Rtimer(t) ≫ 0)
z

Orc Notation

Fork-join parallelism

Call M and N in parallel.
Return their values as a tuple after both respond.

((u, v)
<u< M())
<v< N()

or,

(M(), N())

Orc Notation

Recursive definition with time-out

Call a list of sites simultaneously.
Count the number of responses received within 10 time units.

def tally([]) = 0
def tally(M : MS) = (M() ≫ 1 | Rtimer(10) ≫ 0) + tally(MS)

Orc Notation

Barrier Synchronization inM() ≫ f | N() ≫ g

f and g start only afterboth M and N complete.
Rendezvous of CSP or CCS;M and N are complementary actions.

(M(), N()) ≫ (f | g)

Orc Notation

Priority

• Publish N’s response asap, but no earlier than 1 unit from now.
Apply fork-join betweenRtimer(1) and N.

val (u, _) = (N(), Rtimer(1))

• Call M, N together.
If M responds within one unit, publish its response.
Else, publish the first response.

val x = M() | u

Orc Notation

Parallel or

Sites M and N return booleans. Compute theirparallel or.

val x = M()
val y = N()

if (x) ≫ true | if (y) ≫ true | (x||y)

To return just one value:

val x = M()
val y = N()
val z = if (x) ≫ true | if (y) ≫ true | (x||y)

z

Orc Notation

Airline quotes: Application of Parallel or

Contact airlinesA and B.
Return any quote if it is below $300 as soon as it is available,
otherwise return the minimum quote.
threshold(x) returns x if x < 300; silent otherwise.
Min(x, y) returns the minimum ofx and y.

val x = A()
val y = B()
val z = threshold(x) | threshold(y) | Min(x, y)

z

Orc Notation

Backtracking: Eight queens

... ...
Row 1

Row 2

Row 3
x

0 ...

x x

1

x

0 0 0

1

1 7 7

7

7

x
...

...
x x

10

1 7

Figure:Backtrack Search for Eight queens

Orc Notation

Eight queens; contd.

• xs: partial placement of queens (list of values from0..7)

• extend(xs) publishesall solutions that are extensions ofxs.

• open(xs) publishes the columns that areopenin the next row.

• Solve the original problem by callingextend([]).

def extend(xs) =
if (length(xs) = 8) then xs
else

(open(xs) >j> extend(j : xs))

Orc Notation

Mutable Structures

val r = Ref ()

r.write(3) , or r := 3
r.read() , or r?

def swapRefs(x, y) = (x?, y?) >(xv, yv)> (x := yv, y := xv)

Orc Notation

Binary Search Tree; Pointer Manipulation

def search(key) = -- return true or false
searchstart(key) >(_, _, q)> (q 6= null)

def insert(key) = -- true if value was inserted, false if it was there
searchstart(key) >(p, d, q)>
if q = null

then Ref () >r>
r := (key, null, null) ≫ update(p, d, r) ≫ true

else false

def delete(key) =

Orc Notation

Semaphore

val s = Semaphore(2) -- s is a semaphore with initial value 2

s.acquire()
s.release()

Rendezvous:

val s = Semaphore(0)
val t = Semaphore(0)

def send() = t.release() ≫ s.acquire()
def receive() = t.acquire() ≫ s.release()

n-party Rendezvous using2(n − 1) semaphores.

Orc Notation

Readers-Writers

val req = Buffer()
val cb = Counter()
val (r, w) = (Semaphore(0), Semaphore(0))

def rw() = req.get() >b>
(if (b) ≫ cb.inc() ≫ r.release() ≫ rw()
| if (¬b) ≫ cb.onZero() ≫

cb.inc() ≫ w.release() ≫ cb.onZero() ≫ rw()
)

def start(b) = req.put(b) ≫

if (b) then r.acquire() else w.acquire()

def end() = cb.dec()

Orc Notation

Processes

• Processes typically communicate via channels.

• For channelc, treat c.put and c.get as site calls.

• In our examples,c.get is blocking andc.put is non-blocking.

• Other kinds of channels can be programmed as sites.

Orc Notation

Typical Iterative Process

Forever: Read x from channelc, compute withx, output result one:

def P(c, e) = c.get() >x> Compute(x) >y> e.put(y) ≫ P(c, e)

c e

P(c,e)

Compute

Figure:Iterative Process

Orc Notation

Process Network

Process (network) to read from bothc and d and write one:

def Net(c, d, e) = P(c, e) | P(d, e)

c

d

e

P(c,e)

P(d,e)

Net(c,d,e)

Figure:Network of Iterative Processes

Orc Notation

Workload Balancing
Read fromc, assign work randomly to one of the processes.

def bal(c, c′, d′) = c.get() >x> random(2) >t>
(if t = 0 thenc′.put(x) elsed′.put(x)) ≫

bal(c, c′, d′)

def WorkBal(c, e) = val c′ = Buffer()
val d′ = Buffer()
bal(c, c′, d′) | Net(c′, d′, e)

c’

d’

e

P(c,e)

c

P(d,e)

 bal

WorkBal(c,e)

Figure:Workload Balancing in a network of Processes

Orc Notation

Laws Based on Kleene Algebra

(Zero and |) f | stop = f
(Commutativity of |) f | g = g | f
(Associativity of |) (f | g) | h = f | (g | h)
(Idempotence of|) NO f | f = f
(Associativity of ≫) (f ≫ g) ≫ h = f ≫ (g ≫ h)
(Left zero of ≫) stop ≫ f = stop
(Right zero of≫) NO f ≫ stop = stop
(Left unit of ≫) signal ≫ f = f
(Right unit of ≫) f >x> let(x) = f
(Left Distributivity of ≫ over |) NO f ≫ (g | h) = (f ≫ g) | (f ≫ h)
(Right Distributivity of ≫ over |) (f | g) ≫ h = (f ≫ h | g ≫ h)

Orc Notation

Additional Laws

(Distributivity over ≫) if g is x-free
((f ≫ g) <x< h) = (f <x< h) ≫ g

(Distributivity over |) if g is x-free
((f | g) <x< h) = (f <x< h) | g

(Distributivity over <<) if g is y-free
((f <x< g) <y< h)

= ((f <y< h) <x< g)

(Elimination of where) if f is x-free, for site M
(f <x< M) = f | (M ≫ stop)

	Orc Notation

