
Bilateral Proofs of Concurrent Programs

Jayadev Misra

Department of Computer Science
University of Texas at Austin

WG 2.3, Istanbul
March 23, 2015

This talk is about:

• Verification of concurrent programs.

• With concurrent programs of full generality.

• With emphasis onspecificationand theircomposition.

2

A simple Example: Podelski et. al., POPL 2015

Given global integer variableg and local variablesxi of thread i

x0 := g; g := g + x0 [] · · · xi := g; g := g + xi [] · · ·

Show that if g is positive initially, it remains positive.

3

A proof in my theory

{g > 0}
xi := g;

{g > 0∧ xi > 0}
g := g + xi

{g > 0}
· · ·

Claim: Proof is complete.

Observation: Construct an annotation of the program in which every assertion
is of the form p ∧ I, p is local to the program point andI is any fixed
predicate.

Then the annotation is valid.

4

Epoch-making developments in Verification

• Inductive assertions, by Floyd and Hoare.

• Non-interference, by Owicki and Gries.

• Rely-Guarantee, Cliff Jones.

5

From assertions to Properties: Unity

• Simplify program structure:loop 〈g → s〉 [] loop 〈g′ → s′〉 [] · · ·

• Each 〈g → s〉 is a guarded action.

• Prove program properties, not assertions at program points:

• If g is initially positive, it stays positive.
• A resource is never granted unless requested.
• A request for a resource is eventually granted.

• Specification of a component is a set of properties.

• Specifications compose.

6

Goal of the current work

• Extend Unity to apply to arbitrary concurrent programs.

• Extend rely-guarantee to prove both safety and progress properties.

• Do it all effectively within a single framework.

7

Commutative Associative Fold of a bag

put and get are atomic operations on bags.

put is non-blocking, get blocking.

f1 = get(x); get(y); put(x ⊕ y)

fk = f1 [] fk−1

Show that withn items in s initially:

• the execution offn−1 terminates, and

• leaves s with one item, the fold of all the original items.

Another definition:
f1 = (get(x) [] get(y)); put(x ⊕ y)

8

Commutative Associative Fold of a bag

put and get are atomic operations on bags.

put is non-blocking, get blocking.

f1 = get(x); get(y); put(x ⊕ y)

fk = f1 [] fk−1

Show that withn items in s initially:

• the execution offn−1 terminates, and

• leaves s with one item, the fold of all the original items.

Another definition:
f1 = (get(x) [] get(y)); put(x ⊕ y)

8

Commutative Associative Fold of a bag

put and get are atomic operations on bags.

put is non-blocking, get blocking.

f1 = get(x); get(y); put(x ⊕ y)

fk = f1 [] fk−1

Show that withn items in s initially:

• the execution offn−1 terminates, and

• leaves s with one item, the fold of all the original items.

Another definition:
f1 = (get(x) [] get(y)); put(x ⊕ y)

8

Observations about the problem

• Desired: Respect the recursive program structure in proof.

• The result does not hold forfn. There is deadlock.

• Interplay between sequential and concurrent aspects.

• Entire code is not available.

9

What we need

• Specificationspeck of fk, k ≥ 1.

• Show from its code thatf1 satisfiesspec1.

• Show that speck can be deduced fromspec1 [] speck−1.

• Show that the required properties can be deduced fromspecn−1.

10

Summary of the Theory

• Programs with arbitrary interleaving of sequential and concurrent.

• Construct assertions and program properties simultaneously.

• Properties are created from assertions.

• Assertions are strengthened using properties;bilateral proofs.

• Properties are also deduced compositionally.

• Both safety and progress properties considered.

11

Program Model

A componentis one of:

• Action: Uninterruptible, terminating code, e.g.:x := x + 1, put, get.

• Sequencer: Combines components using sequential constructs, e.g.:

s; t, if b then s else t, while b do s.

• Fork: f [] g, f and g are components.
f [] g [] h = (f [] g) [] h = f [] (g [] h)

Execution:

• Sequential components follow their execution rules.

• Fork: start all components simultaneously.

Terminates when they all do.

12

Program Model

A componentis one of:

• Action: Uninterruptible, terminating code, e.g.:x := x + 1, put, get.

• Sequencer: Combines components using sequential constructs, e.g.:

s; t, if b then s else t, while b do s.

• Fork: f [] g, f and g are components.
f [] g [] h = (f [] g) [] h = f [] (g [] h)

Execution:

• Sequential components follow their execution rules.

• Fork: start all components simultaneously.

Terminates when they all do.

12

Specification

For componentf , predicatesI and E, and sets of predicatesP and Q:

• a specification is:{I | P} f {Q | E}.

• Call this anaugmented assertion.

• Proof rules for augmented assertions. Derived from regularproof rules.

13

Meaning of {I | P} f {Q | E}

• If program f is started in anI-state, its execution either terminates in an
E-state or never terminates.

• If the environment preserves every predicate inP, the predicates inQ
are preserved byf .

Notes:

• Predicates inP and Q need not be stable in either the environment orf .

• Sequential{I} f {E} is: {I | {ALL}} f {{} | E}.

• {| P} f {Q |} is: {true | P} f {Q | true}.

• Closed Execution hasALL for P.

14

Meaning of {I | P} f {Q | E}

• If program f is started in anI-state, its execution either terminates in an
E-state or never terminates.

• If the environment preserves every predicate inP, the predicates inQ
are preserved byf .

Notes:

• Predicates inP and Q need not be stable in either the environment orf .

• Sequential{I} f {E} is: {I | {ALL}} f {{} | E}.

• {| P} f {Q |} is: {true | P} f {Q | true}.

• Closed Execution hasALL for P.

14

Technical Contributions

• (I, P) annotation of a program.

• Proof rules for augmented assertions, Jones-style.

• Extensions ofQ to include general (Unity-style) properties.

• Proof rules for properties, Unity-style.

15

