Bilateral Proofs of Concurrent Programs

Jayadev Misra

Department of Computer Science
University of Texas at Austin

WG 2.3, Istanbul
March 23, 2015



This talk is about:

¢ Verification of concurrent programs.
e With concurrent programs of full generality.

¢ With emphasis ospecificatiorand theircomposition



A simple Example: Podelski et. al., POPL 2015

Given global integer variablg and local variablesy; of thread i

X0:=0;9:=0g+X ][ X:=0¢09g:=09+xX][

Show that if g is positive initially, it remains positive.



A proof in my theory

{g>0}

X =0
{g>0Ax >0}

9:=9g+X

{g>0}

Claim: Proof is complete.

Observation Construct an annotation of the program in which every disser
is of the formp A I, pis local to the program point antis any fixed
predicate.

Then the annotation is valid.



Epoch-making developments in Verification

¢ Inductive assertions, by Floyd and Hoare.
e Non-interference, by Owicki and Gries.

¢ Rely-Guarantee, Cliff Jones.



From assertions to Properties: Unity

Simplify program structureloop (g — s) [loop(d — &) | ---
Each (g — s)isaguarded action.
Prove program properties, not assertions at program points

e If gisinitially positive, it stays positive.

e Aresource is never granted unless requested.
e Arequest for a resource is eventually granted.

Specification of a component is a set of properties.

Specifications compose.



Goal of the current work

e Extend Unity to apply to arbitrary concurrent programs.
e Extend rely-guarantee to prove both safety and progreggepies.

e Do it all effectively within a single framework.



Commutative Associative Fold of a bag
put and get are atomic operations on bag
put is non-blocking, get blocking.

f1 = get(x); get(y); put(x @ y)
fk="P1 | fier



Commutative Associative Fold of a bag

put and get are atomic operations on bag

put is non-blocking, get blocking.
f1 = get(x); get(y); put(x &)
fk="11 [ fs

Show that withn items in sinitially:
e the execution off,_1 terminates, and

¢ |leavesswith one item, the fold of all the original items.



Commutative Associative Fold of a bag

put and get are atomic operations on bag

put is non-blocking, get blocking.
f1 = get(x); get(y); put(x &)
fk="11 [ fs

Show that withn items in sinitially:
e the execution off,_1 terminates, and

¢ |leavesswith one item, the fold of all the original items.

Another definition:
f1 = (get(x) [ get(y)); put(x @'y)



Observations about the problem

Desired: Respect the recursive program structure in proof.
The result does not hold fok,. There is deadlock.
Interplay between sequential and concurrent aspects.

Entire code is not available.



What we need

Specificationspecy of fy, k> 1.
Show from its code thaf; satisfiesspec;.

Show that specy can be deduced fromspec; | speck_1.

Show that the required properties can be deduced fepes,,_;.

10



Summary of the Theory

Programs with arbitrary interleaving of sequential andocorent.

Construct assertions and program properties simultaheous
Properties are created from assertions.

Assertions are strengthened using propertiéateral proofs
Properties are also deduced compositionally.

Both safety and progress properties considered.

11



Program Model

A componentis one of:
e Action: Uninterruptible, terminating code, e.g<:= X+ 1, put, get.

e Sequencer: Combines components using sequential cassteu.

s; t, if bthen selset, whilebdos.

e Fork: f | g, f and g are components.
flglh=(F [g[h=Ff [(g]h)

12



Program Model
A componentis one of:

e Action: Uninterruptible, terminating code, e.g<:= X+ 1, put, get.

e Sequencer: Combines components using sequential cassteu.

s; t, if bthen selset, whilebdos.

e Fork: f | g, f and g are components.
flglh=(F [g[h=Ff [(g]h)
Execution

e Sequential components follow their execution rules.

e Fork: start all components simultaneously.

Terminates when they all do.

12



Specification

For componentf, predicatesl and E, and sets of predicateB and Q:
e aspecification is:{l | P} f {Q]E}.

e Call this anaugmented assertion

e Proof rules for augmented assertions. Derived from regulaof rules.

13



Meaning of {I | P} f {Q|E}

o If program f is started in anl -state, its execution either terminates in a
E-state or never terminates.

o |f the environment preserves every predicatePinthe predicates irQ
are preserved by.

14



Meaning of {I | P} f {Q|E}

o If program f is started in anl -state, its execution either terminates in a
E-state or never terminates.

o |f the environment preserves every predicatePinthe predicates irQ
are preserved by.

Notes:

e Predicates inP and Q need not be stable in either the environmenf or
e Sequential{l } f {E}is: {I | {ALL}} f {{}|E}.

o {|P} f {Q|}is: {true| P} f {Q|true}.

e Closed Execution hag\LL for P.

14



Technical Contributions

(I, P) annotation of a program.
Proof rules for augmented assertions, Jones-style.
Extensions ofQ to include general (Unity-style) properties.

Proof rules for properties, Unity-style.

15



