A Vision of Large-scale Software Design

Speech delivered at Ecole Normale Supérieure, Cachan
On the occasion of Doctor Honoris Causa ceremony

Jayadev Misra
April 09, 2010

Mesdames et messieurs: ¢’est un grand honneur pour moi de recevoir le Doc-
torat Honoris Causa de cette prestigieuse institution. Et c’est un plaisir et un
privilege de prendre la parole devant cet auditoire distingue.

[Ladies and gentlemen:

It is a great honor for me to receive Doctor Honoris Causa from this prestigious
institution. And it is a pleasure and privilege to be speaking to this distinguished
audience.]

I have been active in research for nearly 40 years. It is not possible to tell you
all my experiences in the next 10 minutes, but I will try! More seriously, let me try
to tell you how I stumbled on my latest research problem, what I can see clearly,
and where my vision is blurred.

Nearly 15 years ago, I was the chair of my department. We pretend that it is
an important position where all kinds of visionary decisions are made. In reality,
the job is to make sure that “the trains run on time”, that is, certain routine tasks
are performed at appropriate moments.

One of the tasks I assigned to a new assistant was to administer the visit of
an invited speaker. She ruined it completely. Afterwards, I sat down with her
and made a complete list of all the steps she should have taken, as a reminder for
the future. Each step was small, but each had to be performed in the appropriate
sequence. The assistant contacts the speaker, proposing a set of possible dates for
the visit. The speaker responds by choosing one of the dates. The assistant then
contacts a hotel and two airlines, to get the cheapest ticket. She sends the hotel
and airline information to the speaker who sends an acknowledgment. Only after
receiving the acknowledgment, the assistant confirms both the hotel and the airline
reservations. Then she reserves a room for the lecture, announces the lecture (by
posting it at an appropriate web-site) and requests the audio-visual technician to
check the equipment in the room prior to the lecture. There are many other steps



of a similar nature to be undertaken in this case.

I wondered afterwards if the assistant could be replaced by a machine. I pose
the question only as a thought experiment, not a prescription for how to build
a brutally capitalistic organization. After some thought I decided that it will be
a long and complex process to design a computer program to solve this specific
problem.

At the same time, I was thinking about the future of the internet. To the man in
the street, the internet is a giant communication device; you can send email or you
can download some articles to read. Using the internet to do useful computation
was novel, and unfortunately, it is still novel today. Consider a typical problem we
might try to solve. A client contacts two airlines simultaneously for price quotes.
He buys a ticket from either airline if its quoted price is no more than 300 Euros,
the cheapest ticket if both quotes are above 300 Euros, and any ticket if the other
airline does not provide a timely quote. The client should receive an indication if
neither airline provides a timely quote. I felt that we should have simple methods
for tackling problems of this kind, but I did not see a way.

Another problem for which I did not see an elegant solution was how a com-
puter would coordinate a disaster recovery operation, say after an earthquake. It
may accept inputs from the medical staff, firemen and the police, and direct them
by sending commands and information to their hand-held devices. A computer
may be better at the task of coordination than a human dispatcher, sending an-
nouncements, making reservations in the local hospitals, blocking certain roads to
traffic to let emergency vehicles pass, etc.

You may be wondering what these specific problems have to do with research
in Computer Science. Don’t computer scientists deal in lofty principles that use
a lot of mathematical jargon, like category theory and other esoteric algebras? 1
felt that these problems, though very different, are related in some abstract sense.
And a general approach for solving them will yield insight into the design of a
large class of complex software problems. In our research, we play a tense game
of generality vs. simplicity; we would like to solve as many different types of
problems as possible using the same tools, but we would like to have a common
simple notion around which to formulate their solutions. If the approach is not
general enough, no one would care to use such solutions, and if it is not simple
enough no one would care to use such solutions.

Let me talk about design simplicity for a few minutes, and then return to my
specific problems.

In their capacity as a tool, computers will be but a ripple on the surface of our

2



culture. In their capacity as intellectual challenge, they are without precedent in
the cultural history of mankind.

— Edsger W. Dijkstra, 1972

While we may debate if computers are merely ripples or tsunamis, let us ask
the question, what is one of the main intellectual challenges posed by computers.
Designs of large, complex artifacts. Computer systems are among the most com-
plex of human creations. If I imagine that a symbol has one gram of weight, then
some modern software systems weigh in thousands of tonnes. But each symbol
is different in purpose from any other symbol, thus making such systems dwarf
other human creations in complexity.

How do we design large complex software? How does nature design large
complex systems? We can draw some inspiration from chemistry and biology
where atoms are combined to form molecules, then compounds, then genome,
proteins, and living things. There is a hierarchy in the design. We have now been
able to understand some of the simpler layers of biological designs, mostly at the
chemical level, because it admits of hierarchical explanation. We don’t have to
understand everything all at once; we can understand the parts one by one, and
their interactions.

We can also be inspired by large social systems. We have communities and
towns, that form a state, then a nation. Military systems are invariably hierarchi-
cal. And, bureaucracies all over the world are brilliant at designing ever more
complex hierarchies.

Designs of software systems have adopted this natural principle. A system is
designed as a composition of some components, where each component is sim-
ilarly structured as a set of subcomponents until a component is simple enough
to be directly coded or understood. This structure also permits different groups
to collaborate in the design, by working on different components when the inter-
actions among them are well understood; for the design to evolve over time, by
replacing a component by a better one that corrects some defect, or provides more
functionality; and in testing or verifying a system one component at a time.

Now, back to my little problems dealing with visiting speakers and airline
quotes. I worked on these problems off and on for about 4 years without much
success. I remember when and how I saw a glimmer of a solution. It was at
an airport in Austria where I was having a cup of coffee; I did not have a clue
before I touched the cup to my lips, and I knew the outline of the solution by the
time I had finished my coffee. The inspiration came from Kleene Algebra, an



axiom system that we use quite extensively in certain areas of computer science,
far removed from the problems I was tackling. Simplicity is often derived by
packaging esoteric algebras within an accessible framework.

I realized that, first, I can, and I should, rely on a large supply of off-the-
shelf components, programs written by others, for constructing my solutions. For
the airline reservation problem, I can ask the airline database to provide a price
quote; I myself don’t have to code that program. External world provides many
components. Today many hundreds of thousands of services reside on the web. I
translated the first part of this speech from English to French using such a service.
These services could be written by teams of people, or just a lone programmer;
coded in many different languages, and available for free on the web, or in a
proprietary form for use within an organization.

My research is about combining the available components. In doing arith-
metic or standard algebra, we combine operands using operators such as addition
and multiplication. Similarly, I designed operators for combining program com-
ponents. These operators, or combinators, define the essence of the theory. They
specify, for instance, the order in which their operands, i.e., the components, are
to be executed, one after the other (as in parts of the speaker invitation problem)
or simultaneously (as in requesting quotes from both airlines). They also specify
how data is communicated among the components. The simplicity and generality
of the combinators is a good measure of the effectiveness of research.

Let me give you examples of some of the simplest problems my students and
collaborators have solved. A student designed a smart phone application so that
you may walk down the street with your phone and it shows the interesting things
around you, such as “there is a museum to your right that is having a special
exhibit of Monet”, or “to your left is a Michelin 3-star restaurant”. Another stu-
dent, who is much interested in live music bands, wrote an application that will
automatically fill up his calendar with all the bands playing in my town for the
next month, with dates and places; if a particular favorite band will be playing,
it emails him and his friends asking if the program should order tickets. A pro-
gram that runs in the background in my computer checks if I have a trip planned
in the next 24 hours; if so, it prepares a weather report (by contacting a weather
website), a list of interesting activities in that town (by contacting its chamber of
commerce), and travel advisories (by contacting the center for disease control and
the state department). My research group plans its meetings by using a program
that sends an email to all group members asking for their availability at specific
times, reminders if it does not receive timely responses, deciding a time at which
most of the group can meet, or an email to me if such a time is impossible to find.

4



These systems are designed and built in mere weeks, not months.

I describe these problems not because they are hard, but because they capture
the essence of many issues that arise in large-scale programming. Our collabora-
tors at ENS Cachan have developed much larger systems for Telecommunications
and Supply chain logistics, and are beginning to work on electronic Health appli-
cations. Researchers at Inria in Sophia Antipolis are designing novel multimedia
applications that can interconnect multiple audio and video devices to be con-
trolled by yet other multiple mobile devices. And, other groups are working on
large scale simulations, adaptive work-flows and security of information flow.

Our society has decided to increasingly rely upon large software systems for
nearly all facets of our existence. Unlike natural systems that have evolved over
ages, we are faced with explicit designs of systems with many interacting com-
ponents, multiple communication patterns, that are time sensitive, and prone to
failure. Science of design is in its infancy. My vision about a grand unification
theory of software design is still blurred. Yet, we learn to walk by taking baby
steps. My hope is to lay a mathematical foundation, based on logic and algebra,
on which others will build great edifices.

I am grateful to Ecole Normale Supérieure, Cachan, for believing in my vi-
sion, my collaborators and students for enhancing my understanding, and you, the
patient audience, for listening to me. Thank you.



