Structured Concurrent Programming

Jayadev Misra

Department of Computer Science
University of Texas at Austin

http://orc.csres.utexas.edu

LASER Summer School on Software Engineering
Concurrency: the next frontiers
September 6-12, 2015
Elba Island, Italy
Structured Concurrent Programming

- **Structured Sequential Programming**: Dijkstra circa 1968
 Component Integration in a sequential world.

- **Structured Concurrent Programming**:
 Component Integration in a concurrent world.
Traditional approaches to handling Concurrency

- Adding concurrency to serial languages:
 - Threads with mutual exclusion using semaphore.
 - Transaction.
- Process Networks.
Orc

- Orc is a concurrent language that has serial features.
- Orc is a component integration system.

Components:
- from many vendors
- for many platforms
- written in many languages
- may run concurrently and in real-time
Evolution of Orc

- Web-service Integration
- Component Integration
- Structured Concurrent Programming
Web-service Integration: Internet Scripting

- Contact two airlines simultaneously for price quotes.
- Buy a ticket if the quote is at most $300.
- Buy the cheapest ticket if both quotes are above $300.
- Buy a ticket if the other airline does not give a timely quote.
- Notify client if neither airline provides a timely quote.
Enhanced Goal: Component Integration

Components could be:

- Web services
- Library modules
- Custom Applications

Components could be for:

- Functional Transformation
- Data Object Creation
- Real-time Computation
Component Integration; contd.

- Combine any kind of component, not just web services
- Small components: add two numbers, print a file ...
- Large components: Linux, MSword, email server, file server ...
- Time-based components: alarm clock, timer
- Cyber-physical components: Actuators, sensors, humans
- Fast and Slow components
- Short-lived and Long-lived components
- Written in any language for any platform
Concurrency

- Component integration: traditionally sequential components, Object integration

- Today: concurrency is ubiquitous

- Magnitude higher in complexity than sequential programming

- No generally accepted method to tame complexity

- May affect security
Orc: Structured Concurrent Programming

- A combinator combines two components to get a component
- Combinators may be applied recursively
- Results in hierarchical/modular program construction
- Combinators may orchestrate components concurrently
- Orc is just about 4 combinators
Power of Orc

- Solve all known synchronization, communication problems
- Code objects, active objects
- Solve all known forms of real-time and periodic computations
- Solve a limited kind of transactions
- and, all combinations of the above
Some Typical Applications

- **Adaptive Workflow** (Business process management):
 Workflow lasting over months or years
 Security, Failure, Long-lived Data

- **Extended 911**:
 Using humans as components
 Components join and leave
 Real-time response

- **Network simulation**:
 Experiments with differing traffic and failure modes
 Animation
Some Typical Applications, contd.

- Grid Computations
- Music Composition
- Traffic simulation
- Computation Animation
- Robotics
Some Typical Applications, contd.

- Map-Reduce using a server farm
- Thread management in an operating system
- Mashups (Internet Scripting).
- Concurrent Programming on Android.
Some Very Large Applications: my wish list

- Logistics
- Managing Olympic Games
- Smart City
Current Status

- Strong Theoretical Basis

- An elegant programming language
 - as good as functional on functional problems
 - can work with mutable store, real-time dependent components, non-determinacy
 - concurrency
 - hierarchical, modular, recursive

- Robust Implementation
 - Run program through a Web browser or locally
 - Web site: orc.csres.utexas.edu
 - Several papers, Ph.D. thesis

- Several Chapters of a book
Concurrent orchestration in Haskell

John Launchbury and Trevor Elliott
Proceedings of the third ACM Haskell symposium on Haskell
Orc Calculus

- **Site**: Basic service or component.
- Concurrency **combinators** for integrating sites.
- Calculus includes nothing other than the combinators.

No notion of data type, thread, process, channel, synchronization, parallelism …

New concepts (sites) are programmed using existing sites.

- There are no sites in Orc calculus.
Examples of Sites

- $+ - \ast \&\& || = ...$

- `Println`, `Random`, `Prompt`, `Email` ...

- `Mutable Ref`, `Semaphore`, `Channel`, ...

- `Timer`

- **External Services:** `Google Search`, `MySpace`, `CNN`, ...

- **Any Java Class instance**, **Any Orc Program**

- **Factory sites; Sites that create sites:** `Semaphore`, `Channel` ...

- **Humans**

...
Sites

- A site is called like a procedure with parameters.
- Site returns any number of values.
- The values are published.
Structure of Orc Expression

- **Simple**: just a site call, $\text{CNN}(d)$
 Publishes the value returned by the site.

- **Composition** of two Orc expressions:

 \[
 \begin{align*}
 \text{do } f \text{ and } g \text{ in parallel} & \quad f \mid g & \quad \text{Symmetric composition} \\
 \text{for all } x \text{ from } f \text{ do } g & \quad f >x> g & \quad \text{Sequential composition} \\
 \text{for some } x \text{ from } g \text{ do } f & \quad f <x< g & \quad \text{Pruning} \\
 \text{if } f \text{ halts without publishing do } g & \quad f ; g & \quad \text{Otherwise}
 \end{align*}
 \]
Structure of Orc Expression

- **Simple**: just a site call, $\text{CNN}(d)$
 Publishes the value returned by the site.

- **Composition** of two Orc expressions:
 - f and g in parallel: $f \mid g$
 - For all x from f do g: $f > x > g$
 - For some x from g do f: $f < x < g$
 - If f halts without publishing do g: $f ; g$
 - Symmetric composition
 - Sequential composition
 - Pruning
 - Otherwise
Structure of Orc Expression

- **Simple**: just a site call, $\text{CNN}(d)$
 Publishes the value returned by the site.

- **Composition** of two Orc expressions:

 - do f and g in parallel

 - for all x from f do g

 - for some x from g do f

 - if f halts without publishing do g

 $f | g$
 $f > x > g$
 $f < x < g$
 $f ; g$

 Symmetric composition
 Sequential composition
 Pruning
 Otherwise
Structure of Orc Expression

- **Simple**: just a site call, \(CNN(d) \)
 Publishes the value returned by the site.

- **Composition** of two Orc expressions:

 do \(f \) and \(g \) in parallel
 for all \(x \) from \(f \) do \(g \)
 for some \(x \) from \(g \) do \(f \)

 if \(f \) halts without publishing do \(g \)

 \[f | g \quad f > x > g \quad f < x < g \quad f ; g \]

 Symmetric composition
 Sequential composition
 Pruning
 Otherwise
Structure of Orc Expression

- **Simple**: just a site call, \(\text{CNN}(d) \)
 Publishes the value returned by the site.

- **Composition** of two Orc expressions:

 do \(f \) and \(g \) in parallel \(f \parallel g \) Symmetric composition
 for all \(x \) from \(f \) do \(g \) \(f >\!\!\!\!\!> g \) Sequential composition
 for some \(x \) from \(g \) do \(f \) \(f <\!\!\!\!\!< g \) Pruning
 if \(f \) halts without publishing do \(g \) \(f ; g \) Otherwise
Symmetric composition: \(f \mid g \)

- Evaluate \(f \) and \(g \) independently.

- Publish all values from both.

- No direct communication or interaction between \(f \) and \(g \). They can communicate only through sites.

Example: \(CNN(d) \mid BBC(d) \)

Calls both \(CNN \) and \(BBC \) simultaneously.
Publishes values returned by both sites. (0, 1 or 2 values)
Sequential composition: $f \gg x \gg g$

For all values published by f do g.
Publish only the values from g.

- $\text{CNN}(d) \gg x \gg \text{Email}(\text{address}, x)$
 - Call $\text{CNN}(d)$.
 - Bind returned value (if any) to x. Don’t publish x.
 - Call $\text{Email}(\text{address}, x)$.
 - Publish the value, if any, returned by Email.

- $(\text{CNN}(d) \mid \text{BBC}(d)) \gg x \gg \text{Email}(\text{address}, x)$
 - May call Email twice.
 - Publishes up to two values from Email.

Notation: $f \gg g$ for $f \gg x \gg g$, if x is unused in g.

Right Associative: $f \gg x \gg g \gg y \gg h$ is $f \gg x \gg (g \gg y \gg h)$
Sequential composition: $f > x > g$

For all values published by f do g. Publish only the values from g.

- $\text{CNN}(d) > x > \text{Email}(\text{address}, x)$
 - Call $\text{CNN}(d)$.
 - Bind returned value (if any) to x. Don’t publish x.
 - Call $\text{Email}(\text{address}, x)$.
 - Publish the value, if any, returned by Email.

- $(\text{CNN}(d) | \text{BBC}(d)) > x > \text{Email}(\text{address}, x)$
 - May call Email twice.
 - Publishes up to two values from Email.

Notation: $f \gg g$ for $f > x > g$, if x is unused in g.

Right Associative: $f > x > g > y > h$ is $f > x > (g > y > h)$
Sequential composition: $f \gg x \gg g$

For all values published by f do g. Publish only the values from g.

- $CNN(d) \gg x \gg Email(address, x)$
 - Call $CNN(d)$.
 - Bind returned value (if any) to x. Don’t publish x.
 - Call $Email(address, x)$.
 - Publish the value, if any, returned by $Email$.

- $(CNN(d) | BBC(d)) \gg x \gg Email(address, x)$
 - May call $Email$ twice.
 - Publishes up to two values from $Email$.

Notation: $f \gg g$ for $f \gg x \gg g$, if x is unused in g.

Right Associative: $f \gg x \gg g \gg y \gg h$ is $f \gg x \gg (g \gg y \gg h)$
Sequential composition: $f \gg x \gg g$

For all values published by f do g.
Publish only the values from g.

- $CNN(d) \gg x \gg Email(address, x)$

 - Call $CNN(d)$.
 - Bind returned value (if any) to x. Don’t publish x.
 - Call $Email(address, x)$.
 - Publish the value, if any, returned by $Email$.

- $(CNN(d) \mid BBC(d)) \gg x \gg Email(address, x)$

 - May call $Email$ twice.
 - Publishes up to two values from $Email$.

Notation: $f \gg g$ for $f \gg x \gg g$, if x is unused in g.

Right Associative: $f \gg x \gg g \gg y \gg h$ is $f \gg x \gg (g \gg y \gg h)$
Schematic of Sequential composition

Figure: Schematic of $f \circ x \circ g$

$g(x_0)$ $g(x_1)$ $g(x_2)$

Figure: Schematic of $f \circ x \circ g$
Pruning: $f <x< g$

For some (one) value published by g do f.

- Evaluate f and g in parallel.
 - Site calls that need x are suspended.
 Consider $(M() | N(x)) <x< g$

- When g returns a (first) value:
 - Bind the value to x. Don’t publish x.
 - Kill g.
 - Resume suspended calls.

- Values published by f are the values of $(f <x< g)$.

Notation: $f \ll g$ for $f <x< g$, if x is unused in f.

Left Associative: $f <x< g <y< h$ is $(f <x< g) <y< h$
Pruning: $f <x< g$

For some (one) value published by g do f.

- Evaluate f and g in parallel.
 - Site calls that need x are suspended.
 Consider $(M()) | N(x)) <x< g$
 - When g returns a (first) value:
 - Bind the value to x. Don’t publish x.
 - Kill g.
 - Resume suspended calls.
 - Values published by f are the values of $(f <x< g)$.

Notation: $f \ll g$ for $f <x< g$, if x is unused in f.

Left Associative: $f <x< g <y< h$ is $(f <x< g) <y< h$
Pruning: \(f \prec x \prec g \)

For some (one) value published by \(g \) do \(f \).

- Evaluate \(f \) and \(g \) in parallel.
 - Site calls that need \(x \) are suspended.
 Consider \((M()) \mid N(x)) \prec x \prec g \)

- When \(g \) returns a (first) value:
 - Bind the value to \(x \). Don’t publish \(x \).
 - Kill \(g \).
 - Resume suspended calls.

- Values published by \(f \) are the values of \((f \prec x \prec g) \).

Notation: \(f \ll g \) for \(f \prec x \prec g \), if \(x \) is unused in \(f \).

Left Associative: \(f \prec x \prec g \prec y \prec h \) is \((f \prec x \prec g) \prec y \prec h \)
Pruning: \(f <x< g \)

For some (one) value published by \(g \) do \(f \).

- Evaluate \(f \) and \(g \) in parallel.
 - Site calls that need \(x \) are suspended.
 Consider \((M()) \mid N(x)) <x< g\)

- When \(g \) returns a (first) value:
 - Bind the value to \(x \). Don’t publish \(x \).
 - Kill \(g \).
 - Resume suspended calls.

- Values published by \(f \) are the values of \((f <x< g)\).

Notation: \(f \ll g \) for \(f <x< g \), if \(x \) is unused in \(f \).

Left Associative: \(f <x< g <y< h \) is \((f <x< g) <y< h\).
Pruning: $f < x < g$

For some (one) value published by g do f.

- Evaluate f and g in parallel.
 - Site calls that need x are suspended.
 Consider $(M()) | N(x)) < x < g$

- When g returns a (first) value:
 - Bind the value to x. Don’t publish x.
 - Kill g.
 - Resume suspended calls.

- Values published by f are the values of $(f < x < g)$.

Notation: $f \ll g$ for $f < x < g$, if x is unused in f.

Left Associative: $f < x < g < y < h$ is $(f < x < g) < y < h$
Example of Pruning

\[Email(address, x) \triangleleft x \triangleleft (CNN(d) | BBC(d)) \]

Binds \(x \) to the first value from \(CNN(d) | BBC(d) \).
Sends at most one email.
Multiple Pruning happens concurrently

\[\text{add}(x,y) < x < f < y < g\] is \((\text{add}(x,y) < x < f) < y < g\)

\((\text{add}(x,y) < x < f)\) is computed concurrently with \(g\)

\((\text{add}(x,y)\), \(f\) and \(g\) computed concurrently.
Otherwise: \(f ; g \)

Do \(f \). If \(f \) halts without publishing then do \(g \).

- An expression halts if
 - its execution can take no more steps, and
 - all called sites have either responded, or will never respond.

- A site call may respond with a value, indicate that it will never respond (helpful), or do neither.

- All library sites in Orc are helpful.
- Any expression over helpful sites is helpful.
Otherwise: \(f ; g \)

Do \(f \). If \(f \) halts without publishing then do \(g \).

• An expression halts if
 • its execution can take no more steps, and
 • all called sites have either responded, or will never respond.

• A site call may respond with a value, indicate that it will never respond (helpful), or do neither.

• All library sites in Orc are helpful.
• Any expression over helpful sites is helpful.
Otherwise: $f \ ; \ g$

Do f. If f halts without publishing then do g.

- An expression halts if
 - its execution can take no more steps, and
 - all called sites have either responded, or will never respond.

- A site call may respond with a value, indicate that it will never respond (helpful), or do neither.

- All library sites in Orc are helpful.
- Any expression over helpful sites is helpful.
Examples of $f; g$

- $1; 2$ publishes 1

- Print all publications of h. When h halts, publish "done". Assume h is helpful.

 $$h \ x \ x > \ Println(x) \Rightarrow stop; \ "done"$$

- $5/0$; “Exception leads to Halt” publishes “Exception leads to Halt”
Orc program

- Orc program has
 - a goal expression,
 - a set of definitions.

- The goal expression is executed. Its execution
 - calls sites,
 - publishes values.
Some Fundamental Sites

All these sites are helpful.

- **Ift\(b\)**, **Iff\(b\)**: boolean \(b\),
 Returns a signal if \(b\) is true/false; remains silent otherwise.
 Site is helpful: indicates when it will never respond.

- **stop**: never responds. Same as \(Ift(false)\) or \(Iff(true)\).

- **signal**: returns a signal immediately.
 Same as \(Ift(true)\) or \(Iff(false)\).

- **Rwait\(t\)**: integer \(t\), \(t \geq 0\), returns a signal exactly \(t\) time units later.
Use of Fundamental Site: Timeout

- Call site M. Publish its response if it arrives within 10 time units. Otherwise publish 0.

$$x \prec (M() \mid Rwait(10) \gg 0)$$
Interrupt f

- Evaluation of f cannot be directly interrupted.

- Introduce two sites:
 - Interrupt.set: to interrupt f
 - Interrupt.get: responds only after Interrupt.set has been called.

 - Interrupt.set is similar to release on a semaphore; Interrupt.get is similar to acquire on a semaphore.

- Instead of f, evaluate

 $$z < z < (f | \text{Interrupt.get}())$$
Site Definition

```python
def MailOnce(a) =
    Email(a, m) <m< (CNN(d) | BBC(d))

def MailLoop(a, t) =
    MailOnce(a) >> Rwait(t) >> MailLoop(a, t)

def metronome() = signal | (Rwait(1) >> metronome())
```

- A defined site name is called like a procedure. It may publish many values. *MailLoop* does not publish.
Example of a Definition: Metronome

Publish a signal every unit.

\[
def \text{metronome}() = \text{signal} \mid (\text{Rwait}(1) \gg \text{metronome}())
\]
Unending string of Random digits

metronome() \implies Random(10) \text{ – one every unit}

\text{def} \quad \text{rand}_\text{seq}(dd) = \text{Random}(10) | \text{Rwait}(dd) \implies \text{rand}_\text{seq}(dd) \text{ – at a specified rate}
Simple definitions using *Random()*

- Return a random boolean.

  ```python
def rbool() = (Random(2) = 0)
  ```

- Return a random real number between 0 and 1.

  ```python
def frandom() = Random(1001)/1000.0
  ```

- Return *true* with probability *p*, *false* with *(1 – p)*

  ```python
def biasedBool(p) = (Random(1000) <: p * 1000)
  ```
Example of Site call

- Site $\text{Query}()$ returns a value (different ones at different times).

- Site $\text{Accept}(x)$ returns x if x is an acceptable value; it is silent otherwise.

- Call Query every second forever and publish all its acceptable values.

\[
\text{metronome}() \gg \text{Query}() \gg x > \text{Accept}(x)
\]
Concurrent Site call

- Sites are often called concurrently.

- Each call starts a new instance of site execution.

- If a site accesses shared data, concurrent invocations may interfere.

Example: Publish each of "tick" and "tock" once per second, "tock" after an initial half-second delay.

```
metronome() \Rightarrow \text{"tick"}
Rwait(500) \Rightarrow metronome() \Rightarrow \text{"tock"}
```
Logical Connectives; 2-valued Logic

And: Publish a signal if both sites do.

Or: Publish a signal if either site does.

\[M() \Rightarrow N() \quad \text{— “and”} \]

\[b <b< (M() \mid N()) \quad \text{— “or”} \]

\[M() ; N() \quad \text{— “or” with helpful } M \]

\[(M() \Rightarrow \text{true ; false}) \gg b > lff(b) \quad \text{— “not” with helpful } M \]
Parallel or

Expressions \(f \) and \(g \) return single booleans. Compute the parallel or.

\[
\begin{align*}
val \ x &= f \\
val \ y &= g \\
Ift(x) &\gg true \mid Ift(y) &\gg true \mid (x \parallel y)
\end{align*}
\]
Parallel or; contd.

Compute the \textbf{parallel or} and return just one value:

\begin{verbatim}
val x = f
val y = g
val z = Ift(x) \gg true \mid Ift(y) \gg true \mid (x \| y)
\end{verbatim}

But this continues execution of \texttt{g} if \texttt{f} first returns true.

\begin{verbatim}
val z =
 val x = f
 val y = g

 Ift(x) \gg true \mid Ift(y) \gg true \mid (x \| y)
\end{verbatim}
Airline quotes: Application of Parallel or

- Contact airlines A and B.

- Return any quote if it is below 300 as soon as it is available, otherwise return the minimum quote.

- $\text{threshold}(x)$ returns x if $x < 300$; silent otherwise. $\text{Min}(x, y)$ returns the minimum of x and y.

$$
\text{val } z = \\
\text{val } x = A() \\
\text{val } y = B()
$$

$$
\text{threshold}(x) | \text{threshold}(y) | \text{Min}(x, y)
$$

z
Fork-join parallelism

Call sites M and N in parallel.
Return their values as a tuple after both respond.

$((u, v) < u < M()) < v < N())$

or, in Orc language

$(M(), N())$
Simple Parallel Auction

- A list of bidders in a sealed-bid, single-round auction.
- \(b.ask()\) requests a bid from bidder \(b\).
- Ask for bids from all bidders, then publish the highest bid.

\[
def \text{auction}([]) = 0 \\
def \text{auction}(b : bs) = \max(b.ask(), \text{auction}(bs))
\]

Notes:
- All bidders are called simultaneously.
- If some bidder fails, then the auction will never complete.
Parallel Auction with Timeout

• Take a bid to be 0 if no response is received from the bidder within 8 seconds.

\[
\text{def } \text{auction}([], b : bs) = \\
\text{max}(
\begin{align*}
\text{b.ask()} & | (\text{Rwait}(8000) \gg 0), \\
\text{auction}(bs)
\end{align*}
) \\
\text{def } \text{auction}([]) = 0
\]
Identities of |, », ≪ and ;

(Zero and |) \(f | \text{stop} = f \)
(Commutativity of |) \(f | g = g | f \)
(Associativity of |) \((f | g) | h = f | (g | h)\)
(Left zero of ») \(\text{stop} » f = \text{stop} \)
(Associativity of ») if \(h \) is \(x \)-free \((f » x » g) » y » h = f » x » (g » y » h) \)
(Right zero of ≪) \(f ≪ \text{stop} = f \)
(generalization of right zero) \(f ≪ g = f ≪ (\text{stop} ≪ g) = f | (\text{stop} ≪ g) \)
(relation between ≪ and <x<) \(f ≪ g = f <x< g, \ \text{if} \ x \not\in \text{free}(f) \)
(commutativity) \((f <x< g) <y< h = (f <y< h) <x< g \)
\(\text{if} \ x \not\in \text{free}(h), \ y \not\in \text{free}(g), \ \text{and} \ x, y \ \text{are distinct.} \)
(associativity of ;) \((f ; g) ; h = f ; (g ; h)\)
Distributivity Identities

(| over >x> ; left distributivity)
\[(f | g) >x> h = f >x> h | g >x> h\]

(| over <x<) \[(f | g) <x< h = (f <x< h) | g, \text{ if } x \not\in \text{free}(g).\]

(>y> over <x<) \[(f >y> g) <x< h = (f <x< h) >y> g \text{ if } x \not\in \text{free}(g), \text{ and } x \text{ and } y \text{ are distinct.}\]

(<x< over otherwise) \[(f <x< g) ; h = (f ; h) <x< g, \text{ if } x \not\in \text{free}(h).\]
Identities that don’t hold

(Idempotence of $|$) $f \mid f = f$

(Right zero of \gg) $f \gg stop = stop$

(Left Distributivity of \gg over $|$)
\[f \gg (g \mid h) = (f \gg g) \mid (f \gg h) \]
Orc Language

- **Data Types**: Number, Boolean, String, with Java operators

- **Conditional Expression**: `if E then F else G`

- **Data structures**: Tuple, List, Record

- **Pattern Matching; Clausal Definition**

- **Closure**

- **Orc combinators everywhere**

- **Class for active objects**
Data types

- **Number**: 5, −1, 2.71828, −2.71e−5
- **Boolean**: true, false
- **String**: "orc", "ceci n’est pas une |

\[
\begin{align*}
1 + 2 & \quad \text{evaluates to 3} \\
0.4 = 2.0/5 & \quad \text{evaluates to true} \\
3 - 5 :> 5 - 3 & \quad \text{evaluates to false} \\
true && (false || true) & \quad \text{evaluates to true} \\
3/0 & \quad \text{is silent — Halts without publishing; helpful} \\
"Try" + "Orc" & \quad \text{evaluates to "TryOrc"}
\end{align*}
\]
Variable Binding; Silent expression

\[val \ x = 1 + 2 \]

\[val \ y = x + x \]

\[val \ z = x/0 \quad -- \ expression \ is \ silent \]

\[val \ u = \quad \text{if} \ (0 <: 5) \ \text{then} \ 0 \ \text{else} \ z \]
Conditional Expression

if true then "blue" else "green" — is "blue"

if "fish" then "yes" else "no" — is silent

if false then 4+5 else 4+true — is silent

if true then 0/5 else 5/0 — is 0
Tuples

(1 + 2, 7) is (3, 7)

("true" + "false", true || false, true && false) is ("truefalse", true, false)

(2/2, 2/1, 2/0) is silent
Lists

\[1, 2 + 3\] \; \text{is} \; [1, 5]

\[true \; \&\& \; true\] \; \text{is} \; [true]

[] \; \text{is} \; \text{the empty list}

\[5, 5 + true, 5\] \; \text{is} \; \text{silent}

List Constructor is a colon:
\[3:[5, 7] = [3, 5, 7]\]
\[3:[] = [3]\]
Translating Programs to Orc Calculus

- All programs are translated to Orc calculus.

- $1 + 2$ becomes $\text{add}(1, 2)$
 All arithmetic and logical operators, tuples, lists are site calls.
 if-then-else is translated with calls to Ift, Iff sites.

- $1 + (2 + 3)$ should become $\text{add}(1, \text{add}(2, 3))$
 But this is not legal Orc! Site calls can not be nested.
Orc Combinators everywhere

Parameters in site calls could be Orc expressions

\[(1 + 2) | (2 + 3)\]

\[(1 | 2) + (2 | 3)\]
Deflation

- Given expression $C(..., e, ..)$, single value expected at e
- translate to $C(..., x, ..) < x < e$ where x is fresh
- $$val \ z = g$$
- f is translated to
 $$f < z < g$$
- applicable hierarchically.

$$(1 \ | \ 2) \ast (10 \mid 100)$$ is translated to

$$\langle Times(x, y) < x < (1 \mid 2) \rangle < y < (10 \mid 100)$$, or without parentheses

$$Times(x, y) < x < (1 \mid 2) < y < (10 \mid 100)$$

- Implication:
 Arguments of site calls are evaluated in parallel.
 Note: A strict site is called when all arguments have been evaluated.
Deflation

- Given expression $C(\ldots, e, \ldots)$, single value expected at e
- translate to $C(\ldots, x, \ldots) < x < e$ where x is fresh
-
 $$\text{val } z = g$$

 f

 is translated to

 $$f < z < g$$

- applicable hierarchically.

 $$(1 \mid 2) \times (10 \mid 100)$$ is translated to

 $$\text{((Times}(x, y) < x < (1 \mid 2)) < y < (10 \mid 100), \text{ or without parentheses}}$$

 $$\text{Times}(x, y) < x < (1 \mid 2) < y < (10 \mid 100)$$

- Implication:
 Arguments of site calls are evaluated in parallel.
 Note: A strict site is called when all arguments have been evaluated.
Deflation

- Given expression \(C(\ldots, e, \ldots) \), single value expected at \(e \)
- translate to \(C(\ldots, x, \ldots) <x< e \) where \(x \) is fresh

\[
\text{val } z = g
\]

\[
f <z< g
\]

- applicable hierarchically.

\[
(1 | 2) \times (10|100) \text{ is translated to }
\]

\[
(Times(x, y) <x< (1 | 2)) <y< (10 | 100), \text{ or without parentheses }
Times(x, y) <x< (1 | 2) <y< (10 | 100)
\]

- Implication:
 Arguments of site calls are evaluated in parallel.
Note: A strict site is called when all arguments have been evaluated.
Deflation

- Given expression \(C(..., e, ..) \), single value expected at \(e \)
- translate to \(C(..., x, ..) \ <x< e \) where \(x \) is fresh
- \(\text{val } z = g \)
 \[f \]
 is translated to
 \[f <z< g \]
- applicable hierarchically.

\((1 \mid 2) \ast (10\mid100)\) is translated to
\n\((\text{Times}(x, y) \ <x< (1 \mid 2)) \ <y< (10 \mid 100)\), or without parentheses
\n\(\text{Times}(x, y) \ <x< (1 \mid 2) \ <y< (10 \mid 100)\)

- Implication:
 Arguments of site calls are evaluated in parallel.
 Note: A strict site is called when all arguments have been evaluated.
Choice

• Non-deterministically choose to execute either f or g,

• $\text{if } (\text{true} \mid \text{false}) \text{ then } f \text{ else } g$
Implicit Concurrency

- An experiment tosses two dice. Experiment succeeds if and only if sum of the two dice thrown is 7.
- $exp(n)$ runs n experiments and reports the number of successes.

```python
def toss() = Random(6) + 1
-- toss returns a random number between 1 and 6

def exp(0) = 0
def exp(n) = exp(n - 1)
    + (if toss() + toss() = 7 then 1 else 0)
```
Translation of the dice throw program

```python
def toss() = add(x, 1) <x< Random(6)
def exp(n) =
    ( Ift(b) ≫ 0
    | Iff(b) ≫
        ( add(x, y)
            <x< ( exp(m) <m< sub(n, 1) )
            <y< ( Ift(bb) ≫ 1 | Iff(bb) ≫ 0 )
            <bb< equals(p, 7)
            <p< add(q, r)
            <q< toss()
            <r< toss()
        )
    ) <b< equals(n, 0)
```

Note: $2n$ parallel calls to $toss()$.
Barrier Synchronization

• Given $M() \gg f \mid N() \gg g$.

• Require: f and g start only after both M and N complete.

• Rendezvous of CSP or CCS;
 M and N are complementary actions.

 $$(M(), N()) \gg (f \mid g)$$
Priority

- Publish \(N \)'s response asap, but no earlier than 1 unit from now.
 Apply fork-join between \(R_{\text{wait}}(1) \) and \(N \).
 \[
 \text{val } (u, _) = (N(), R_{\text{wait}}(1))
 \]

- Call \(M, N \) together.
 If \(M \) responds within one unit, publish its response.
 Else, publish the first response.
 \[
 \text{val } x = M() | u
 \]
Pattern Matching in val

(x, y) = (2+3, 2*3) \hspace{1cm} \text{binds} \hspace{0.5cm} x \text{ to } 5 \text{ and } y \text{ to } 6

[a, b] = ["one", "two"] \hspace{1cm} \text{binds} \hspace{0.5cm} a \text{ to } "one", \ b \text{ to } "two"

((a, b), c) = ((1, true), [2, false]) \hspace{1cm} \text{binds} \hspace{0.5cm} a \text{ to } 1, \ b \text{ to } true, \ \text{and} \ c \text{ to } [2, false]

(x, _, _) = (1, (2, 2), [3, 3, 3]) \hspace{1cm} \text{binds} \hspace{0.5cm} x \text{ to } 1

[_, x, _, y] = [[1, 3],[2, 4]] \hspace{1cm} \text{binds} \hspace{0.5cm} x \text{ to } 3 \text{ and } y \text{ to } 4
Pattern Matching in Site Definition parameters

A site adds two pairs componentwise; publishes the resulting pair.

\[
\text{def } \text{pairsum}(a, b) = \\\\\\\\\\\text{\(a > (x, y) > b > (x', y') \) > \(x + x', y + y' \)}
\]

or, even better,

\[
\text{def } \text{pairsum}((x, y), (x', y')) = (x + x', y + y')
\]
Pattern Matching, clausal definition

\[
\text{def } \textit{sum}([]) = 0
\]

\[
\text{def } \textit{sum}(x : xs) = x + \textit{sum}(xs)
\]

Clauses are evaluated in order from top to bottom.
Tree Reconstruction

1. Given a non-empty sequence of natural numbers.

2. Does the sequence represent the depths of terminal nodes in a binary tree, from left to right? Then it is valid.

Example: \([1, 3, 3, 2]\) is valid, \([1, 3, 2, 2]\) is not.

Output the tree structure if the sequence is valid; Output \textit{NonTree()}\) otherwise.
Theorem

• [0] is valid.

• $[left] + x + x + [right]$, where $[left] + x$ has no duplicates, is valid iff $[left] + (x - 1) + [right]$ is valid.
Tree Reconstruction; Contd.

\[\text{type } \text{Tree} = \text{Node(Tree, Tree)} | \text{Leaf()} | \text{NonTree()}\]

\[\text{def } tc(_, []) = \text{NonTree()}\]

\[\text{def } tc([], [(v, t)]) = \text{if } (v = 0) \text{ then } t \text{ else } \text{NonTree()}\]

\[\text{def } tc([], v : \text{right}) = tc([v], \text{right})\]

\[\text{def } tc((u, t) : \text{left}, (v, t') : \text{right}) = \]
\[\quad \text{if } u = v \text{ then } tc(\text{left}, (v - 1, \text{Node(t, t')}) : \text{right})\]
\[\quad \text{else } tc((v, t') : (u, t) : \text{left}, \text{right})\]

Typical test: \[tc([], [(3, \text{Leaf()})], (3, \text{Leaf()}), (2, \text{Leaf()}), (2, \text{Leaf()})]]\]
Tree Reconstruction; contd.

Simplify input preparation:

\[
tc([], [(3, Leaf()), (3, Leaf()), (2, Leaf()), (2, Leaf())])\]

replaced by

\[
checktree([3, 3, 2, 2])
\]

\[
def mklist([]) = []
def mklist(x : xs) = (x, Leaf()) : mklist(xs)
def checktree(xs) = tc([], mklist(xs))
\]

\[
checktree([3, 3, 2, 2])
\]

– NonTree()

\[
checktree([1, 3, 3, 2])
\]

– Node(Leaf(), Node(Node(Leaf(), Leaf()), Leaf()))

\[
checktree([3, 3, 2, 2, 2])
\]

– Node(Node(Node(Leaf(), Leaf()), Leaf()), Node(Leaf(), Leaf())))
Example: Fibonacci numbers

\[
\begin{align*}
 \text{def } H(0) &= (1, 1) \\
 \text{def } H(n) &= H(n - 1) > (x, y) > (y, x + y) \\
 \text{def } \text{Fib}(n) &= H(n) > (x, _) > x
\end{align*}
\]

{- Goal expression -}
\[\text{Fib}(5)\]
Clausal Definition, Pattern Matching
Example: Defining graph connectivity

An Undirected Graph

\[
\begin{align*}
\text{def } \text{conn}(0) &= [1, 2, 3, 4] \\
\text{def } \text{conn}(1) &= [0, 5] \\
\text{def } \text{conn}(2) &= [0, 4] \\
\text{def } \text{conn}(3) &= [0, 5] \\
\text{def } \text{conn}(4) &= [0, 2] \\
\text{def } \text{conn}(5) &= [1, 3]
\end{align*}
\]

\[\text{def } \text{conn}(i) =
\begin{align*}
i > 0 &\rightarrow [1, 2, 3, 4] \\
i > 1 &\rightarrow [0, 5] \\
i > 2 &\rightarrow [0, 4] \\
i > 3 &\rightarrow [0, 5] \\
i > 4 &\rightarrow [0, 2] \\
i > 5 &\rightarrow [1, 3]
\end{align*}\]
Sites

- Sites are first-class values.
 A site may be a parameter in site call.
 A site may return a site as a value.

\[M() > (x, y) > x(y) \quad \quad \quad \text{-- } x, y \text{ are sites} \]

- Sites may have methods.

\[\text{Channel}() > \text{ch} > \text{ch.put}(3) \]

- Translation of method call \text{ch.put}(3):

\[\text{ch(“put”) } > x > x(3) \]
Closure: Sites as values

- **val** `minmax = (min, max)`

- `def apply2((f, g), (x, y)) = (f(x, y), g(x, y))`

  ```python
apply2(minmax, (2, 1))  # publishes (1, 2)
```

- `def pmap(f, []) = []`

  ```python
def pmap(f, x : xs) = f(x) : pmap(f, xs)
```

  ```python
  pmap(lambda(i) = i * i, [2, 3, 5])  # publishes [4, 9, 25]
```

- `def repeat(f) = f() >> repeat(f)`

  ```python
def pr() = Println(3)
```

  ```python
  repeat(pr)  # prints 3 forever.
```
Closure: Sites as values

- `val minmax = (min, max)`

- `def apply2((f, g), (x, y)) = (f(x, y), g(x, y))`

 `apply2(minmax, (2, 1))` publishes (1, 2)

- `def pmap(f, []) = []`

 `def pmap(f, x : xs) = f(x) : pmap(f, xs)`

 `pmap(lambda(i) = i * i, [2, 3, 5])` publishes [4, 9, 25]

- `def repeat(f) = f() >>= repeat(f)`

 `def pr() = println(3)`

 `repeat(pr)` prints 3 forever.
Closure: Sites as values

- \textit{val} \ minmax = (\textit{min}, \textit{max})

- \textit{def} \ apply2((f, g), (x, y)) = (f(x, y), g(x, y))

 \textit{apply2}(\textit{minmax}, (2, 1)) \quad \text{publishes} \quad (1, 2)

- \textit{def} \ pmap(f, []) = []

 \textit{def} \ pmap(f, x : xs) = f(x) : pmap(f, xs)

 \textit{pmap}(\lambda(i) = i \times i, [2, 3, 5]) \quad \text{publishes} \quad [4, 9, 25]

- \textit{def} \ repeat(f) = f() \gg \textit{repeat}(f)

 \textit{def} \ pr() = \texttt{Println}(3)

 \textit{repeat}(\textit{pr}) \quad \text{prints} \ 3 \ \text{forever.}
Closure: Sites as values

- `val minmax = (min, max)`

- `def apply2((f, g), (x, y)) = (f(x, y), g(x, y))`

 `apply2(minmax, (2, 1))` publishes `(1, 2)`

- `def pmap(f, []) = []`

 `def pmap(f, x : xs) = f(x) : pmap(f, xs)`

 `pmap(lambda(i) = i * i, [2, 3, 5])` publishes `[4, 9, 25]`

- `def repeat(f) = f() >> repeat(f)`

 `def pr() = Println(3)`

 `repeat(pr)` prints 3 forever.
val, tuple, closure

def circle() =

 val pi = 3.1416

 def perim(r) = 2 * pi * r

 def area(r) = pi * r ** 2 #

(perim, area)
Some Factory Sites

Ref(n) Mutable reference with initial value n
Cell() Write-once reference
Array(n) Array of size n of Refs
Table(n,f) Array of size n of immutable values of f
Semaphore(n) Semaphore with initial value n
Channel() Unbounded (asynchronous) channel

Ref(3) >r> r.write(5) >>= r.read(), or Ref(3) >r> r := 5 >>= r?
Cell() >r> (r.write(5) | r.read()), or Cell() >r> r := 5 | r?
Array(3) >a> a(0) := true >>= a(1)?
Semaphore(1) >s> s.acquire() >>= Println(0) >>= s.release()

Channel() >ch> (ch.get() | ch.put(3) >>= stop)
Simple Swap

Convention:

\[
\begin{align*}
a? & \quad \text{is } a\text{.read()} \\
b := x & \quad \text{is } b\text{.write}(x)
\end{align*}
\]

Take two references as arguments, Exchange their values, and return a signal.

\[
\text{def } \text{swap}(i, j) = (i?, j?) \rightarrow (x, y) \rightarrow (i := y, j := x) \rightarrow \text{signal}
\]

Note: \(a \) and \(b \) could be identical Refs.
Update linked list

Given is a one-way linked list. Its first item is called \texttt{first}.

Now add value \(v \) as the first item.

\[
\text{Ref}() \rightarrow r \\
r ::= (v, \texttt{first}) \rightarrow \\
\texttt{first} ::= r
\]

or,

\[
\text{Ref}((v, \texttt{first})) \rightarrow r \\
\texttt{first} ::= r
\]
Binary Search Tree; using Ref()

```python
def search(key) =  return true or false

searchstart(key) >(_, _, q) > (q ≠ null)
```

```python
def insert(key) =  true if value was inserted, false if it was there

searchstart(key) > (p, d, q) >

if q = null

  then Ref() >r>

  r := (key, null, null) ···

else ···
```
Array Permutation

- Randomly permute the elements of an array in place.
- \textit{randomize}(i) permutes the first \(i\) elements of array \(a\) and publishes a signal.

\begin{verbatim}
def permute(a) =
 def randomize(0) = signal
 def randomize(i) = Random(i) \> j >
 swap(a(i - 1), a(j)) \gg
 randomize(i - 1)

randomize(a.length())
\end{verbatim}
Return Array of 0-valued Semaphores

```
def semArray(n) =
  val a = Array(n)
  def populate(0) = signal
  def populate(i) = a(i−1) := Semaphore(0) ⇒ populate(i−1)

  populate(n) ⇒ a
```

Usage: `semArray(5) >a> a(1)?.release()`
Library site: *Table*

- *Table*(n,f), where n > 0 and f a site closure.
 Creates site g, where g(i) = f(i), 0 ≤ i < n.
 An array of site values pre-computed and reused.

- All values of g are computed at instantiation.

- Allows creating arrays of structures.

- Site f may be supplied as: lambda(i) = h(i)

Examples:

- val g = *Table*(5, lambda(_ = Channel()))
- val h = *Table*(5, lambda(i) = 2 * i)
- val s = *Table*(5, lambda(_ = Semaphore(0))

Definition Mechanism: Class

- Encapsulate data and objects with methods
- Create new sites; Extend behaviors of existing sites
- Allow concurrent method invocation on objects (monitors)
- Create active objects with time-based behavior

Classes can be translated to Orc calculus using a special site.
Object Creation: Stack

- Define stack with methods push and pop.

- Parameter n gives the maximum stack size.

- Store the stack elements in array $store$, current stack length in len.

- push on a full stack or pop from an empty stack halts with no effect.
Stack definition

```python
def class Stack(n) =
    val store = Table(n, lambda(_:) = Ref(0))
    val len = Ref(0)

    def push(x) =
        Ift(len? <: n) => store(len?) := x => len := len? + 1

    def pop() =
        Ift(len? :> 0) => len := len? - 1 => store(len?)?

{- class Goal -} stop

-------------- Test
val st = Stack(5)
st.push(3) => st.push(5) => st.pop() => st.pop()
```
Special case: only one class instance

\[
val \ (push, pop) = Stack(5) \succ (r.push, r.pop)
\]

------------- Test

\[
push(3) \gg push(5) \gg pop() \gg pop()
\]
Class Syntax

- Class definition
 - Like site definition
 - May include parameters

- Clausal definitions allowed.

- All definitions within a class are exported. Such definitions are accessed as dot methods.
Class Semantics: Class is a site with methods

- A class call creates and publishes a site.

- All the rules for site definition apply except:
 - Publications of class goal expression are ignored,
 - Each method (site) publishes at most once,
 - Class calls are strict (site calls are non-strict),
 - Class method calls are not terminated prematurely by prune (follows the rule for sites).

- Methods may be invoked concurrently, as in sites.
Special attention to concurrent invocation

\[st.\text{push}(3) \implies st.\text{pop()} \implies R\text{wait}(1000) \implies st.\text{pop()} \]
\[| \]
\[st.\text{push}(4) \implies \text{stop} \]

- If method executions were atomic there would be some output.

- This program sometimes produces no output. Method executions may overlap and interfere.
Example: Matrix (with upper and lower indices)

```scala
def class Matrix((row, row'), (col, col')) =

  val mat = Array((row' - row + 1) * (col' - col + 1))

  def access(i, j) = mat((i - row) * (col' - col + 1) + j)

stop
```

Test

```scala
val A = Matrix((-2, 0), (-1, 3)).access

A(-1, 2) := 5 ⇒ A(-1, 2) := 3 ⇒ A(-1, 2)?
```
Example: Matrix (with upper and lower indices)

```scala
def class Matrix((row, row'), (col, col')) =

val mat = Array((row' - row + 1) * (col' - col + 1))

def access(i, j) = mat((i - row) * (col' - col + 1) + j)

stop

--- Test ---

val A = Matrix((-2, 0), (-1, 3)).access

A(-1, 2) := 5 ➞ A(-1, 2) := 3 ➞ A(-1, 2)?
A Matrix of Classes

```scala
def class CMatrix((row, row'), (col, col'), cap) =

 val mat = Table((row' - row + 1) * (col' - col + 1), cap)

 def access(i, j) = mat((i - row) * (col' - col + 1) + j)

stop

------------------ Test; A matrix of Channels

val A = CMatrix((-2, 0), (-1, 3), lambda(_) = Channel()).access

A(-1, 2).put(3) ☞ A(-1, 2).get()
```
A Matrix of Classes

```scala
def class CMatrix((row, row'), (col, col'), cap) =

 val mat = Table((row' − row + 1) * (col' − col + 1), cap)

 def access(i, j) = mat((i − row) * (col' − col + 1) + j)

stop

--------------- Test; A matrix of Channels

val A = CMatrix((−2, 0), (−1, 3), lambda(_ = Channel()).access

A(−1, 2).put(3) ⇒ A(−1, 2).get()
```
Create a new site: Cell using Semaphore and Ref

```scala
def class Cell() =

 val s = Semaphore(1)
 val r = Ref()

 def write(v) = s.acquire() ≫ r := v

 def read() = r? -- r? blocks until r has been written

 stop
```
New Site: Bounded Channel

- Bounded channel of size $n$ may block for put and get.

- Use semaphore $p = \text{number of empty positions}$.

- Use $\textit{Channel}$ to hold data items.
def class BChannel(n) =
  val b = Channel()
  val p = Semaphore(n)

  def put(x) = p.acquire() ➪ b.put(x)

  def get() = b.get() ➪ x ➪ p.release() ➪ x

stop
Extend functionality of a site: add length method to Channel

```scala
def class Channel'() =
 val ch = Channel()
 val chlen = Counter(0)

 def put(x) = ch.put(x) >> chlen.inc()
 def get() = ch.get() >x> chlen.dec() >> x
 def len() = chlen.value()

 stop
```

------------------

Test

```scala
val c = Channel'()

 c.put(1000) >> c.put(2000) >> println(c.len()) >>
 c.get() >> println(c.len()) >> stop
```
Extend functionality of a site: add length method to Channel

```scala
def class Channel'() =
 val ch = Channel()
 val chlen = Counter(0)

 def put(x) = ch.put(x) >>= chlen.inc()
 def get() = ch.get() >>= chlen.dec() >>= x
 def len() = chlen.value()

stop
```

--------------- Test

```scala
val c = Channel'()

c.put(1000) >>= c.put(2000) >>= println(c.len()) >>=
c.get() >>= println(c.len()) >>= stop
```
Memoization

For site $f$ (with no arguments) cache its value after the first call.

- $res$: stores the cached value.
- $s$: semaphore value is 0 if the site value has been cached.

```scala
val res = Cell()
val s = Semaphore(1)
def memo() =
 val z = res? | s.acquire() ⇒ res := f() ⇒ stop
 z
```

Note: Concurrent calls handled correctly.
Memoization of Fibonacci

val N = 100
val done = Table(N + 1, lambda(_):=Cell())
val res = Table(N + 1, lambda(_):=Cell())

def mfib(0) = 0
def mfib(1) = 1
def mfib(i) =
    res(i)? ◄
    (done(i) := signal ⇒ res(i) := mfib(i - 1) + mfib(i - 2))

Note: Concurrent calls to $mfib(i)$, for each $i$. 
Memoize an argument site using Class

```scala
def class Memo(f) =
 val res = Cell()
 val s = Semaphore(1)

 def memo() =
 val z = res? | s.acquire() ⇒ res := f() ⇒ stop
 z

 stop

— Usage

val prandom = Memo(lambda() = Random(20)).memo
prandom() | prandom() | prandom()
```
Memoize an argument site using Class

```scala
def class Memo(f) =
 val res = Cell()
 val s = Semaphore(1)

 def memo() =
 val z = res? | s.acquire() ⇒ res := f() ⇒ stop
 z
 stop

— Usage

val prandom = Memo(lambda() = Random(20)).memo
prandom() | prandom() | prandom()
```
Concurrent access: Client-Server interaction

- Asynchronous protocol for client-server interaction.
- At most one client interacts at a time with the server.
- Client requests service and supplies input data.
- Server reads data, computes and writes out the result.
- Client receives result.
Client-Server interaction API

- **req(x):**
  Performed by the client to send data to the server. 
  Client receives a response when the operation completes. 
  The operation may remain blocked forever.

- **read():**
  For the server to remove the data sent by the client. 
  The operation is blocked if there is no outstanding request.

- **write(v):**
  Server returns \( v \) as the response to the client. 
  Operation is non-blocking.
Client-Server interaction; Program

```scala
def class csi() =

 val sem = Semaphore(1)
 val (u, v) = (Channel(), Channel())
 -- sem ensures that only one client interacts at a time
 -- client data stored in u, server response in v

 def req(x) = sem.acquire() >>
 u.put(x) >> v.get() >>
 sem.release() >>

 def read() = u.get()

 def write(x) = v.put(x)

stop
```
Examples

• Combinatorial

• Mutable store manipulation

• Synchronization, Communication
Some Algorithms

- Enumeration and Backtracking
- Using Closures
- List Fold, Map-reduce
- Parsing using Recursive Descent
- Exception Handling
- Process Network
- Quicksort
- Graph Algorithms: Depth-first search, Shortest Path
List map

\[
\text{def } \text{parmap}(\_ , [\_]) = [\_]
\]

\[
\text{def } \text{parmap}(f, x : xs) = f(x) : \text{parmap}(f, xs)
\]
List map (Contd.)

\[
def \text{seqmap}(\_ , [\]) = []
\]

\[
def \text{seqmap}(f, x : xs) = f(x) > y > (y : \text{seqmap}(f, xs))
\]
Infinite Set Enumeration

Enumerate all finite binary strings. A binary string is a list of 0,1.

\[
def \ bin() = \\
[ ] \\
| \ bin() \ >xs\> (0 : xs \mid 1 : xs)
\]

Note: Unguarded recursion.
Subset Sum

Given integer $n$ and list of integers $xs$.

$\text{parsum}(n, xs)$ publishes all sublists of $xs$ that sum to $n$.

$\text{parsum}(5, [1, 2, 1, 2]) = [1, 2, 2], [2, 1, 2]$  
$\text{parsum}(5, [1, 2, 1])$ is silent

```python
def parsum(0, []) = []
def parsum(n, []) = stop
def parsum(n, x : xs) =
 parsum(n - x, xs) >ys> x : ys
| parsum(n, xs)
```
Subset Sum (Contd.), Backtracking

Given integer $n$ and list of integers $xs$.

$\text{seqsum}(n, xs)$ publishes the first sublist of $xs$ that sums to $n$.

“First” is smallest by index lexicographically.

$\text{seqsum}(5, [1, 2, 1, 2]) = [1, 2, 2]$

$\text{seqsum}(5, [1, 2, 1])$ is silent

```python
def seqsum(0, []): = []
def seqsum(n, []): = stop
def seqsum(n, x: xs): =
 x: seqsum(n - x, xs)
 ; seqsum(n, xs)
```
Subset Sum (Contd.), Concurrent Backtracking

Publish the first sublist of \( xs \) that sums to \( n \).

Run the searches concurrently.

\[
\begin{align*}
def \text{parseqsum}(0, []) &= [] \\
def \text{parseqsum}(n, []) &= \text{stop} \\
def \text{parseqsum}(n, x : xs) &= \\
&\quad (p ; q) \\
&\quad <p< x : \text{parseqsum}(n - x, xs) \\
&\quad <q< \text{parseqsum}(n, xs)
\end{align*}
\]

Note: Neither search in the last clause may succeed.
Mutual Recursion: Finite state transducer

Convert an input string:

- Remove all white spaces in the beginning.
- Reduce all other blocks of white spaces (consecutive white spaces) to a single white space.

---Mary---had-a--little--lamb---

becomes (where – denotes a white space)

Mary-had-a-little-lamb-
A finite State Transducer

A deterministic Finite State Machine.
No concurrency.

Figure: $n$ is a symbol other than white space
A Program

Figure: \( n \) is a symbol other than white space

\[
\begin{align*}
def \ first([]) &= [] \\
def \ first(""" : xs) &= first(xs) \\
def \ first(x : xs) &= x : next(xs) \\

def \ next([]) &= [] \\
def \ next(""" : xs) &= """ : first(xs) \\
def \ next(x : xs) &= x : next(xs) \\
\end{align*}
\]
Non-deterministic search: String Matching

• Given a pattern string $p$ and a text string $t$, determine if $p$ occurs in $t$ (as a contiguous substring).

• Run two searches simultaneously:
  Is $p$ a prefix of $t$?
  Is $p$ in the string excluding the first symbol of $t$?

• Terminate the search if either is a success.
Helper Sites

• *parallelOr*: to terminate the search asap.

• *prefix(xs, ys)* returns true if and only if *xs* is a prefix of *ys*. (strings are given as lists of symbols).

\[
def \text{parallelOr}(y, z) = \\
    \text{val } r = \text{Ift}(y) \gg true \mid \text{Ift}(z) \gg true \mid y \mathbin{|}\ | z \\
    r
\]

\[
def \text{prefix}([], ys) = \text{true} \\
def \text{prefix}(xs, []) = \text{false} \\
def \text{prefix}(x : xs, y : ys) = (x = y) \land\land \text{prefix}(xs, ys)
\]
String Matching Program

- **stringmatch**(xs, ys) returns true if and only if xs is a contiguous substring of ys. (strings are given as lists of symbols).

```python
def stringmatch([], ys) = true
def stringmatch(xs, []) = false
def stringmatch(xs, y : ys) =
 parallelOr
 (stringmatch(xs, ys),
 prefix(xs, y : ys)
)
```
Using Closure

A UNITY Program

\[ x, y = 0, 0 \]

\[ x < y \rightarrow x := x + 1 \]
\[ y := y + 1 \]

- Program has: variable declarations
  a set of functions

- Variables are initialized as given.

- Program is run by: choosing a function arbitrarily, choosing functions fairly.
Corresponding Orc program

\[
\begin{align*}
\text{val } (x, y) &= (\text{Ref}(0), \text{Ref}(0)) \\
def f1() &= \text{Ift}(x? <: y? \implies x := x? + 1) \\
def f2() &= y := y? + 1
\end{align*}
\]

Run the program by:

- choosing a function arbitrarily,
- choosing functions fairly.
Scheduling the UNITY Program

```python
def unity(fs):
 arlen = length(fs)
 fnarray = Array(arlen)

 def populate(_, []):
 signal
 def populate(i, g : gs):
 fnarray(i) := g
 populate(i + 1, gs)

 { - populate() transfers from list fs to array fnarray - }
 exec() = random(arlen) > j > fnarray(j)?() => exec()

 { - Initiate the work - }
 populate(0, fs) => exec()
```
Running the example program

\[\text{val } (x, y) = (\text{Ref}(0), \text{Ref}(0))\]

\[\text{def } f_1() = \text{Ift}(x? <: y?) \Rightarrow x := x? + 1\]
\[\text{def } f_2() = y := y? + 1\]

\[\text{unity}([f_1, f_2])\]
Fold on a non-empty list

fold with binary $f$: $fold(+, [x_0, x_1, \cdots]) = x_0 + x_1 \cdots$

```python
def fold(_, [x]) = x

def fold(f, x : xs) = f(x, fold(xs))
```
Associative fold on a non-empty list

```python
def afold(f, [x]) = x
def afold(f, xs) =

def pairfold([]) = []
def pairfold([x]) = [x]
def pairfold(x : y : xs) = f(x, y) : pairfold(xs)

afold(f, pairfold(xs))
```

map and associative fold: `map_afold`
Associative commutative fold over a channel

A channel has two methods: `put` and `get`.

\( chFold(c, n), n > 0, \) folds the first \( n \) items of channel \( c \) and publishes.

\[
\begin{align*}
def \ chFold(c, 1) &= c.get() \\
def \ chFold(c, n) &= f(chFold(c, n/2), chFold(c, n - n/2))
\end{align*}
\]

Does not combine values computed in different halves, even when they are available quickly.
Associative commutative fold over a channel; contd.

\[\text{def } \text{comb}(0) = \text{stop}\]

\[\text{def } \text{comb}(1) = f(c\text{.get()}, c\text{.get()} ) >x> c\text{.put}(x) \gg \text{stop}\]

\[\text{def } \text{comb}(k) = \text{comb}(1) | \text{comb}(k - 1)\]

\[\text{comb}(n - 1)\]

- If \( n > k \), \( \text{comb}(k) \) terminates.
- \( \text{comb}(k) \) reduces the channel size by \( k \) while keeping the fold value the same.
- \( \text{comb}(k) \) does not publish.
- So, \( \text{comb}(n - 1) \) leaves the channel with the fold value and halts.
map-reduce

- Given is a list of tasks.

- A processor from a processor pool is assigned to process a task. Each task may be processed independently, yielding a result.

- If a processor does not respond within time $T$, a new processor is assigned to the task.

- After all the results have been computed, the results are reduced by calling `reduce`.
Implementation

- **processlist** processes a list of tasks concurrently.
  
  \( \text{process}(t) \) processes a single task \( t \).

  \( \text{process}(t) \) publishes a result; **processlist** a list of results.

- Site **process** first acquires a processor.
  It assigns the task to the processor.

  If the processor responds within time \( T \), it publishes the result.

  Else, it repeats these steps.

- **process\( (t) \)** may never complete if the processors keep failing.

- The list of published results are reduced by site **reduce**.
map-reduce

def processlist([]) = []
def processlist(t : ts) = process(t) : processlist(ts)

def process(t) =
    val processor = Processorpool()
    val (result, b) = (processor(t), true) | (Rwait(T), false)
    if b then result else process(t)

processlist(tasks) >x> reduce(x)
Parsing using Recursive Descent

Consider the grammar:

\[
\text{expr} \ ::= \ \text{term} \mid \text{term} + \text{expr} \\
\text{term} \ ::= \ \text{factor} \mid \text{factor} \ast \text{term} \\
\text{factor} \ ::= \ \text{literal} \mid (\text{expr}) \\
\text{literal} \ ::= \ 3 \mid 5
\]
Parsing strategy

For each non-terminal, say \( expr \), define \( expr(xs) \):
If \( xs = x \texttt{ + } y \) where \( x \) is an \( expr \), publish \( y \).

\[
\text{def } \text{isexpr}(xs) = expr(xs) >[\text{ }]> true ; false — \text{whole } xs \text{ is } expr
\]

To avoid multiple publications (in ambiguous grammars),

\[
\text{def } \text{isexpr}(xs) = \\
\text{val } res = expr(xs) >[\text{ }]> true ; false \\
res
\]

--------- Test

\( \text{isexpr} \)
\[
(["","("","3","","*","","3","")","","+","","("","3","","+","","3","",")"])
\]

\( — ((3*3))+(3+3) \)

:: \( true \)
Parsing strategy

For each non-terminal, say \textit{expr}, define \textit{expr}(xs):

If \( xs = x \mathrel{+} y \) where \( x \) is an \textit{expr}, publish \( y \).

\[
\text{def } \textit{isexpr}(xs) = \textit{expr}(xs) >[]> \text{true ; false} \quad \text{— whole } xs \text{ is } \textit{expr}
\]

To avoid multiple publications (in ambiguous grammars),

\[
\text{def } \textit{isexpr}(xs) = \\
\text{val } res = \textit{expr}(xs) >[]> \text{true ; false} \\
res
\]

---------- Test

\[
\textit{isexpr} \\
\quad — (3*3)+(3+3)
\]

:: true
Parsing strategy

For each non-terminal, say $expr$, define $expr(xs)$:
If $xs = x + y$ where $x$ is an $expr$, publish $y$.

$$
\text{def } isexpr(xs) = expr(xs) \geq true ; false \quad \text{— whole } xs \text{ is } expr
$$

To avoid multiple publications (in ambiguous grammars),

$$
\text{def } isexpr(xs) = \\
\text{val } res = expr(xs) \geq true ; false \\
res
$$

---------- Test

\text{isexpr} \\
\quad \text{— } ((3*3))+(3+3)

:: true
Site for each non-terminal

Given: $expr ::= term \mid term + expr$
Rewrite: $expr ::= term (\epsilon \mid + expr)$

def $expr(xs) = term(xs) >ys> (ys \mid ys > "+" : zs > expr(zs))$
def $term(xs) = factor(xs) >ys> (ys \mid ys > "*" : zs > term(zs))$
def $factor(xs) = literal(xs)$
  $| xs > "(" : ys > expr(ys) > ")" : zs > zs$
def $literal(n : xs) = n > "3" > xs \mid n > "5" > xs$
def $literal([]) = stop$
Quicksort

- In situ permutation of an array.
- Array segments are simultaneously sorted.
- Partition of an array segment proceed from left and right simultaneously.
- Combine Concurrency, Recursion, and Mutable Data Structures.

Traditional approaches

- Pure functional programs do not admit in-situ permutation.
- Imperative programs do not highlight concurrency.
- Typical concurrency constructs do not combine well with recursion.
Program Structure

• array $a$ to be sorted.

• A segment is given by a pair of indices $(u, v)$. Elements in the segment are: $a(u) .. a(v - 1)$. Segment length is $v - u$ if $v \geq u$.

• $\text{segmentsort}(u, v)$ sorts a segment in place and publishes a signal.

• To sort the whole array: $\text{segmentsort}(0, a\.\text{length})$
• \( \text{part}(p, s, t) \) partitions segment \((s, t)\) with element \(p\). Publishes \(m\) where:

left subsegment: \(a(i) \leq p\) for all \(i, s \leq i \leq m\), and
right subsegment: \(a(i) > p\), for all \(i, m < i < t\).

• Assume \(a(s) \leq p\), so the left subsegment is non-empty.

```python
def swap(i, j) = (i?, j?) > (x, y) > (i := y, j := x) \Rightarrow signal
def quicksort(a) =
def segmentsort(u, v) =
 if v - u > 1 then
 \text{part}(a(u)?, u, v) > m >
 swap(a(u), a(m)) \Rightarrow
 (segmentsort(u, m), segmentsort(m + 1, v)) \Rightarrow signal
 else signal
 segmentsort(0, a.length?)
```
Partition segment \((s, t)\) with element \(p\), given \(a(s) \leq p\)

- \(lr(i)\) publishes the index of the leftmost item in the segment that exceeds \(p\); publishes \(t\) if no such item.

- \(rl(i)\) publishes the index of the rightmost item that is less than or equal to \(p\). Since \(a(s) \leq p\), item exists.

\[
def \ lr(i) = \ Ift(i < t) \Rightarrow \ Ift(a(i) \leq p) \Rightarrow \ lr(i+1) ; i \\
def \ rl(i) = \ Ift(a(i) > p) \Rightarrow \ rl(i-1) ; i \\
\]

Goal Expression of \(part(p, s, t)\):

\[(lr(s+1), rl(t-1)) > (s', t') > (if (s' < t') then swap(a(s'), a(t')) \Rightarrow part(p, s', t') \quad else \quad t')\]
Putting the Pieces together: Quicksort

def swap(i, j) = (i?, j?) > (x, y) > (i := y, j := x) ➞ signal

def quicksort(a) =
def segmentsort(u, v) =
def part(p, s, t) =
def lr(i) = Ift(i < t) ➞ Ift(a(i)? ≤ p) ➞ lr(i + 1) ; i
def rl(i) = Ift(a(i)? :> p) ➞ rl(i − 1) ; i

(lr(s + 1), rl(t − 1)) > (s', t')>
(if (s' < t') then swap(a(s'), a(t')) ➞ part(p, s', t')
else t')

if v − u > 1 then
  part(a(u)?, u, v) > m>
  swap(a(u), a(m)) ➞
  (segmentsort(u, m), segmentsort(m + 1, v)) ➞ signal
else signal
segmentsort(0, a.length?)
Remarks and Proof outline

- Concurrency without locks

- $\text{segmentsort}(m, n)$ sorts the segment; does not touch items outside the segment.

- Then, $\text{segmentsort}(s, m - 1)$ and $\text{segmentsort}(m + 1, t)$ are non-interfering.

- $\text{part}(p, s, t)$ does not modify any value outside this segment. May read values.
Depth-first search of undirected graph
Recursion over Mutable Structure

$N$: Number of nodes in the graph.

$\text{conn}$: $\text{conn}(i)$ the list of neighbors of $i$

$\text{parent}$: Mutable array of length $N$

$\text{parent}(i) = v$, $v \geq 0$, means $v$ is the parent node of $i$

$\text{parent}(i) < 0$ means parent of $i$ is yet to be determined

Once $i$ has a parent, it continues to have that parent.

dfs$(i, xs)$: starts a depth-first search from all nodes in $xs$ in order,
$i$ has a parent (or $i = N$),
$xs \subseteq \text{conn}(i)$,
All nodes in $\text{conn}(i) - xs$ have parents already.
Depth-first search

\[ \text{val } N = 6 \quad \text{--- } N \text{ is the number of nodes in the graph} \]
\[ \text{val } \text{parent} = \text{Table}(N, \lambda _\_ \Rightarrow \text{Ref}(-1)) \]

\[ \text{def } \text{dfs}(\_\_, [] \_) = \text{signal} \]

\[ \text{def } \text{dfs}(i, x : xs) = \]
\[ \quad \text{if } (\text{parent}(x)? \geq 0) \text{ then } \text{dfs}(i, xs) \]
\[ \quad \text{else } \text{parent}(x) := i \gg \text{dfs}(x, \text{conn}(x)) \gg \text{dfs}(i, xs) \]

\[ \text{dfs}(N, [0]) \quad \text{--- } \text{depth-first search from node } 0 \]
Sequential Breadth-First Traversal of a Graph

\( N \) nodes in a graph,

\( \text{root} \) a specified node,

\( \text{succ}(x) \) is the list of successors of \( x \),

Publish the \textit{parent} of each node in Breadth-First Traversal.

\[
\text{def } \text{bfs}(N, \text{root}, \text{succ}) = \\
\text{val parent } = \text{Table}(N, \lambda _\_ = \text{Cell}())
\]

– \text{\texttt{bfs'}} is \text{\texttt{bfs}} on a list of nodes

\[
\text{def } \text{bfs'}([[]]) = \text{signal} \\
\text{def } \text{bfs'}(x : xs) = \text{bfs'}(\text{append}(xs, \text{expand}(x)))
\]

\[
\text{parent(root)} := N \gg \text{bfs'}([\text{root}]) \gg \text{parent}
\]
def expand(x) =

- expand'(x, ys), ys successors of x yet to be scanned

  def expand'(_, []) = []

  def expand'(x, z : zs) =
  (parent(z) := x ≫ z : expand'(x, zs)) ; expand'(x, zs)

expand'(x, succ(x))
Sequential Breadth-First Traversal: Complete Program

def bfs(N, root, succ) =
    val parent = Table(N, lambda(_) = Cell())

def expand(x) =
    def expand'(_, []) = []
    def expand'(x, z : zs) =
        (parent(z) := x \> z : expand'(x, zs)) \> expand'(x, zs)
    expand'(x, succ(x)) -- Goal of expand

def bfs'([]) = signal
def bfs'(x : xs) = bfs'(append(xs, expand(x)))

parent(root) := N \> bfs'([root]) \> parent
Concurrent Breadth-First Traversal

```python
def bfs(N, root, succ) =
 val parent = Table(N, lambda(_) = Cell())

def expand(x) =
 if succ(x) = [] then []
else map_afold
 (lambda(y) = parent(y) := x \ y ; [],
 append,
 succ(x))

def bfs'([[]]) = signal
def bfs'(xs) = bfs'(map_afold(expand, append, xs))

parent(root) := N \ bfs'([root]) \ parent
```
Exception Handling

Client calls site server to request service. The server “may” request authentication information.

```scala
def request(x) =
val exc = Channel() -- returns a channel site

server(x, exc)
| exc.get() >r> exc.put(auth(r)) >> stop
```
Synchronization, Communication

Semaphore(n) Semaphore with initial value n
BoundedChannel(n) bounded (asynchronous) channel of size n
Counter() Methods inc(), dec() and onZero()

Semaphore(1) >s> s.acquire() ⇒ r := 5 ⇒ s.release()

BoundedChannel(1) >ch> (ch.put(5) | ch.put(3))

Counter() >ctr> (ctr.inc() ⇒ ctr.onZero() | Rwait(10) ⇒ ctr.dec())
Pure Rendezvous

def class pairSync() =
    val s = Semaphore(0)
    val t = Semaphore(0)

    def put() = s.acquire() >> t.release()
    def get() = s.release() >> t.acquire()

stop
Rendezvous

def class zeroChannel() =
    val s = Semaphore(0)
    val w = BoundedChannel(1)

    def put(x) = s.acquire() >>= w.put(x)
    def get() = s.release() >>= w.get()

stop
**n-party Rendezvous**

- \( n \) parties participate in a rendezvous.

- Each party (optionally) contributes some data.

- After all parties have contributed:
  a given function is applied to transform input list to output list,
  then \( i \) receives the \( i^{th} \) item of output list, and proceeds.

- Access Protocol:
  \( i \) calls \( go(i, x) \) with \( i \) and data \( x \).
  Receives its result as the response of the call.
Examples of Data Transformations

- $n = 2$: first input data item becomes the second output item. The classical sender-receiver paradigm.

- $n = 2$: input data items are swapped. Data exchange; can simulate the classical sender-receiver.

- Arbitrary $n$: every output item is the first input data item. Broadcast paradigm.

- Arbitrary $n$: secret sharing.

- Arbitrary $n$: $i^{th}$ output is the rank of the $i^{th}$ input.
Implementation Strategy

- Tables \textit{in} and \textit{out} hold the inputs and outputs. Each table entry is \textit{BoundedChannel(1)}.

- \textit{go}(i, x) stores \( x \) in \textit{in}(i) if it is empty. Then waits to receive result from \textit{out}(i).

- \textit{manager} receives all \( n \) inputs, applies the given function and stores the results in \textit{out}.
n-party Rendezvous Program

```python
def class Rendezvous(n, f) =
 val in = Table(n, lambda(_) = BoundedChannel(1))
 val out = Table(n, lambda(_) = BoundedChannel(1))

def go(i, x) = in(i).put(x) ≫ out(i).get()

def collect(0) = []
def collect(i) = in(n - i).get() : collect(i - 1)

def distribute(_, 0) = signal
def distribute(v : vl, i) = out(n - i).put(v) ≫ distribute(vl, i - 1)

def manager() =
 collect([], n) >vl> distribute(f(vl), n) ≫ manager()

manager()
```
def rotate([a, b, c]) = [b, c, a]

val rg3 = Rendezvous(3, rotate).go

<table>
<thead>
<tr>
<th>rg3(0, 0) &gt;x&gt; (&quot;0 gets &quot; + x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rg3(1, 1) &gt;x&gt; (&quot;1 gets &quot; + x)</td>
</tr>
<tr>
<td>rg3(2, 4) &gt;x&gt; (&quot;2 gets &quot; + x)</td>
</tr>
<tr>
<td>rg3(2, 2) &gt;x&gt; (&quot;2 gets &quot; + x)</td>
</tr>
</tbody>
</table>

---------- Output
"0 gets 1"
"1 gets 4"
"2 gets 0"
Test

def rotate([a, b, c]) = [b, c, a]

val rg3 = Rendezvous(3, rotate).go

    rg3(0, 0) >x> ( "0 gets " + x)
| rg3(1, 1) >x> ( "1 gets " + x)
| rg3(2, 4) >x> ( "2 gets " + x)
| rg3(2, 2) >x> ( "2 gets " + x)

---------- Output
"0 gets 1"
"1 gets 4"
"2 gets 0"
Phase Synchronization

- A set of threads execute a sequence of phases.
- Required: a thread may start a phase only if all threads have finished the previous phase.
- A thread calls \texttt{nextphase()} after each phase, and waits to receive a \texttt{signal} to execute its next phase.

Typical Usage:

\begin{verbatim}
def class phaseSync(n) = ···
val barrier = phaseSync(3).nextphase

------------- Test
Println(0.1) >> barrier() >> Println(0.2) >> barrier() >> Println(0.3)
| Println(1.1) >> barrier() >> Println(1.2) >> barrier() >> stop
| Println(2.1) >> barrier() >> stop
\end{verbatim}
Phase Synchronization

- A set of threads execute a sequence of phases.
- Required: a thread may start a phase only if all threads have finished the previous phase.
- A thread calls `nextphase()` after each phase, and waits to receive a signal to execute its next phase.

Typical Usage:

```scala
def class phaseSync(n) = ···
val barrier = phaseSync(3).nextphase
```

---------- Test

```
Println(0.1) ⇒ barrier() ⇒ Println(0.2) ⇒ barrier() ⇒ Println(0.3)
Println(1.1) ⇒ barrier() ⇒ Println(1.2) ⇒ barrier() ⇒ stop
Println(2.1) ⇒ barrier() ⇒ stop
```
Implementation Strategy

• Employ two semaphores: \textit{insem}, \textit{outsem}, initial values 0.

• Each call to \textit{nextphase()} increments \textit{insem} and attempts to acquire \textit{outsem}.

• A manager attempts to acquire \textit{insem} \textit{n} times, then releases \textit{outsem} \textit{n} times, then repeats these steps.
Program: Phase Synchronization

```python
def class phaseSync(n) =
 val (insem, outsem) = (Semaphore(0), Semaphore(0))

def nextphase() = insem.release() \gg outsem.acquire()

def repeat(_, 0) = signal
def repeat(f, i) = f() \gg repeat(i - 1, f)

def manager() =
 repeat(insem.acquire, n) \gg
 repeat(outsem.release, n) \gg
 manager()

manager()
```
Readers-Writers

- Readers and Writers need access to a shared file.
- Any number of readers may read the file simultaneously.
- A writer needs exclusive access, from readers and writers.
Readers-Writers API

- Readers call *startread*, Writers *startwrite* to gain access.
- The system (class) returns a signal to grant access.
- Both readers and writers call *end()* on completion of access.
- *start* ... is blocking, *end()* non-blocking.
Implementation Strategy

• Each call to \textit{start} \ldots is queued with the id of the caller.

• A \textit{manager} loops forever, maintaining the invariant:
  There is no active writer (no writer has been granted access).
  Number of active readers = $\text{ctr.value}$, where $\text{ctr}$ is a counter.

• On each iteration, \textit{manager} picks the next queue entry.
  If a reader: grant access and increment $\text{ctr}$.
  If a writer:
    wait until all readers complete ( $\text{ctr}$’s value = 0),
    grant access to writer,
    wait until the writer completes.
Implementation Strategy; Callback

- The id assigned to a caller is a new semaphore.

- A request is \((b, s)\): \(b\) boolean, \(s\) semaphore.  
  \(b = true\) for reader, \(b = false\) for writer, 
  each caller waits on \(s.acquire()\)

- The manager grants a request by executing \(s.release()\)
val req = Channel()
val na = Counter()

def startread() =
    val s = Semaphore(0)
    req.put((true, s)) >>= s.acquire()

def startwrite() =
    val s = Semaphore(0)
    req.put((false, s)) >>= s.acquire()

def end() = na.dec()
def manager() = grant(req.get()) ≫ manager()

def grant((true, s)) = na.inc() ≫ s.release() – Reader

def grant((false, s)) = – Writer
   na.onZero() ≫ na.inc() ≫ s.release() ≫ na.onZero()
Note on Callback

- Let request queue entry be \((b,f)\), where \(f\) is a site.
- Manager executes \(f()\) for callback.
- For Readers-Writers, \(f\) is \(s.release()\)
Callback using one semaphore each for Readers and Writers

```scala
def class readerWriter2() =
 val req = Channel()
 val na = Counter()
 val (r, w) = (Semaphore(0), Semaphore(0))

 def startread() = req.put(true) ≫ r.acquire()
 def startwrite() = req.put(false) ≫ w.acquire()

 def endwrite() = na.dec()

 def grant(true) = na.inc() ≫ r.release() – Reader

 def grant(false) = – Writer
 na.onZero() ≫ na.inc() ≫ w.release() ≫ na.onZero()

 def manager() = grant(req.get()) ≫ manager()

manager()
```
Reader-Writer; dispense with the queue

• The queue currently holds a sequence of booleans, *true* for each reader, *false* for each writer.

• New solution: Dispense with the queue; only keep counts.

• Introduce a class that has *put*, *get* methods. It internally maintains Ref variables, *nr* and *nw*. *nr* is the number of readers, *nw* writers.

• Simulate fairness, as in a semaphore. If *nr*? > 0, *nr*? is eventually decremented. If *nw*? > 0, *nw*? is eventually decremented. Use coin toss to simulate fairness.
Process Networks

- A process network consists of: processes and channels.

- The processes run autonomously, and communicate via the channels.

- A network is a process; thus hierarchical structure. A network may be defined recursively.

- A channel may have intricate communication protocol.

- Network structure may be dynamic, by adding/deleting processes/channels during its execution.
Channels

- For channel $c$, treat $c.put$ and $c.get$ as site calls.

- In our examples, $c.get$ is blocking and $c.put$ is non-blocking.

- We consider only FIFO channels. Other kinds of channels can be programmed as sites. We show rendezvous-based communication later.
Typical Iterative Process

Forever: Read $x$ from channel $c$, compute with $x$, output result on $e$:

```python
def p(c, e) = c.get() >x> Compute(x) >y> e.put(y) ≫ p(c, e)
```

Figure: Iterative Process
Composing Processes into a Network

Process (network) to read from both $c$ and $d$ and write on $e$:

$$\text{def } \text{net}(c,d,e) = \text{p}(c,e) \mid \text{p}(d,e)$$

Figure: Network of Iterative Processes
Workload Balancing

Read from \( c \), assign work randomly to one of the processes.

\[
\text{def } \text{bal}(c, c', d') = c.\text{get()} \cdot x \cdot \text{random}(2) \cdot t \\
\quad \text{(if } t = 0 \text{ then } c'.\text{put}(x) \text{ else } d'.\text{put}(x)) \gg \\
\text{bal}(c, c', d')
\]

\[
\text{def } \text{workbal}(c, e) = \text{val } c' = \text{Channel()} \\
\quad \text{val } d' = \text{Channel()} \\
\quad \text{bal}(c, c', d') | \text{net}(c', d', e)
\]
Deterministic Load Balancing

- Retain input order in the output.
- \texttt{distr} alternatively copies input to \( c' \) and \( c'' \).
- \texttt{coll} alternatively copies from \( d' \) and \( d'' \) to output.
Deterministic Load Balancing

\[
\text{def } \text{detbal}(\text{in}, \text{out}) = \\
\text{def } \text{distributor}(c, c', c'') = \\
\quad c.\text{get()} > x > c'.\text{put}(x) \gg \\
\quad c.\text{get()} > y > c''.\text{put}(y) \gg \\
\quad \text{distributor}(c, c', c'')
\]

\[
\text{def } \text{collector}(d', d'', d) = \\
\quad d'.\text{get()} > x > d.\text{put}(x) \gg \\
\quad d''.\text{get()} > y > d.\text{put}(y) \gg \\
\quad \text{collector}(d', d'', d)
\]

\[
\text{val } (\text{in'}, \text{in''}) = (\text{Channel()}, \text{Channel}()) \\
\text{val } (\text{out'}, \text{out''}) = (\text{Channel()}, \text{Channel}())
\]

\[
\text{distributor}(\text{in}, \text{in'}, \text{in''}) | \text{collector}(\text{out'}, \text{out''}, \text{out}) \\
| \text{p}(\text{in'}, \text{out'}) | \text{p}(\text{in''}, \text{out''})
\]
Deterministic Load Balancing with $2^n$ servers

Construct the network recursively.
def recbal(0, in, out) = P(in, out)

def recbal(n, in, out) =
    def distributor(c, c', c'') = ⋯
    def collector(d', d'', d) = ⋯

val (in', in'') = (Channel(), Channel())
val (out', out'') = (Channel(), Channel())

distributor(in, in', in'') | collector(out', out'', out)
| recbal(n − 1, in', out') | recbal(n − 1, in'', out'')
An Iterative Process: Transducer

Compute \( f(x) \) for each \( x \) in channel \( \text{in} \) and output to \( \text{out} \), in order.

\[
def \text{transducer}(\text{in}, \text{out}, f) = \\
\text{in}.\text{get}() > x > \text{out}.\text{put}(f(x)) \gg \text{transducer}(\text{in}, \text{out}, \text{fn})
\]
Apply function $f$ to each input: $f(x) = h(g(x))$, for some $g$ and $h$.

```python
def pipe(in, out, g, h):
 val c = Channel()
 transducer(in, c, g) | transducer(c, out, h)
```

Pipeline network
Consider computing factorial of each input.

\[ fac(x) = \begin{cases} 
1 & \text{if } x = 0 \\
x \times fac(x - 1) & \text{if } x > 0 
\end{cases} \]

Suppose \( x \leq N \), for some given \( N \).
Outline of a program

```python
def fac(N, in, out) =
 val (in', out') = (Channel(), Channel())
 front(in, out, in', out') | fac(N - 1, in', out')
```

![Diagram of the program structure](image)
Implementation of $\textit{Fac}_0$

- receive input $x$, $x = 0$
- output 1
- loop.

```python
def fac(0, in, out) =
 in.get() => out.put(1) => fac(0, in, out)
```
Implementation of \textit{front}

\textit{front} has two subprocesses, \textit{read} and \textit{write}, doing forever:

- \textbf{read} receives input $x$ from $\textit{in}$.
  - If $x = 0$, output $x$ on $\textit{b}$.
  - If $x > 0$, output $x$ on $\textit{b}$, send $x - 1$ on $\textit{in'}$.

- \textbf{write} receives input $x$ from $\textit{b}$:
  - If $x = 0$, output 1.
  - If $x > 0$, receive $y$ from $\textit{out'}$, send $x \times y$ on $\textit{out}$
def front() =
    val b = Channel()
    def read() = in.get() >> b.put(x) >>
        if x > 0 then in'.put(x - 1) else signal >> read()

    def write() = b.get() >>
        if x = 0 then out.put(1)
        else (out'.get() >> y >> out.put(x * y)) >> write()

read() | write()
Program for \textit{fac}

\begin{verbatim}
def fac(0, in, out) =
in.get() >> out.put(1) >> fac(0, in, out)

def fac(N, in, out) =
val (in', out') = (Channel(), Channel())

def front() = ···

front() | fac(N - 1, in', out')
\end{verbatim}
Combining Server Farm and Pipeline
Exercise: Combining Server Farm and Pipeline

- A dataset is a list of positive numbers. The datasets are available on input channel $\textit{in}$. Each list length is no more than $N$, for some given $N$.

- Required: compute mean and variance of each dataset. Output the results (as pairs) in order on channel $\textit{out}$.

- First, divide the processing among about $\sqrt{N}$ servers.

- Next, structure each server as a recursive pipeline.
Recursive Equations for Mean and Variance

- Use the equations:
  \[
  \text{sum}([\ ]) = 0, \\
  \text{sum}(x : xs) = x + \text{sum}(xs)
  \]

  \[
  \text{length}([\ ]) = 0, \\
  \text{length}(x : xs) = 1 + \text{length}(xs)
  \]

  \[
  \text{mean}(xs) = \frac{\text{sum}(xs)}{\text{length}(xs)}
  \]

  \[
  \text{var}([\ ]) = 0, \\
  \text{var}(xs) = \text{mean}(\text{map}(\text{square}, xs)) - \text{mean}(xs)^2
  \]

- Hint: For each list, compute the sum, sum of squares, and length by a recursive pipeline.
  Apply a function to compute mean and variance from these data.
Packet Reassembly Using Sequence Numbers

- Packet with sequence number $i$ is at position $p_i$ in the input channel.

- Given: $|i - p_i| \leq k$, for some positive integer $k$.

- Then $p_i \leq i + k \leq p_{i+2\times k}$. Let $d = 2 \times k$. 

**Figure**: Packet Reassembler
def reassembly(read, write, d) =  – d must be positive
  val ch = Table(d, lambda(_) = Channel())

  def input() = read() > (n, v) > ch(n%d).put(v) >> input()

  def output(i) = ch(i).get() > v > write(v) >> output((i + 1)%d)

input() | output(0)    – Goal expression
An Example Program: Broadcast

- Digital radio station has a list of subscribed listeners
- Broadcasts a message on dedicated channels to each one
- New listeners can be added

```scala
def class Broadcast(source) =
 val listeners = Ref([[]])

def addListener(ch) =
 listeners? >fs> listeners := ch : fs

{- The ongoing computation of a broadcast -}
rep(source) >item> each(listeners?) >sink> sink.put(item)```
Real-time Programming

- $R_{wait}(t)$ publishes a signal after exactly t time units.

- $R_{time}()$ publishes elapsed time since program start.
Instantiations of Multiple Clocks

- Factory site: \textit{Rclock()} publishes a clock \textit{clk} with an initial time value 0.

- Two methods on \textit{clk}: \textit{wait} and \textit{time}.

- \textit{clk.wait(t)}: publishes a signal after exactly \textit{t} units.

- \textit{clk.time()}: publishes the elapsed time since \textit{clk} creation.

- \textit{Rclock()} implemented as a class using \textit{Rwait()} and \textit{Rtime()}.
A time-based class; Stopwatch

- A stopwatch allows the following operations:
 - `start()`: (re)starts and publishes a signal
 - `pause()`: pauses and publishes current value

- Other operations: `reset()` and `isrunning()`.
Implementation Strategy

- Each instance of the stopwatch creates a new clock.

- Maintains two Ref variables:

 \textit{laststart}: clock value when the last \textit{start()} was executed,

 \textit{timeshown}: stopwatch value when the last \textit{pause()} was executed.

- Initially, both variable values are 0.
def class Stopwatch() =
 val clk = Rclock()
 val (timeshown, laststart) = (Ref(0), Ref(0))

 def start() = laststart := clk.time()

 def pause() =
 timeshown := timeshown? + (clk.time() − laststart?) ≫
 timeshown?

 { - The ongoing computation of stopwatch - } stop
Stopwatch: Illegal starts and halts

- `start()` on a running watch has no effect. Publishes signal.
- `pause()` on a stopped watch has no effect. Publishes last value.
- `isrunning()` publishes true if and only if the stopwatch is running.
- Use a Ref variable to record if the stopwatch is running.
Stopwatch: Illegal starts and halts

```scala
def class Stopwatch() =
  val clk = Clock()
  val (timeshown, laststart) = (Ref(0), Ref(0))
  val running = Ref(false)

  def start() = if running? then signal
    else (running := true >> laststart := clk())

  def pause() =
    if running? then
      (timeshown? + (clk() − laststart?) > v>
       timeshown := v >> running := false >> v)
    else timeshown?

  def isrunning() = running?
```

stop
Application: Measure running time of a site

```python
def class profile(f) =
    val sw = Stopwatch()

    def runningtime() = sw.start() >> f() >> sw.pause()

stop

-- Usage
def burnttime() = Rwait(100)

profile(burnttime).runningtime()
```
Response Time Game

- Show a random digit, v, for 3 secs.

- Then print an unending sequence of random digits.

- The user presses a key when he thinks he sees v.

- Output $(true, \text{response time})$, or $(false, _)$ if v has not appeared. Then end the game.
Response Game: Program

```scala
val sw = Stopwatch()
val (id, dd) = (3000, 100) – initial delay, digit delay
def rand_seq() = – Publish a random sequence of digits
    Random(10) | Rwait(dd) >> rand_seq()
def game() =
    val v = Random(10) – v is the seed for one game
    val (b, w) =
        Rwait(id) >> sw.reset() >> rand_seq() >x> println(x) >>
        ift(x = v) >> sw.start() >> stop
    | Prompt("Press ENTER for SEED "+v) >>
        (sw.isrunning(), sw.pause())

if b then – Goal expression of game()
    ( "Your response time = " + w + " milliseconds." )
else ( "You jumped the gun." )
game()
```
Single alarm clock

Let \textit{salarm} be a single alarm clock.

- At any time at most one alarm can be set.
 A new alarm may be set after a previous alarm expires or is cancelled.

- \textit{salarm.set}(t) returns a signal after time \(t \) unless cancelled.
 The call blocks if alarm is already set or subsequently cancelled.

- \textit{salarm.cancel}() cancels the alarm and returns signal.
 Just returns a signal if no alarm has been set.
 This call is non-blocking.
Implementation Strategy for single alarm clock

- Ref variable \(\textit{aset} \) shows if the alarm has been set.

- Semaphore \(\textit{cancelled} \) is used to signal cancellation.

- Consider a scenario:
 An alarm is set for 100ms and cancelled at 50ms.
 Later, another alarm is set at 80ms to go off 40 ms later.
 The first alarm should not ring at 100ms
 (the thread must be pruned).
Implementation of Single alarm clock

def class Alarm() =
 val aset = Ref(false)
 val cancelled = Semaphore(0)

def cancel() = if (aset?) then cancelled.release() else signal

def set(t) =
 Iff(aset?) ➞ aset := true ➞
 (val b = Rwait(t) ➞ true | cancelled.acquire() ➞ false
 b ➞ aset := false ➞ Ift(b)
)

stop
Clock with Multiple Alarm Setting

- Set an alarm with an id for a given time.
- Cancel an alarm (by its id) that has been set.
- A set alarm returns a signal unless it gets cancelled.
- An id can be reused.
Multiple Alarm Setting API

• Let $malarm$ be a multi-alarm clock in which n alarms may be simultaneously set.

• $malarm.set(i, t)$ returns a signal after time t unless cancelled. The call blocks if alarm is already set or later cancelled.

• $malarm.cancel(i)$ cancels the alarm with id i and returns signal. Just return a signal if no such id has been set. This call is non-blocking.

• A new alarm with some id can be set after the previous alarm with the same id expires.
Implementation of Multi-alarm clock

```python
def class Multialarm(n) =
    val alarmlist = Table(n, lambda(_ = Alarm))

def set(i, t) = alarmlist(i).set(t)

def cancel(i) = alarmlist(i).cancel()

stop
```
val m = Multialarm(5)

<table>
<thead>
<tr>
<th>m.set(1, 500)</th>
<th>"first alarm"</th>
</tr>
</thead>
<tbody>
<tr>
<td>m.set(2, 100)</td>
<td>"second alarm"</td>
</tr>
<tr>
<td>Rwait(400)</td>
<td>m.cancel(1)</td>
</tr>
<tr>
<td>m.cancel(3)</td>
<td>"No third alarm has been set"</td>
</tr>
</tbody>
</table>

---------- Output
"No third alarm has been set"
"second alarm"
"first cancelled"
Using Web services: Spellcheck a list of words

```
include "net.inc"

def spellCheck([]) = stop

def spellCheck(word : words) =
    GoogleSpellUnofficial(word) >sugg> (word, sugg)
    | spellCheck(words)

spellCheck(["plese", "thereee", "Antiqu"])```
Simulation as Concurrent Programming

- A simulation description is a real-time concurrent program.
- The concurrent program includes physical entities and their interactions.
- The concurrent program specifies time intervals for the activities.
Shortest Path Algorithm with Lights and Mirrors

- Source node sends rays of light to each neighbor.

- Edge weight is the time for the ray to traverse the edge.

- When a node receives its first ray, sends rays to all neighbors. Ignores subsequent rays.

- Shortest path length = time for sink to receive its first ray. Shortest path length to node \( i \) = time for \( i \) to receive its first ray.
Graph structure in $Succ()$

Figure: Graph Structure

$Succ(u)$ publishes $(x, 2)$, $(y, 1)$, $(z, 5)$. 
Algorithm

\[ \text{def eval}(u, t) = \begin{align*} & \text{record value } t \text{ for } u \ \gg \ \text{for every successor } v \text{ with } d = \text{length of } (u, v) : \\ & \text{wait for } d \text{ time units } \gg \\ & \text{eval}(v, t + d) \end{align*} \]

Goal: \[ \text{eval}(\text{source}, 0) \mid \text{read the value recorded for the sink} \]

Record path lengths for node \(u\) in FIFO channel \(u\).
Algorithm (contd.)

```python
def eval(u, t) = record value t for u $
\text{for every successor } v \text{ with } d = \text{length of } (u, v) :$
\text{wait for } d \text{ time units } $
\text{eval}(v, t + d)$
```

*Goal:* eval(source, 0) | read the value recorded for the sink

A cell for each node where the shortest path length is stored.

```python
def eval(u, t) = $u := t$ $
\text{Succ}(u) \succ (v, d)$
\text{Rwait}(d) $
\text{eval}(v, t + d)$
```

{ - Goal : - } eval(source, 0) | sink?
Algorithm (contd.)

```python
def eval(u, t) =
 u := t >>
 Succ(u) > (v, d)>
 Rwait(d) >>
 eval(v, t + d)

{ - Goal :- } eval(source, 0) | sink?
```

- Any call to `eval(u, t)`: Length of a path from source to `u` is `t`.
- First call to `eval(u, t)`: Length of the shortest path from source to `u` is `t`.
- `eval` does not publish.
Drawbacks of this algorithm

- Running time proportional to shortest path length.
- Executions of *Succ*, *put* and *get* should take no time.
Virtual Timer

Methods:

\textbf{Vwait}(t) \quad \text{Returns a signal after } t \text{ virtual time units.}

\textbf{Vtime}() \quad \text{Returns the current value of the virtual timer.}
Virtual timer Properties

- Virtual timer value is monotonic.

- $V_{\text{wait}}(t)$ consumes exactly $t$ units of virtual time.

- A step is started as soon as possible in virtual time.

- Virtual timer is advanced only if there can be no other activity.
Implementing virtual timer

Data structures:

- $n$: current value of $Vtime()$, initially $n = 0$.
- $q$: queue of calls to $Vwait()$ whose responses are pending.

At run time:

- A call to $Vtime()$ immediately responds with $n$.
- A call to $Vwait(t)$ is assigned rank $n + t$ and queued.
- **Progress**: If the program is stuck, then:
  
  remove the item with the lowest rank $r$ from $q$,
  set $n := r$,
  respond with a signal to the corresponding call to $Vwait()$. 
Examples

- \( Rwait(10) \mid Ltimer(2) \)
  Should logical timer be advanced with passage of real time?

- \( Rwait(10) \gg c.put(5) \mid Ltimer(2) \)
  Does \( Rwait(10) \gg c.put(5) \) consume logical time?

- \( c.get() \mid Ltimer(2) \gg c.put(5) \)
  What are the values of \( Ltimer.time() \) before and after \( c.get() \)?

- \( stop \mid Ltimer(2) \)
  Can the logical timer be advanced?

- \( Google() \mid Ltimer(2) \)
  Advance logical timer while waiting for \( Google() \) to respond?
  What if \( Google() \) never responds?
Simulation: Bank

- Bank with two tellers and one queue for customers.
- Customers generated by a *source* process.
- When free, a teller serves the first customer in the queue.
- Service times vary for customers.

Determine

- Average wait time for a customer.
- Queue length distribution.
- Average idle time for a teller.
Run the simulation for \textit{simtime}. Below, \textit{Bank()} never publishes.

\begin{verbatim}
val z = Bank() | Vwait(simtime)
\end{verbatim}

\begin{verbatim}
z ⇒ Stats()
\end{verbatim}
Description of Bank

```python
def Bank() = (Customers() | Teller() | Teller()) >> stop

def Customers() = Source() >c> enter(c)

def Teller() = next() >c>
 Vwait(c.ServTime) >>
 Teller()

def enter(c) = q.put(c)
def next() = q.get()
```
Fast Food Restaurant

- Restaurant with one cashier, two cooking stations and one queue for customers.
- Customers generated by a *source* process.
- When free, cashier serves the first customer in the queue.
- Cashier service times vary for customers.
- Cashier places the order in another queue for the cooking stations.
- Each order has 3 parts: main entree, side dish, drink
- A cooking station processes parts of an order in parallel.
Goal Expression for Restaurant Simulation

\[ val \; z = \, Restaurant() \mid Vwait(simtime) \]

\[ z \Rightarrow Stats() \]
Description of Restaurant

def Restaurant() = (Customers() | Cashier() | Cook() | Cook()) \gg stop

def Customers() = Source() \gg c \gg enter(c)

def Cashier() = next() \gg c \\
\text{Vwait}(c.\text{ringupTime}) \gg \text{orders.put}(c.\text{order}) \gg \text{Cashier()}

def Cook() = orders.get() \gg order \\
( \text{prepTime}(order.\text{entree}) > t > \text{Vwait}(t), \\
\text{prepTime}(order.\text{side}) > t > \text{Vwait}(t), \\
\text{prepTime}(order.\text{drink}) > t > \text{Vwait}(t) \\
) \gg \text{Cook()}

def enter(c) = q.\text{put}(c)
def next() = q.\text{get}()
Collecting Statistics: waiting time

Change

\[
\begin{align*}
\text{def enter}(c) & = q\cdot\text{put}(c) \\
\text{def next}() & = q\cdot\text{get}()
\end{align*}
\]

to

\[
\begin{align*}
\text{def enter}(c) & = \text{Vtime}(c) >s> q\cdot\text{put}(c, s) \\
\text{def next}() & = q\cdot\text{get}() > (c, t) > \\
& \quad \text{Vtime}(c) >s> \\
& \quad \text{reportWait}(s - t) \gg c
\end{align*}
\]
Histogram: Queue length

- Create $N + 1$ stopwatches, $sw[0..N]$, at the beginning of simulation.
- Final value of $sw[i]$, $0 \leq i < N$, is the duration for which the queue length has been $i$.
- $sw[N]$ is the duration for which the queue length is at least $N$.
- On adding an item to queue of length $i$, $0 \leq i < N$, do
  \[ sw[i].stop \mid sw[i + 1].start \]
- After removing an item if the queue length is $i$, $0 \leq i < N$, do
  \[ sw[i].start \mid sw[i + 1].stop \]
Simulation Layering

- A simulation is written a set of layers.
- Lowest layer represents the abstraction of the physical system.
- Next layer may collect statistics, by monitoring the layer below it.
- Further layers may produce reports and animations from the statistics.