Bilateral Proofs of Concurrent Programs: A simple and neat solution to a complex problem

Jayadev Misra

Department of Computer Science University of Texas at Austin

Nov 10 and 17, 2015 University of Texas A Quote from H. L. Mencken, American Essayist, 1930s

For every complex problem there is a solution that is simple, neat and wrong.

Status of Program Design and Verification in Four Decades

- Astounding gains for sequential programming.
- Vast improvement in understanding of concurrent programming.
- Theory and practice lag considerably for the latter, compared to the former.
- Very small concurrent programs proved manually, occasionally.
- Larger concurrent programs proved using model checking. Bright spot.

Distinction: Sequential and Concurrent Programs

- Hoare's Proof Theory: Program specification by pre- and postcondition.
- Permits verification of sequential program code for a given specification.
- **Proof rules:** permit composition of the component specifications, for hierarchical construction.
- Specification used in program construction, instead of source code.
- Concurrent programming lacks a theory of *composable specification*. Pre- and postcondition do not compose for concurrent programs.
- Needed: a theory of composable specification that scales up and be automated.

Distinction: Sequential and Concurrent Programs

- Hoare's Proof Theory: Program specification by pre- and postcondition.
- Permits verification of sequential program code for a given specification.
- **Proof rules:** permit composition of the component specifications, for hierarchical construction.
- Specification used in program construction, instead of source code.
- Concurrent programming lacks a theory of *composable specification*. Pre- and postcondition do not compose for concurrent programs.
- Needed: a theory of composable specification that scales up and be automated.

Motivation for the current work: Commutative, Associative Fold of a bag

• Bag <u>u</u>.

Commutative, associative binary operator \oplus Write fold of *u* as Σu .

- Problem: Replace all elements of u by Σu .
- Strategy: Define f_k that transforms u
 - reduces the size of u by k, and
 - the resulting bag has the same fold as the original bag.

An Orc Program

$$f_1 = get(x); get(y); put(x \oplus y)$$

$$f_k = f_1 [] f_{k-1}, \quad k > 1$$

Given that *u* has *n* items initially, n > 1, apply f_{n-1} .

- Safety: Finally *u* has one item, the fold of the original items. Easy.
- Progress: Program terminates. Hard.
 The result does not hold for *f_n*. There is deadlock.
- No known proof technique for this program.

Observations about the problem

- Desired: Respect the recursive program structure in proof.
- Note interplay between sequential and concurrent aspects.
- Entire code is not available.

Another very difficult program to prove

$$\{x = 0\}$$

 $x := x + 1 [] x := x + 2$
 $\{x = 3\}$

Owicki's Thesis

• Construct annotation of each sequential component.

 $\{x = 0\}$ $(\{x = 0 \lor x = 2\} x := x + 1 \{x = 1 \lor x = 3\}$ $[] \{x = 0 \lor x = 1\} x := x + 2 \{x = 2 \lor x = 3\})$ $\{(x = 1 \lor x = 3) \land (x = 2 \lor x = 3)\}$ $\{x = 3\}$

• Show that the proofs don't interfere, e.g.,

 $\{ (x = 0 \lor x = 2) \land (x = 0 \lor x = 1) \} \ x := x + 2 \ \{ x = 0 \lor x = 2 \} \\ \{ (x = 0 \lor x = 1) \land (x = 0 \lor x = 2) \} \ x := x + 1 \ \{ x = 0 \lor x = 1 \} \\ \cdots$

Owicki's Thesis

• Construct annotation of each sequential component.

 $\{x = 0\}$ $(\{x = 0 \lor x = 2\} x := x + 1 \{x = 1 \lor x = 3\}$ $[] \{x = 0 \lor x = 1\} x := x + 2 \{x = 2 \lor x = 3\})$ $\{(x = 1 \lor x = 3) \land (x = 2 \lor x = 3)\}$ $\{x = 3\}$

• Show that the proofs don't interfere, e.g.,

 $\{ (x = 0 \lor x = 2) \land (x = 0 \lor x = 1) \} \ x := x + 2 \ \{ x = 0 \lor x = 2 \} \\ \{ (x = 0 \lor x = 1) \land (x = 0 \lor x = 2) \} \ x := x + 1 \ \{ x = 0 \lor x = 1 \} \\ \cdots$

Assessment

- First real proof technique for concurrent programs.
- Works well for small tightly-coupled components.
- Not scalable.
- Needs program code.
- No notion of a specification.

Rely-Guarantee of Cliff Jones

• Replace non-interference proofs by checks against stable predicates.

(ロ) (型) (E) (E) (E) の(()

- Hoare-like proof rule.
- Limited to safety properties.

Unity by Chandy and Misra

- Simplify program structure: $loop \langle g \rightarrow s \rangle [] loop \langle g' \rightarrow s' \rangle [] \cdots$
- Each $\langle g \rightarrow s \rangle$ is a guarded action.
- Prove program properties, not assertions at program points:
 - A resource is never granted unless requested.
 - A request for a resource is eventually granted.
- Specification is a set of properties.
- Composition rules for specification are given.

Implementations

- Some succeses: Telephony, Control systems
- Implementations in other logics: Boyer-Moore prover, Larch, HOL, Coq, Isabelle/ZF DisCo (based on Unity) in PVS CommUNITY workbench

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへで

Limitations of the Unity approach

- Does not support traditional program structure.
- Auxiliary variables needed to capture program control points.
- Termination and deadlock equated.

Current Theory: Specification

- Terminal property: postcondition of a program for a given precondition.
- Perpetual property: holds throughout every program execution. Similar to invariant.
 - (Safety) once it requests a resource the thread waits until the resource is granted,
 - (Progress) once the resource is granted the thread will eventually release it.
- Specification: Terminal and Perpetual properties.

Summary of the approach

- Create program annotation as before, but with restrictions.
- Annotations are valid even under concurrent execution. As in UNITY.
- Use the annotations to derive terminal and perpetual properties. Bilateral
- Composition rules for specifications.

Program Model

- command: Uninterruptible, terminating code,
 e.g.: x := x + 1, put on a channel.
- action: Guarded command, $b \rightarrow \alpha$, e.g.: *get* from a channel.
- f, g :: component: action | f[]g | seq $(f_0, f_1, \dots f_n)$
- program: component executing alone.

Programming Constructs

• seq: Any sequential programming construct that has a proof rule, e.g.:

```
s; t
if b then s else t
while b do s
```

- Join: f [] g is commutative, associative.
- A sequential construct may combine concurrent programs:
 (f [] g); (f' [] g')

(ロ) (型) (E) (E) (E) の(()

Program Execution

- Sequential components follow their execution rules.
- Join: starts all components simultaneously.
 Terminates when they all do.
- Program control may reside at multiple program points simultaneously.
- At any moment the action at some control point is executed.
- Every control point is chosen eventually for execution.

Action Execution

• Execution of $b \rightarrow \alpha$ always terminates,

either effectively or ineffectively.

• Effective execution:

b is true and α is executed to completion. Program control moves past the action.

• Ineffective execution:

b is *false*.

Program control remains before the action.

- Evaluation of *b* is uninterruptible in all cases.
- If *b* is true: α is executed immediately.

Example: Distributed counter

Program $f = [j_j f_j]$ implements counter *ctr*.

```
initially ctr = 0

f_j ::

initially old_j, new_j = 0, 0

loop

new_j := old_j + 1;

if [ctr = old_j \rightarrow ctr := new_j | ctr \neq old_j \rightarrow old_j := ctr]

forever
```

Show: Safety: *ctr* is changed only by incrementation

Progress: ctr is changed eventually.

Example: Distributed counter

Program $f = [j_j f_j]$ implements counter *ctr*.

```
initially ctr = 0

f_j ::

initially old_j, new_j = 0, 0

loop

new_j := old_j + 1;

if [ctr = old_j \rightarrow ctr := new_j | ctr \neq old_j \rightarrow old_j := ctr]

forever
```

Show:

Safety: *ctr* is changed only by incrementation.

Progress: ctr is changed eventually.

• Find precondition *p* of each action so that *p* remains true as long as control remains at the action.

$$\{x = 0 \lor x = 2\} x := x + 1 \{x = 1 \lor x = 3\}$$

[] {x = 0 \le x = 1} x := x + 2 {x = 2 \le x = 3})
{(x = 1 \le x = 3) \le (x = 2 \le x = 3)}

- Owicki: Check that precondition can not be violated by any concurrent action.
- Unity: Programmer specifies guards for each action.
- In the current theory: Unknown concurrent environment. General programs: Guards are usually too weak. Control flow carries additional information.

イロト イポト イモト イモト 二日

• Find precondition *p* of each action so that *p* remains true as long as control remains at the action.

$$\{x = 0 \lor x = 2\} x := x + 1 \{x = 1 \lor x = 3\}$$

[]
$$\{x = 0 \lor x = 1\} x := x + 2 \{x = 2 \lor x = 3\}$$

$$\{(x = 1 \lor x = 3) \land (x = 2 \lor x = 3)\}$$

- Owicki: Check that precondition can not be violated by any concurrent action.
- Unity: Programmer specifies guards for each action.
- In the current theory: Unknown concurrent environment. General programs: Guards are usually too weak. Control flow carries additional information.

イロト 不得 とくほ とくほ とうほう

• Find precondition *p* of each action so that *p* remains true as long as control remains at the action.

$$\{x = 0 \lor x = 2\} x := x + 1 \{x = 1 \lor x = 3\}$$

[] {x = 0 \le x = 1} x := x + 2 {x = 2 \le x = 3})
{(x = 1 \le x = 3) \le (x = 2 \le x = 3)}

- Owicki: Check that precondition can not be violated by any concurrent action.
- Unity: Programmer specifies guards for each action.
- In the current theory: Unknown concurrent environment. General programs: Guards are usually too weak. Control flow carries additional information.

• Find precondition *p* of each action so that *p* remains true as long as control remains at the action.

$$\{x = 0 \lor x = 2\} x := x + 1 \{x = 1 \lor x = 3\}$$

[] {x = 0 \le x = 1} x := x + 2 {x = 2 \le x = 3})
{(x = 1 \le x = 3) \le (x = 2 \le x = 3)}

- Owicki: Check that precondition can not be violated by any concurrent action.
- Unity: Programmer specifies guards for each action.
- In the current theory: Unknown concurrent environment. General programs: Guards are usually too weak. Control flow carries additional information.

Access rights to variables

- x local to f: f has exclusive write-access to x during any execution.
- p local predicate of f: every variable in p is local to f.

Local Annotation

- Annotation of a program in which all predicates are local to the component in which they appear.
- Given local annotation in which {p} b→α,
 p holds whenever b→α is executed.
- Construct local annotation using Hoare-proof rules for seq construct.
- For join, use:

 $\frac{\{r\}f\{s\}}{\{r'\}g\{s'\}} \\ \frac{\{r'\}g\{s'\}}{\{r \land r'\}f[]g\{s \land s'\}}$

Local Annotation: Distributed Counter

```
f_i ::
   initially old_i, new_i = 0, 0
   {true}
   loop
       {true}
          \alpha_i :: new_i := old_i + 1;
       \{new_i = old_i + 1\}
          if [\beta_i :: \{new_i = old_i + 1\} ctr = old_i \rightarrow ctr := new_i \{true\}
              |\gamma_i :: \{new_i = old_i + 1\} ctr \neq old_i \rightarrow old_i := ctr \{true\}\}
       {true}
   forever
```

Safety Property co

• $p \operatorname{co} q$ in component f:

Effective execution of any action of f in a p-state achieves a q-state.

- In program f: once p holds it continues to hold until q is established.
- As a composition rule:

 $p \operatorname{co} q$ holds in f if it holds in every component of f.

Formal definition of co

$\{r\}f \{s\}$ For every action $b \to \alpha$ with precondition *pre* in any annotation of f: $\{pre \land b \land p\} \alpha \{q\}$ $\{r\}f \{p \text{ co } q \mid s\}$

Special cases of co

• stable *p*: Once *p* holds, it continues to hold:

p co p

• constant *e*: Value of expression *e* never changes:

 $(\forall c :: \text{ stable } e = c)$

• invariant *p*: *p* always holds: initially *p* and stable *p*

Distributed Counter, contd.

```
Prove: ctr = m co ctr = m \lor ctr = m + 1.
f_i::
  initially old_i, new_i = 0, 0
   {true}
  loop
      {true}
         \alpha_i :: new_i := old_i + 1;
      \{new_i = old_i + 1\}
         if [\beta_i :: \{new_i = old_i + 1\} ctr = old_i \rightarrow ctr := new_i \{true\}
             |\gamma_i :: \{new_i = old_i + 1\} ctr \neq old_i \rightarrow old_i := ctr \{true\}
      {true}
```

forever

Safety: *ctr*'s value is only incremented

- Show: ctr = m co $ctr = m \lor ctr = m + 1$ in fprove: ctr = m co $ctr = m \lor ctr = m + 1$ holds in all f_i .
- For each action $b \to \alpha$ with precondition *pre*, show: $\{pre \land b \land ctr = m\} \alpha \{ctr = m \lor ctr = m + 1\}$
- Only β_j may change the value of *ctr*. So, prove:

$$\{ ctr = m \land new_j = old_j + 1 \land ctr = old_j \}$$

$$ctr := new_j$$

$$\{ ctr = m \lor ctr = m + 1 \}$$

Progress Properties

- Transient: Fundamental property. Compositional.
 transient *p*: *p* will be false eventually. □◇¬*p*.
- Ensures: More useful in practice. Compositional. Defined using transient.

p en q: once p holds, it continues to hold until q holds; and q holds eventually.

• Leads-to: Typical property in a specification. Non-compositional. Defined using ensures.

Progress Properties

- Transient: Fundamental property. Compositional.
 transient *p*: *p* will be false eventually. □◇¬*p*.
- Ensures: More useful in practice. Compositional. Defined using transient.

p en q: once p holds, it continues to hold until q holds; and q holds eventually.

• Leads-to: Typical property in a specification. Non-compositional. Defined using ensures.

Progress Properties

- Transient: Fundamental property. Compositional.
 transient *p*: *p* will be false eventually. □◇¬*p*.
- Ensures: More useful in practice. Compositional. Defined using transient.

p en q: once p holds, it continues to hold until q holds; and q holds eventually.

• Leads-to: Typical property in a specification. Non-compositional. Defined using ensures.

Simplistic Definition of transient p in f: p will be false eventually in f

- Each action of f is effectively executed if p is a precondition, and
- its execution establishes $\neg p$.

For every action $b \rightarrow \alpha$ of f with precondition pre: $pre \land p \Rightarrow b$ $\{pre \land p\} \alpha \{\neg p\}$ $\{\} f \{ \text{ transient } p \mid \}$

▲□▶▲@▶▲≣▶▲≣▶ ≣ のQ@

Stronger Rules for transient p

- *f*; *g*: either *f* terminates or *p* transient in *f* AND *p* transient in *g*.
 Sufficient: *f* terminates AND *p* transient in *g*.
- f [] g: p transient in f or g.
- Inheritance: If p transient in ALL components of f, p transient in f.

Stronger Rules for transient p

- *f*; *g*: either *f* terminates or *p* transient in *f* AND *p* transient in *g*.
 Sufficient: *f* terminates AND *p* transient in *g*.
- f [] g: p transient in f or g.

• Inheritance: If p transient in ALL components of f, p transient in f.

Stronger Rules for transient p

- *f*; *g*: either *f* terminates or *p* transient in *f* AND *p* transient in *g*.
 Sufficient: *f* terminates AND *p* transient in *g*.
- f [] g: p transient in f or g.
- Inheritance: If p transient in ALL components of f, p transient in f.

Ensures: p en q

Once p holds, it continues to hold until q holds; and q holds eventually.

- $p \land \neg q$ co $p \lor q$
- transient $p \land \neg q$

Distributed Counter

- Prove: *ctr* increases eventually.
- This is not an ensures property.
- Prove:

In every step, either *ctr* increases, or the number of old_i that differ from *ctr* decreases.

• *nb*: number of *old*_{*i*} such that $ctr \neq old_i$.

 $ctr = m \wedge nb = N$ en $nb < N \lor ctr > m$ in f

(E)

 $ctr = m \wedge nb = N$ en $nb < N \lor ctr > m$ in f

- To prove (E) in $[j_j f_j$: Prove (E) in each f_j .
- To prove (E) in *initialization*; **loop** *body_j* **forever**: Since *initialization* terminates, show (E) in: **loop** *body_j* **forever**.
- To prove (E) in **loop** $body_j$ forever: Prove (E) in $body_j$, using inheritance.
- To prove (E) in $body_j$, i.e., $new_j := old_j + 1$; if $[\beta_j | \gamma_j]$: Prove (E) in If_j , since $new_j := old_j + 1$ terminates.
- To prove (E) in if $[\beta_j | \gamma_j]$: prove (E) in β_j and γ_j , i.e., Effective executions of β_j and γ_j establish the postcondition of (E) given its pre-condition.

 (\mathbf{E})

 $ctr = m \wedge nb = N$ en $nb < N \lor ctr > m$ in f

- To prove (E) in $[j_j f_j]$: Prove (E) in each f_j .
- To prove (E) in *initialization*; **loop** *body_j* **forever**: Since *initialization* terminates, show (E) in: **loop** *body_j* **forever**.
- To prove (E) in **loop** *body_j* **forever**: Prove (E) in *body_j*, using inheritance.
- To prove (E) in $body_j$, i.e., $new_j := old_j + 1$; if $[\beta_j | \gamma_j]$: Prove (E) in If_j , since $new_j := old_j + 1$ terminates.
- To prove (E) in if [β_j | γ_j]: prove (E) in β_j and γ_j, i.e., Effective executions of β_j and γ_j establish the postcondition of (E) given its pre-condition.

 (\mathbf{E})

 $ctr = m \wedge nb = N$ en $nb < N \lor ctr > m$ in f

- To prove (E) in $[j_j f_j]$: Prove (E) in each f_j .
- To prove (E) in *initialization*; **loop** *body_j* **forever**: Since *initialization* terminates, show (E) in: **loop** *body_j* **forever**.
- To prove (E) in **loop** $body_j$ forever: Prove (E) in $body_j$, using inheritance.
- To prove (E) in $body_j$, i.e., $new_j := old_j + 1$; if $[\beta_j | \gamma_j]$: Prove (E) in If_j , since $new_j := old_j + 1$ terminates.
- To prove (E) in if [β_j | γ_j]: prove (E) in β_j and γ_j, i.e., Effective executions of β_j and γ_j establish the postcondition of (E) given its pre-condition.

 (\mathbf{E})

 $ctr = m \wedge nb = N$ en $nb < N \lor ctr > m$ in f

- To prove (E) in $[j_j f_j]$: Prove (E) in each f_j .
- To prove (E) in *initialization*; **loop** *body_j* **forever**: Since *initialization* terminates, show (E) in: **loop** *body_j* **forever**.
- To prove (E) in **loop** $body_j$ forever: Prove (E) in $body_j$, using inheritance.
- To prove (E) in $body_j$, i.e., $new_j := old_j + 1$; if $[\beta_j | \gamma_j]$: Prove (E) in If_j , since $new_j := old_j + 1$ terminates.
- To prove (E) in if [β_j | γ_j]: prove (E) in β_j and γ_j, i.e., Effective executions of β_j and γ_j establish the postcondition of (E) given its pre-condition.

(E)

 $ctr = m \wedge nb = N$ en $nb < N \lor ctr > m$ in f

- To prove (E) in $[j_j f_j]$: Prove (E) in each f_j .
- To prove (E) in *initialization*; **loop** *body_j* **forever**: Since *initialization* terminates, show (E) in: **loop** *body_j* **forever**.
- To prove (E) in **loop** $body_j$ forever: Prove (E) in $body_j$, using inheritance.
- To prove (E) in $body_j$, i.e., $new_j := old_j + 1$; if $[\beta_j | \gamma_j]$: Prove (E) in lf_j , since $new_j := old_j + 1$ terminates.
- To prove (E) in if $[\beta_j | \gamma_j]$: prove (E) in β_j and γ_j , i.e., Effective executions of β_j and γ_j establish the postcondition of (E) given its pre-condition.

(E)

Proof Obligations

Relevant Annotation of f_j :

if $[\beta_j :: \{new_j = old_j + 1\} ctr = old_j \rightarrow ctr := new_j \{true\} | \gamma_j :: \{new_j = old_j + 1\} ctr \neq old_j \rightarrow old_j := ctr \{true\} | \{true\}$

Proof Obligations:

$$\beta_{j} :: \{ ctr = m \land nb = N \land new_{j} = old_{j} + 1 \land ctr = old_{j} \}$$

$$ctr := new_{j}$$

$$\{ nb < N \lor ctr > m \}$$

$$\gamma_{j} :: \{ ctr = m \land nb = N \land new_{j} = old_{j} + 1 \land ctr \neq old_{j} \}$$

$$old_{j} := ctr$$

$$\{ nb < N \lor ctr > m \}$$

37

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへで

Leads-to

• (basis)
$$\frac{p \text{ en } q}{p \mapsto q}$$

- (transitivity) $\frac{p \mapsto q, q \mapsto r}{p \mapsto r}$
- (disjunction) For any (finite or infinite) set of predicates *S*

$$\frac{(\forall p: p \in S: p \mapsto q)}{(\forall p: p \in S: p) \mapsto q}$$

Derived Rules: What makes Proofs Practical. For co

false co q

p co true $\frac{p \operatorname{co} q, p' \operatorname{co} q'}{p \wedge p' \operatorname{co} q \wedge q'}$ (CONJUNCTION) $\frac{p \operatorname{co} q, p' \operatorname{co} q'}{p \lor p' \operatorname{co} q \lor q'}$ (DISJUNCTION) $\frac{p \operatorname{co} q}{p \wedge p' \operatorname{co} q}$ (LHS STRENGTHENING) $\frac{p \operatorname{co} q}{p \operatorname{co} q \lor q'}$ (RHS WEAKENING)

39

Lightweight Derived Rules for \mapsto

- 1. (implication) $\frac{p \Rightarrow q}{p \mapsto q}$
- 2. (lhs strengthening, rhs weakening)

$$\begin{array}{c}
p \mapsto q \\
p' \wedge p \mapsto q \\
p \mapsto q \lor q'
\end{array}$$

3. (cancellation) $\frac{p \mapsto q \lor r, r \mapsto s}{p \mapsto q \lor s}$

1. (PSP)
$$\frac{p \mapsto q}{p \wedge p' \mapsto q \wedge p'}$$

2. (induction) M: Program States $\rightarrow W$. (W, \prec) well-founded. $\frac{(\forall m :: p \land M = m \mapsto (p \land M \prec m) \lor q)}{p \mapsto q}$

3. (completion) p_i and q_i are predicates; *i* index over a finite set.

$$(\forall i :: p_i \mapsto q_i \lor b$$
$$q_i \text{ co } q_i \lor b$$
$$)$$
$$(\forall i :: p_i) \mapsto (\forall i :: q_i) \lor b$$

1. (PSP)
$$\frac{p \mapsto q}{p \wedge p' \mapsto q \wedge p'}$$

2. (induction) M: Program States $\rightarrow W$. (W, \prec) well-founded. $\underbrace{(\forall m :: p \land M = m \mapsto (p \land M \prec m) \lor q)}_{p \mapsto q}$

3. (completion) p_i and q_i are predicates; *i* index over a finite set.

$$(\forall i :: p_i \mapsto q_i \lor b$$
$$q_i \text{ co } q_i \lor b$$
$$)$$
$$(\forall i :: p_i) \mapsto (\forall i :: q_i) \lor b$$

1. (PSP)
$$\frac{p \mapsto q}{p \wedge p' \mapsto q \wedge p'}$$

2. (induction) M: Program States $\rightarrow W$. (W, \prec) well-founded. $\underbrace{(\forall m :: p \land M = m \mapsto (p \land M \prec m) \lor q)}_{p \mapsto q}$

3. (completion) p_i and q_i are predicates; *i* index over a finite set.

$$(\forall i :: p_i \mapsto q_i \lor b$$

$$q_i \text{ co } q_i \lor b$$

$$(\forall i :: p_i) \mapsto (\forall i :: q_i) \lor b$$

1. (PSP)
$$\frac{p \mapsto q}{p \wedge p' \mapsto q \wedge p'}$$

2. (induction) M: Program States $\rightarrow W$. (W, \prec) well-founded. $\frac{(\forall m :: p \land M = m \mapsto (p \land M \prec m) \lor q)}{p \mapsto q}$

3. (completion) p_i and q_i are predicates; *i* index over a finite set.

$$(\forall i :: p_i \mapsto q_i \lor b$$

$$q_i \text{ co } q_i \lor b$$

$$(\forall i :: p_i) \mapsto (\forall i :: q_i) \lor b$$

(ロ) (型) (E) (E) (E) の(()

Distributed Counter

• Prove in *f*: *ctr* increases unboundedly:

true \mapsto *ctr* > *C*, for any integer *C*

- Proved in f: $ctr = m \land nb = N$ en $nb < N \lor ctr > m$
- Use definition of \mapsto and its derived rules for the proof.

$ctr = m \land nb = N$ en $nb < N \lor ctr > m$ proven

 $ctr = m \land nb = N \mapsto nb < N \lor ctr > m$ basis rule of *leads-to*

 $ctr = m \land nb = N \mapsto ctr = m \land nb < N \lor ctr > m$ PSP with ctr = m co $ctr = m \lor ctr = m + 1$

・ロト・日本・ モー・ モー・ シック

$$ctr = m \land nb = N$$
 en $nb < N \lor ctr > m$
proven

 $ctr = m \land nb = N \mapsto nb < N \lor ctr > m$ basis rule of *leads-to*

 $ctr = m \land nb = N \mapsto ctr = m \land nb < N \lor ctr > m$ PSP with ctr = m co $ctr = m \lor ctr = m + 1$

・ロト・日本・日本・日本・日本・日本

- $ctr = m \land nb = N$ en $nb < N \lor ctr > m$ proven
- $ctr = m \land nb = N \mapsto nb < N \lor ctr > m$ basis rule of *leads-to*
- $ctr = m \land nb = N \mapsto ctr = m \land nb < N \lor ctr > m$ PSP with ctr = m co $ctr = m \lor ctr = m + 1$

Apply Induction Rule

 $ctr = m \land nb = N \mapsto ctr = m \land nb < N \lor ctr > m$

Induction rule:

$$\frac{(\forall m :: p \land M = m \mapsto (p \land M \prec m) \lor q)}{p \mapsto q}$$

Use *nb* for *M* and < for \prec to conclude:

 $ctr = m \mapsto ctr > m$

$$ctr = m \land nb = N$$
 en $nb < N \lor ctr > m$
proven

 $ctr = m \land nb = N \mapsto nb < N \lor ctr > m$ basis rule of *leads-to*

 $ctr = m \land nb = N$ en $ctr = m \land nb < N \lor ctr > m$ PSP with $ctr = m \operatorname{co} ctr = m \lor ctr = m + 1$

 $ctr = m \mapsto ctr > m$

Induction rule; well-founded order < over natural numbers

true \mapsto *ctr* > *C*, for any integer *C* Induction rule, well-founded order < over natural numbers

$$ctr = m \land nb = N$$
 en $nb < N \lor ctr > m$
proven

 $ctr = m \land nb = N \mapsto nb < N \lor ctr > m$ basis rule of *leads-to*

 $ctr = m \land nb = N$ en $ctr = m \land nb < N \lor ctr > m$ PSP with $ctr = m \operatorname{co} ctr = m \lor ctr = m + 1$

 $ctr = m \mapsto ctr > m$

Induction rule; well-founded order < over natural numbers

true \mapsto *ctr* > *C*, for any integer *C* Induction rule, well-founded order < over natural numbers.