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1 Introduction

This paper proposes that virtual time and virtual time-outs should be available
as tools for programming distributed systems. Virtual time is already used for
event ordering in distributed systems [9], though the numeric value of virtual
time is irrelevant in this context (see Section 1.1.1; page 2). Virtual time-
out, i.e., waiting for a specific amount of virtual time, has not been used in
programming distributed systems. Both virtual time and time-outs are used in
discrete event simulations though such an application is usually implemented
on a single machine, rather than on distributed systems.

We propose to make virtual clock, i.e., virtual time and time-out, available
in full generality over a distributed set of machines. We argue that the benefits
extend beyond mere ordering of events or simulations. We show an example
where independent threads may be executed in a certain order by making use of
virtual clock. We show solution to a combinatorial example, computing shortest
path in a graph, that can be structured as a set of concurrent threads operating
with virtual time-outs, see Section 6 in page 23.

Virtual clocks have been implemented in a concurrent programming lan-
guage, Orc [12, 8], designed by the author and his co-workers. We find that
virtual clocks eliminate many routine book-keeping operations from explicit
consideration by the programmer.

1.1 Background

1.1.1 Causal Model of Virtual Time

In a classic paper [9], Lamport introduced the clock synchronization problem
across a set of machines. Lamport argued that real-time clocks of different
machines can not be perfectly synchronized; therefore, determining the order of
events across machines is not a well-defined problem. However, it is possible to
implement virtual clocks at different machines and synchronize them so that if
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an event at one machine causes an event at another machine (perhaps through
a chain of events) then the preceding event happens earlier in virtual time1.

The synchronization algorithm time-stamps each event with a natural num-
ber, its virtual time, so that an event that causally precedes another will be
assigned a lower virtual time. For a set of machines that communicate through
messages, (1) events occurring at a single machine are strictly ordered in virtual
time according to the order of their execution, and (2) each message carries the
time-stamp of the corresponding send event and the receive event is assigned a
strictly higher time-stamp than the send event.

Lamport’s algorithm and some of its variations [6, 10, 1, 15] have become
fundamental in designs of practical distributed systems. Morgan [13] shows
several distributed algorithms using virtual time.

The numeric value of virtual time is irrelevant in the causal model because
the time-stamps of different events are merely compared. Therefore, doubling
all virtual times or increasing all by some fixed amount would not affect these
comparisons.

1.1.2 Simulation Model of Virtual Time

Discrete event simulations of physical systems employ virtual time to mimic
real time in the physical system. Typically, a simulation is implemented on a
single machine employing a single virtual clock. If event x happens at time t in
the real world, it is scheduled to happen at virtual time t in the simulation; the
scheduler adds the time and event pair (t, x) to an event queue. Whenever no
event is being processed by the simulator, the pair with the smallest associated
time, say (t′, x′), is removed from the event queue, the virtual time is advanced
to t′, and event x′ is processed. Processing of an event may update the state
of the simulation, and it may also update the event queue by adding/removing
pairs from it. A step in the real world, such as a customer receiving service
for k units of time, is simulated as follows: when the start of service event is
processed at virtual time t, it schedules the end of service event to be processed
at virtual time t + k, and enters it into the event queue.

It follows that if event x precedes event y in real time, then x is processed
before y in the simulator.

The numeric value of virtual time is important because entities in a physical
system, e.g. persons waiting in a queue for service, wait for specific lengths of
time. The computation required for processing of events consumes no virtual
time; virtual time is advanced only when the processing of next event from the
event queue is started.

Unlike the causal model which is meant for implementation on a distributed
network of processes, a simulation is typically implemented on a single processor;
so, there is a single virtual clock under consideration in a simulation. Distributed
simulations [] use multiple virtual clocks, but a client merely processes a single
event at any moment and then waits for a communication.

1Lamport used the term “logical time”. We use “virtual time” to denote logical time whose
magnitude is also relevant.
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1.2 Contributions of this Paper

We propose facilities for accessing the value of virtual time and waiting for a
specific amount of virtual time in distributed systems. Our model of virtual
time combines both the causal and simulation models, and generalizes them.
We show a distributed algorithm for implementation of virtual time.

We regard a distributed system as a client-server network; clients communi-
cate with each other through the servers. Each client has a virtual clock. Each
step of a client consumes some amount of virtual time within given lower and
upper bounds, as specified for that step. A client may wait for k units of virtual
time by executing a step Vwait(k), thus implementing virtual time-out.

Each event in a computation is assigned a virtual time of occurrence, called
its time-stamp, and the time-stamps have to obey a number of safety conditions,
given in Section 3, page 7. The safety conditions include the condition on
causally dependent events, as in the causal model. And, they also include
constraints on the virtual time consumed by a step, specified by a lower and an
upper bound on the virtual duration of the step.

The time-stamping algorithm requires each client to maintain a virtual clock
and the servers to help synchronize the virtual clocks of the clients.

2 Computation Model

In this section, we describe the computation model of client-server network, first
informally and then formally, without virtual time. We introduce virtual time
in Section 3.

2.1 Informal Model

A client-server network consists of a finite number of clients and servers. Each
client runs its own program and interacts with servers by making calls on them.
A server may respond to a client’s call by returning some data, called its re-
sponse. A server does not respond as long as it does not have or can not compute
the appropriate data; consequently, a server may not respond at all.

Client A client executes steps where the start and end of each step are events.
A trace of a client, denoting a possible execution of the client, is a finite sequence
of events. It is possible for a step to start but never end in an execution; in
that case, only its start event is included in the trace. The steps of a client
may be concurrent. Therefore, the start and end events of various steps may
be interleaved arbitrarily. Further, steps may be nested where one step may
include others as substeps. We make no assumption about the nature of steps,
except the ones noted below.

Certain steps are designated as communication steps. A communication step
at a client starts by calling a server and ends on receiving the server response.
Correspondingly, a communication step at a server starts by receiving a client
call and ends by sending a response.
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A special client step Vwait(k), where k is a non-negative integer, behaves
as a skip, i.e., it has no effect on the program state2. Its semantics in terms of
virtual time is described in Section 3, page 7.

Server A server accepts requests from clients and responds to them, if pos-
sible. We make no assumption about the nature of a server. A server could
be as trivial as one implementing the identity function that merely returns the
argument of the call as its response. Or, it could be as elaborate as a web search
engine, a database, a shared memory manager, a semaphore or a message com-
municating channel, or, even, a real-time clock (see Section 4.4.5, page 20).

As an example, consider a server that implements an asynchronous un-
bounded channel for message communication between clients. It may support
two kinds of calls: (1) to put an item in the channel, and (2) to get an item
from the channel. A put step would normally terminate, and then the server
sends an acknowledgement to the calling client. A get step is blocked until
there is an item in the channel; it may be blocked forever if the channel remains
empty. There is no special treatment in our theory for message communication;
messages are sent and received by calling a channel server. Clients may also ex-
change data by communicating with a server that implements a shared memory,
or a database, for example.

A response from a server depends not only on the corresponding call but,
possibly, on other calls. For example, in a server that implements an unbounded
channel, a put call immediately elicits a response in the form of an acknowl-
edgement; the response depends only on the call. However, a get call’s response
depends not only on this call but also on the call that put the item in the channel
in the first place. The exact form of dependence is specific to each server.

Note: A server does not make any calls in this model. A more general model
of the network is a multi-layer graph where a pure client is a node in the top
layer, a pure server a node in the bottom layer, and a node may call any node
at a lower layer. Our approach can be extended to this general model.

2.2 Formal Model

2.2.1 Client and Server

Associated with each entity, i.e., a client or a server, is (1) a set of steps, (2) a
binary relation, called precedes and denoted by ≺, and (3) a set of traces.

Step The set of steps of different entities are disjoint. Each step has an as-
sociated start and end event. Certain steps are designated as communication
steps. The start event of a communication step at a client is designated client-
call, the corresponding end event, receiving the response from the server, is
client-response. Similarly, the start event of a communication step at a server
is server-call and the end event is server-response.

2Theoretically, Vwait(k) is a different step for each value of k.
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Precedes For events x and y at any entity (server or client), x ≺ y denotes
that event x precedes y, and we say that x is a precedent of y. Relation ≺ is a
strict partial order, i.e., for all events x, y and z, we have:

asymmetry: ¬(x ≺ y ∧ y ≺ x) and,
transitivity: (x ≺ y ∧ y ≺ z) ⇒ (x ≺ z).

Event x is an immediate precedent of event z if x ≺ z and there is no event
y such that x ≺ y ≺ z.

Every start event precedes the corresponding end event. For a communica-
tion step at a client whose start event is x and end event y: x is an immediate
precedent of y, x is not an immediate precedent of any other event and y has no
other immediate precedent. At a server, a server-call event has no precedent,
but the server-response is preceded by the corresponding server-call event and,
possibly, other events as well.

Trace A trace of an entity denotes a possible execution. It is a finite sequence
of events that satisfies the following conditions. Below, T is a finite sequence of
events, and x and y are events.

• (T1) Tx is a trace implies T is a trace and for all y, where y ≺ x, y ∈ T .

• (T2) Txy is a trace and x does not precede y implies Ty is a trace.

Condition (T1) implies that traces are prefix-closed, i.e., all prefixes of a
trace are also traces. Further, an event can occur in a trace only if all its
precedents have already occurred. (An event x that can occur if either y or
z has occurred can be modeled by having two distinct events x′ and x′′ that
mimic x, and whose precedents are y and z, respectively.)

Condition (T2) says that if y can occur immediately after Tx but x is not
a precedent of y, then y can occur without the occurrence of x. It may seem
that the appropriate condition should be: if event x is not in trace T , but all its
precedents are in T , then Tx is a trace. This is, however, a strong requirement.
Calling that x is “enabled” in this situation, the stronger condition amounts to:
an enabled event remains continuously enabled until it is executed. Condition
(T2) permits disabling an enabled event through occurrence of other events;
it merely says that an event y that has been enabled but not disabled may be
executed. Henceforth, we assume that each entity has at least one trace. Hence,
〈 〉 is a trace of every entity, from prefix-closure.

2.2.2 Network

A client-server network, or just network, consists of a finite number of entities,
and all communications are between the clients and servers included in the
network. So, a network is a client none of whose steps is a communication step.
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Step The set of steps of a network is the union of the steps of its component
entities. Recall that the steps of distinct entities are disjoint. The events of a
network are the start and end events of the steps.

Precedes The precedes relation of a network is a strict partial order that
includes the precedes relation of every component entity and a set of commu-
nication relations as described below. A communication relation is of the form
{(x, x′), (y′, y)}, where x and y are the start and end events of a client com-
munication step, and x′ and y′ those of a server communication step. Any
communication step, of a client or server, may participate in at most one com-
munication relation.

Trace Let T be a finite sequence of events of the component entities of a
network. The projection of T on u, written as Tu, is the subsequence of events
of T that are from entity u. Sequence T is a network trace if and only if: (1)
Tu is a trace of u for every entity u in the network, and (2) for any event x in
T all precedents of x come before x in T .

Lemma 1 Network traces satisfy the conditions on traces, i.e.,

1. Tx is a network trace implies T is a network trace,
and for all y, where y ≺ x, y ∈ T .

2. Txy is a network trace and Ty is not a network trace implies x ≺ y.

Proof: See Appendix A, page 26. 2

Observe that network traces are prefix-closed, from condition (1) in Lemma 1.

3 Virtual Time

We augment the model of Section 2 by permitting each client to have a virtual
clock that displays the current virtual time at that client; clocks of different
clients may display different times.

Each step of a client has associated lower and upper bounds on the amount
of virtual time the step consumes, where the lower bound does not exceed the
upper bound. The bounds are natural numbers and, possibly, ∞ for the upper
bound. For Vwait(k), both lower and upper bound are k, i.e., the step consumes
exactly k units of virtual time. The bounds on steps are specified as part of the
model of computation. Servers do not have virtual clocks nor Vwait as a step.

Typical virtual time bounds are (lower and upper bound given as a pair):
(i) (0, ∞) indicating that a step’s virtual time characteristics are irrelevant,
(ii) (0, 0) indicating that a step consumes no virtual time, as is the case for a
statistics collection step in simulation, for example, and (iii) (k, k) for a virtual
time-out step.

A time-stamped, or timed, network trace is a network trace in which every
event x has an associated natural number vx, called its time-stamp. A timed
network trace T is safe if it meets the following safety conditions.
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Safety Conditions

1. (Causality) Time stamps respect precedence, i.e., for events x and y in T ,
x ≺ y ⇒ vx ≤ vy.

2. (Monotonicity) Let x and y be events of a single client and x comes before
y in T . Then, vx ≤ vy.

3. (Duration) Let p be a client step whose start event x and end event y are
both included in T . Let lbp and ubp be the lower and upper bounds on
virtual time consumed by step p. Then, lbp ≤ vy − vx ≤ ubp.
Further, if x is included T but y is not, then for every event z of this client
in T , vz − vx ≤ ubp.

4. (Eagerness) Let x be a start event of a client in T . Then,
vx = max{vy| y ≺ x}.

Convention: max({}) = 0 and min({}) = ∞.
For natural number n, n < ∞ always holds and n + ∞ is ∞.

Causality is the most elementary condition for virtual time. Monotonicity is
a stronger requirement for clients; it implies causality for clients only. These are
the only conditions imposed on virtual time in Lamport’s causality model [9].

Duration condition says that the time stamps obey the timing constraints for
steps at the clients. If both start event x and end event y of a step are included
in a trace, their time-stamps are such that the duration of the step, given by
vy − vx, is within the time-bounds specified for the step. If the trace contains
only x but not y, then extending the trace by y should remain a possibility, i.e.,
the time interval from x to any event of the client in the trace does not exceed
the upper bound of the step.

Eagerness condition is inspired by discrete event simulation where a step is
started as soon as possible in virtual time.

The only condition that applies to server events is causality. In particular,
the time stamps in a server trace may not be monotonic. The duration condition
does not apply to servers because server steps have no associated bounds on
virtual time they consume. A server is not required to start a step as soon as
possible, as required by eagerness.

Example 1 Consider two concurrent threads in a client that attempt executing
steps p and q in parallel. The time bounds for p is (1,1) and for q is (2,3). Let
p denote the start event of p and p′ its end event; similarly for q. In Table 1,
we show several possible traces and assignments of time-stamps to them (time-
stamp of an event is written below the event name). Traces 2 and 3 show
different safe time-stamps for the same untimed trace. The last three traces
have time stamps that violate some of the safety conditions. Trace 6 has no
possible safe time-stamp.
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Trace Violates
1 p q p′ q′ -

0 0 1 2
2 q p p′ q′ -

0 0 1 2
3 q p p′ q′ -

0 0 1 3
4 p q q′ p′ Monotonicity

0 0 2 1
5 p q q′ p′ Duration for p

0 0 2 2
6 p p′ q q′ Eagerness for q

0 1 1 3

Table 1: Time-stamped traces

4 Implementation

We describe an algorithm that assigns time-stamps to events during an execution
of the network. An execution of a network corresponds to a safe timed-trace;
initially, the execution corresponds to the empty trace, which is safe, and each
occurrence of an event has to be time-stamped so that all the safety conditions
are met. The implementation does not have access to the trace sets of the
entities; so it can not be based on an analysis of the possible future events.

We designate a client step to be pending during an execution if its start event
has been time-stamped, but not its end event. A pending step is either active
or passive; an active step is still executing and a passive step has completed its
execution though its end event is still not time-stamped.

For a pending step, its lower-deadline is the smallest time-stamp that can be
assigned to its end event; similarly, the upper-deadline is the largest time-stamp
for its end event. Henceforth, for step p, we write ldp and udp for its lower
and upper-deadlines, and lbp and ubp for its lower and upper-bounds. When
the start event of a step is time-stamped vt, deadlines ldp and udp are set to
vt + lbp and vt + ubp, respectively. Subsequently, the lower-deadline may be
revised to a higher value if the step is a communication and the server response
indicates that the step can not be completed until some time after the current
lower-deadline. The upper-deadline remains fixed.

A client’s trace is quiescent if it has no extension by a start event. A client
is quiescent in an execution if the corresponding trace is quiescent; that is, it
can not start any step. An execution is quiescent if the corresponding trace is.

4.1 Time-stamping Algorithm

Initially Each client has a local variable vt that holds the current value of its
virtual time. Initial value of vt is 0 at every client.
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Server

(S) On executing server event x, set
vx := max{vy| y ≺ x}.

Client

(C1) On executing start event of step p:
Designate p passive if p is Vwait , otherwise it is active.
Set vx := vt, where x is the start event of p.
Set ldp, udp := vt + lbp, vt + ubp.

(C2) On executing end event of active step p:
Designate p passive.
If p is a communication step, set ldp := max(ldp, t),
where t is the time-stamp of the corresponding server-response.

(C3) At quiescence:
Let µ be the minimum over upper-deadlines of all pending steps.
If ldp ≤ µ for some passive step p, then
set vt := max(ldp, vt); vy := vt, where y is the end event of p. 2

Remarks on the Algorithm

1. The algorithm does not specify how exactly a server should execute action
(S). For server-call x′, whose unique immediate precedent is client-call x,
this amounts to setting vx′ to vx. Value vx can be appended to the call
itself, and the server can then acquire that value. Time-stamp of every
other server event can be computed locally at the server. Similarly, the
time-stamp of server-response can be appended to the response so that
the client has the value of t in action (C2).

2. The algorithm is written in a non-deterministic style for the client, because
it permits a number of possible implementations in practice. Actions (C1)
and (C2) are executed when a step starts and completes, respectively;
however, the choice of a step is non-deterministic if several possible steps
qualify for execution. Action (C3) is executed at quiescence. The choice of
the passive step p in (C3) is arbitrary as long as the associated condition
is met. This is the only step in which vt may be updated (increased).

3. Suppose at quiescence the associated condition in (C3), ldp ≤ µ, is not
met by any passive step p. There are three possible scenarios then.

(a) There is no pending step: client’s execution has reached termination.

(b) There is a pending passive step, but no active step: since there is no
active step and all passive steps p fail to satisfy ldp ≤ µ, this situation
will persist. The client’s execution can not proceed any further and
the pending steps will remain pending, akin to a deadlock.
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(c) There is a pending active step: the client has to wait to execute
action (C2) next, so that a pending step may become passive, and,
possibly, satisfy the condition in (C2).

4. Action (C3) can be executed only at quiescence just to implement the
eagerness condition, as will become evident in the correctness proofs; see
Section 4.2, page 11. If eagerness is not a concern, then (C3) may be
executed at any point during an execution.

5. The algorithm may time-stamp end events in a different order from their
completion order. Given pending steps p and q, p may become passive
first, and then q, whereas q’s end event may get time-stamped before p’s.
In this case, p’s end event does not precede q’s; so, from Section 2.2, Trace
condition (T2), it is acceptable to shuffle their order.

6. Consider a passive step p for which ldp > udp; this could happen if in
action (C2), t > udp, so that ldp gets set to t. Then the step remains
passive forever because ldp > udp ≥ µ, and it never satisfies the condition
in (C3). Further, from Proposition 1 below, vt ≤ µ; so, vt ≤ udp <

ldp. Thus, the virtual time will remain below ldp, possibly, blocking the
execution.

4.2 Correctness of the Implementation

We prove that the time-stamping algorithm meets the safety conditions of Sec-
tion 3, page 8. Recall that µ is the minimum over upper-deadlines of all pending
steps.

4.2.1 Preliminary Results

Proposition 1 For any client, vt ≤ µ is invariant.

Proof: Initially, there is no pending step, so µ = ∞. Further, every vt is 0. So,
the proposition holds vacuously. Whenever a new upper-deadline, udp, is set
in action (C1), it is of the form vt + ubp, where ubp ≥ 0; so, the invariant is
preserved. Whenever vt is updated in action (C3), it is by the assignment

vt := max(ldp, vt), where ldp ≤ µ

So, the invariant is preserved. 2

Proposition 2 For step p with x and y as start and end events, the following
invariants hold whenever vx and/or vy are defined.

vx + lbp ≤ ldp (I1)
vx + ubp = udp (I2)
ldp ≤ vy ≤ udp (I3)
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Proof of (I1): vx is set just once in (C1) and never changed, and ldp is then set
to vx + lbp, thus satisfying (I1). The value of ldp may subsequently change
in (C2) by the assignment ldp := max(ldp, t), so it can only increase.
Therefore, vx + lbp ≤ ldp is maintained.

Proof of (I2): udp is set to vx +ubp when vx is set in (C1), and neither variable
is changed thereafter.

Proof of (I3): We set vy only in (C3). The precondition of this action is ldp ≤ µ.
We have to establish the post-condition ldp ≤ vy ≤ udp.

{ldp ≤ µ} vt := max(ldp, vt); vy := vt {ldp ≤ vy ≤ udp}
≡ {Using the axiom of assignment}

ldp ≤ µ ⇒ ldp ≤ max(ldp, vt) ≤ udp

≡ {ldp ≤ max(ldp, vt) always holds}
ldp ≤ µ ⇒ max(ldp, vt) ≤ udp

≡ {max(ldp, vt) ≤ udp ≡ (ldp ≤ udp ∧ vt ≤ udp)}
ldp ≤ µ ⇒ (ldp ≤ udp ∧ vt ≤ udp)

≡ {from Proposition 1, vt ≤ µ and, µ ≤ udp. So, vt ≤ udp}
ldp ≤ µ ⇒ ldp ≤ udp

≡ {by definition, µ ≤ udp}
true 2

Proposition 3 For any client, vt is monotonic.

Proof: The only assignment to vt is vt := max(ldp, vt) in action (C3). 2

Proposition 4 For any event z of a client, vz ≤ vt.

Proof: vz is set to vt, and vt is monotonic from Proposition 3. 2

4.2.2 Proofs of Safety Conditions

Theorem 1 Monotonicity condition holds in every timed trace.

Proof: All client events, both start and end, are time-stamped vt. Since start
event comes before the end event and vt is monotonic (from Proposition 3), the
result follows. 2

Theorem 2 Causality condition holds in every timed trace.

Proof: Let x and y be events in a trace such that x ≺ y. It is sufficient to prove
the result when (1) both events are from one entity (a client or a server), (2) x

is a client-call and y the corresponding server-call, and (3) x is a client-response
and y the corresponding server-response.

(1) If both events are at a server, then from x ≺ y, event y is not a server-
call event because a server-call event has no precedent at a server. Hence, from
action (S), vy = max{vx| x ≺ y}. So, vx ≤ vy. If both events are at a client, x

comes before y in the client trace, and from Theorem 1, vx ≤ vy.
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(2) Suppose x is a client-call and y the corresponding server-call. Then, from
action (S), vx = vy.

(3) Suppose y is a client-response and x the corresponding server-response;
suppose y is the end event of step p. In action (C2), we set ldp := max(ldp, t)
where t = vx. Hence, vx ≤ ldp following the assignment. From invariant (I3) in
Proposition 2, page 11, ldp ≤ vy. Therefore, vx ≤ vy . 2

Theorem 3 Duration condition holds in every timed trace.

Proof: Let step p have start and end events x and y in a timed trace. We show
below that lbp ≤ vy − vx (in the left) and vy − vx ≤ ubp (in the right).

vx + lbp ≤ ldp , from (I1)
ldp ≤ vy , from (I3)
vx + lbp ≤ vy , from above two
lbp ≤ vy − vx , rewriting

vy ≤ udp , from (I3)
udp = vx + ubp , from (I2)
vy ≤ vx + ubp , from above two
vy − vx ≤ ubp , rewriting

For step p whose start event x is in the trace but not its end event, we need
to show that vz − vx ≤ ubp, for any event z of this client in the trace. From
Proposition 1, page 11,

vt ≤ µ

⇒ {vz ≤ vt, from Proposition 4, and µ ≤ udp from the definition of µ}
vz ≤ udp

⇒ {udp = vx + ubp, from (I2) of Proposition 2, page 11}
vz ≤ vx + ubp

⇒ {rewriting}
vz − vx ≤ ubp 2

We prove a lemma in order to prove the eagerness condition.

Lemma 2 Let TUz be a trace of a client where T is quiescent and z is a start
event. Then U includes a precedent of z.

Proof: We use property (T2) of traces, from Section 2.2, page 5, which we write
in an equivalent form: Txy is a trace and Ty is not a trace implies x ≺ y.

Suppose that U includes no precedent of z. By induction on the length of
U it can be shown that Tz is a trace. Since z is a start event, this means that
T is not quiescent, a contradiction. 2

Theorem 4 Eagerness condition holds in every timed trace.

Proof: Let z be start event of a client in the timed trace. We show that
vz = max{vx| x ≺ z}.

Case 1) vz = 0: All precedents of z come before it in the client trace, from the
computation model of Section 2.2, page 5. From monotonicity, all events
that come before z have time-stamp 0. Hence, vz = max{vx| x ≺ z}. Note
that the result holds even when z has no precedent, because max({}) = 0.
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Case 2) vz > 0: Since the initial time stamp at the client is 0, the trace in-
cluding z can be written in the form TUz where all events in U have time
stamp vz , and all events in T have strictly lower time-stamps. Therefore,
vt increases following T . From the description of the algorithm, vt in-
creases only at quiescence in action (C3); hence, T is quiescent. Further,
z is a start event. From Lemma 2, page 13, U includes a precedent of
z. Since all events in U have time stamp vz, some precedent of z has
time-stamp vz; therefore, max{vx| x ≺ z} = vz . 2

4.3 Progress Condition

We have shown in Section 4.2.2 that the time-stamping algorithm of Section 4.1
meets all the safety conditions. That, however, is not sufficient, because a time-
stamping mechanism can meet all the safety conditions by doing nothing. The
only trace corresponding to such an execution is the empty trace, which satisfies
all the safety conditions. Our time-stamping algorithm also establishes a strong
progress property, which we explore in this section.

The strongest possible progress condition is that an execution be extended
if it is possible to extend it. In terms of the formal model, this amounts to:

• (Progress) Let the execution of the network correspond to the timed trace
T . If T has a safe extension, then the execution will be extended.

Observe that T may have many safe extensions, and the execution will be
extended corresponding to one of them.

Remarks The progress condition applies only if the timed trace corresponding
to the current execution has an extension. It is possible that the untimed trace
has an extension, but not the timed trace. To see this, consider a client that
has two threads, one of which has a put step that puts an item in a channel and
the other has a get step that retrieves the item. There is an untimed trace that
includes end events of both steps. Suppose that the put step has lower-bound
of 1 and the get step has both lower and upper bounds of 0. Then neither step
can complete in the timed computation model. The put step can’t be completed
before virtual time 1, whereas get requires its response to be delivered by virtual
time 0. Virtual time will never increase beyond 0 (because that will violate the
duration condition on get), and hence put step will never be completed. So, the
timed trace that includes the start events of both steps has no extension.

4.3.1 Proof of Progress Condition

Theorem 5 (Progress Theorem) The time-stamping algorithm implements
the progress condition.

Proof: Let the timed trace corresponding to an execution be T , and T has a
safe extension Tz. We show that the time-stamping algorithm will extend the
execution. This holds under the weakest possible condition on the execution of
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the algorithm, i.e., the algorithm is not permanently blocked if it is possible to
execute any step, (S), (C1), (C2) or (C3). In the time-stamping algorithm, ac-
tions (S), (C1) and (C3) extend the execution by time-stamping events, whereas
action (C2) merely updates the internal state without extending the execution.
Note that (C2) can be executed only a finite number of times, at most once for
each active pending step.

If z is a server event, then the execution can be extended by action (S).
Suppose T has an extension Tz where z is the start event of a client. Then

the execution can be extended by action (C1), though it may assign a different
time-stamp to z than the one in the extension.

If T has no extension by start event of any client, all client traces are qui-
escent. So, z is an end event, say of step q. Step q is passive or will become
passive, since the trace can be extended by z. From (I3) of Proposition 2,
page 11, ldq ≤ vz. For any pending step p whose start event is x, from dura-
tion condition of Section 3, page 8, vz − vx ≤ ubp, or vz ≤ vx + ubp = udp.
So, ldq ≤ vz ≤ udp, or ldq ≤ udp for every pending step p. Hence, ldq ≤ µ;
therefore, action (C3) can be executed to extend the execution. 2

4.3.2 A Sufficient Condition for Progress

The progress theorem is stated in terms of existence of extensions of timed-
traces. For reasoning about the behaviors of programs in practice, we need
simpler conditions that are based only the nature of steps, not traces. We
should expect that a step that is not guaranteed to terminate —either because
it is in an infinite computation, or because it depends on some step of another
entity— should not impose a finite upper bound, because that may cause the
virtual time to remain below its upper deadline should the step remain non-
terminating. We formalize these notions in this section and prove a strong
theorem about progress of execution.

Independent step A step in the untimed model is independent if it is guar-
anteed to complete. In particular, its completion is not conditional upon events
that may or may not occur3. As examples, skip step is independent and so is a
Vwait step, because in the untimed model it is equivalent to skip. A put step
on an asynchronous unbounded channel is also independent. Conversely, a get
step on such a channel is not independent because it has to depend on some put
step for its completion. A step that is not independent is dependent. We now
define these terms formally.

In the untimed model, a terminal trace of a network is either a trace that
has no extension, or an infinite sequence of events each prefix of which is a trace.
Step p, with start and events x and y, is independent if and only if the following
conditions hold.

1. Any terminal trace that includes x also includes y. Consequently, a pend-
ing independent step is or will become passive.

3An independent step is also called “wait free” in distributed systems literature.
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2. Any precedent of y is totally ordered with respect to x, i.e., if z ≺ y then
either z ≺ x, z = x or x ≺ z.

Requirement (1) guarantees that once p is started, it will be completed.
Requirement (2) states that any event z required for completion of the step (its
end event y) is either x itself, is a precedent of x, or is spawned by x. An event
unrelated to the starting of the step can not influence its completion.

It may seem that any execution in which there is a pending independent
step will be extended, because the termination of the step is guaranteed. This
is not true because of the timing constraints; see example below.

Example 2 A client has two threads, one of which puts a value in a channel
and the other gets the item. The put step is independent. The put step has
lower-bound of 1 and the get step has both lower and upper bounds of 0. The put
step can’t be completed before virtual time 1, whereas get requires its response
to be delivered by virtual time 0. The virtual time will never increase beyond
0 (because that will violate the duration condition on get), and hence put step
will never be completed. An execution that includes only the start events of put
and get, and thus has a pending independent step, will never be extended. 2

Lemma 3 The server step corresponding to an independent communication
step at a client is independent.

Proof: Let p be an independent communication client step and p′ the corre-
sponding server step. Let x and y be the start and end events of p, and x′ and
y′ of p′. So, x ≺ x′ and y′ ≺ y.

Any terminal trace that contains x′ also contains x, because x ≺ x′. From
independence of p, the trace also contains y. Since y′ ≺ y, it also contains y′.

We show that for any z, if z ≺ y′, then either z ≺ x′, z = x′ or x′ ≺ z.

z ≺ y′

⇒ {y′ ≺ y}
z ≺ y

⇒ {p is independent}
z ≺ x, z = x or x ≺ z

⇒ {z ≺ x or z = x implies z ≺ x′, from x ≺ x′}
z ≺ x′ or x ≺ z

⇒ {x immediately precedes only x′; so, x ≺ z ⇒ (z = x′ ∨ x′ ≺ z)}
z ≺ x′ or z = x′ or x′ ≺ z 2

Lemma 4 Let x and y be start and end events of an independent communica-
tion server step in a timed trace. Then vx = vy.

Proof: Let z be any event of the server that is a precedent of y or z = y. We
show that vx = vz . From the definition of independent, either z = x, z ≺ x or
x ≺ z. Since z is an event of the server, it can not precede the server-call x. So,
z = x or x ≺ z.
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A chain to z in the trace is a sequence w0 ≺ w1 ≺ · · · ≺ wn, where x = w0

and z = wn. The length of the chain is n, the number of events excluding the
start event. Define depth of z to be the length of the longest chain to z in the
given trace. We show that vx = vz by induction on the depth of z.

For depth = 0: We have x = z. Hence vx = vz .
For depth = n, where n > 0: Every immediate precedent of z has depth

smaller than n. Inductively, every immediate precedent has time-stamp vx.
According to action (S), vx = vz . Setting z = y, vx = vy. 2

Lemma 5 Let p be an independent client step. Then, the time-stamping algo-
rithm never changes ldp once it has been set.

Proof: If p is not a communication step, ldp is never changed. Let p be a
communication step; ldp can possibly be changed in action (C2) of the algorithm.
Let p′ be the corresponding server step; since p is independent, so is p′, from
Lemma 3. Let x be the start event of p (client-call), x′ the start event of p′

(server-call) and y′ the end event of p′ (server-response).

ldp ≥ vx , from action (C1)
vx′ = vx , from action (S), and that

x is the only immediate precedent of x′

vy′ = vx′ , from Lemma 4
t = vy′ in action (C2) , the meaning of t

ldp ≥ t in action (C2) , from above four propositions
max(ldp, t) = ldp in action (C2) , from above 2

Lemma 6 For a pending independent step p, ldp ≤ udp is invariant in the
time-stamping algorithm.

Proof: Both ldp and udp are set in action (C1) by the assignment:

ldp, udp := vt + lbp, vt + ubp

Since lbp ≤ ubp, we then have ldp ≤ udp. Since p is independent, from Lemma 5,
page 17, ldp does not change. And udp does not change in the algorithm.
Therefore, ldp ≤ udp is invariant for any pending independent step p. 2

Theorem 6 (Independence Theorem) Suppose that at any point in an ex-
ecution there is a pending independent step p such that ldp ≤ µ for that client.
Then the time-stamping algorithm extends the execution.

Proof: Let T be the timed trace corresponding to a network execution when
ldp ≤ µ holds. The proof is by contradiction. Suppose that none of the actions of
the time-stamping algorithm that extend the execution, i.e., (S), (C1) and (C3),
can be executed. Action (C2) may be executed, without extending execution.

From Lemma 5, page 17, ldp never changes. A client’s µ can change only by
executing (C1) or (C3). So, µ does not change, and, hence, ldp ≤ µ continues to
hold. Since (C1) is not executed, there is no start event that can be executed,
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i.e., T is quiescent and remains quiescent. Since p is independent, its execution
is guaranteed to terminate, so it is passive or will become passive eventually.
Therefore, there is a quiescent client for which ldp ≤ µ eventually holds for a
passive step. Hence, (C3) can be executed, a contradiction. 2

Corollary 1 Suppose an execution has a pending independent step whose lower
bound is 0. Then the execution will be extended.

Proof: Let p be a pending independent step whose lower bound, lbp, is 0. When
p starts, in action (C1) ldp is set to vt + lbp, that is ldp = vt. From Lemma 5,
page 17, ldp never changes. From Proposition 3, page 12, vt is monotonic.
Therefore, ldp ≤ vt is invariant. From Proposition 1, page 11, vt ≤ µ is invari-
ant. Therefore, ldp ≤ µ is invariant. Apply Independence Theorem. 2

Corollary 2 Suppose every pending dependent step has upper bound of ∞. If
there is a pending independent step, the execution will be extended.

Proof: Every pending dependent step, q, has upper bound of ∞, so, udq = ∞.
Since there is a pending independent step, from the definition of µ, µ = udp,
for some independent step. From Lemma 6, page 17, ldp ≤ udp = µ. Apply
Independence Theorem. 2

Corollary 3 Suppose there is a pending step and every pending step is inde-
pendent. Then the execution will be extended.

Proof: Let p be a pending step such that µ = udp. Since p is independent, from
Lemma 6, page 17, ldp ≤ udp = µ. Apply Independence Theorem. 2

4.4 Optimizations

We consider several optimizations of the time-stamping algorithm for special
cases. The time-stamping algorithm may be by-passed for steps that have lower
bound 0 and upper bound ∞, which is the case most of the time; see Sec-
tion 4.4.1. In section 4.4.2, we give conditions for time-stamping of end events
even when the execution is not quiescent. In Sections 4.4.3 and 4.4.4, we spe-
cialize the algorithm for causal and simulation models. We consider mingling
real time and virtual time-outs in Section 4.4.5.

4.4.1 By-passing the time-stamping algorithm

The time-stamping algorithm requires consideration of the lower and upper
bounds of every step. In a vast majority of cases, nearly all steps have lower
bound 0 and upper bound of ∞. That is, the time-stamp assigned to its events
are irrelevant. In such cases, the step does not affect the time-stamps of any
other event (because it does not affect µ), so, it may be removed from consider-
ation in the algorithm. Its start event is time-stamped vt, as usual, and, from
Section 4.4.2, its end event may be time-stamped with vt whenever it becomes
passive.
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4.4.2 Time-stamping end events in non-quiescent states

The time-stamping algorithm time-stamps an end event in action (C3) only,
when the client is quiescent. The end event of a passive step p may be assigned
time-stamp vt at any point in the execution provided ldp ≤ vt. In particular,
this optimization allows us to time-stamp the end event as soon as a step is
completed provided its lower bound is 0. So, Vwait(0) can be implemented as a
skip using this rule. It can be shown that all the safety and progress conditions
are met by this rule. This time-stamping does not change vt.

4.4.3 Causal Model

We have described the causal model in Section 1.1.1, page 2. Causal model
obeys only the causality and monotonicity conditions of Section 3, page 8. There
is no Vwait , and consequently there is no eagerness or duration requirement.
The exact values of the time stamps are irrelevant except that an event should
have a strictly lower time-stamp than any event it precedes. We meet these
requirements by having every step have a lower bound of 1 and upper bound
of ∞. (If lower-bounds are allowed to be 0, then the safety conditions can be
trivially satisfied by setting all time-stamps to 0.)

Since the exact values of the time-stamps are irrelevant, we may advance
virtual time at any point, i.e., there is no need to wait till quiescence to increase
vt. There is no need to maintain lower and upper-deadlines for individual steps
either. We may advance vt as soon as a step starts. Further, we need not
distinguish between active and passive steps. We get the following algorithm.

Server

(S) For any server event x, set vx = max{vy| y ≺ x} + 1.

Client

(C1) Executing start event of step p:
Set vt := vt + 1; vx := vt, where x is the start event of p.

(C2) Executing end event of step p:
If p is a communication step and t the time-stamp of the corresponding
server-response,
then set vt := max(vt, t) + 1 else set vt := vt + 1;
set vy := vt, where y is the end event of p.

The model and the algorithm are (almost) identical to those proposed by
Lamport [9]. The only servers in that paper are unbounded asynchronous chan-
nels for message communications4. Our algorithm applies more generally for
arbitrary servers; therefore the server step (S) is more elaborate in our case.
For message communication, (S) may be simplified to: for receive event y at the
channel corresponding to send event x, set vy := vx + 1.

4The “put” and “get” steps are “send” and “receive” in [9].
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4.4.4 Simulation Model

In the typical model for discrete event simulation, there is no server and there is
just a single client. Therefore, there is no communication step. Every step ex-
cept Vwait consumes 0 virtual time. There is no need for the causality condition
because, with a single client, monotonicity condition subsumes it.

There is no need to maintain the lower and upper-deadlines for individual
steps; instead we maintain completion-time, ct, for every Vwait step. The
passive steps are all Vwaits; any other step is active and its end event is time-
stamped as soon as it is completed, according to Section 4.4.2, page 19. The
simplified time-stamping algorithm is same as the traditional single-processor
discrete event simulation algorithm.

Client

(C1) Starting step p:
Designate p passive if p is Vwait , otherwise it is active.
Set vx := vt, where x is the start event of p.
Set ctp := vt + k, if p is Vwait(k).

(C2) Executing end event of active step p:
Set vy := vt, where y is the end event of p.

(C3) At quiescence, if there is a pending step:
Let ctp be the minimum over all ctq, where q is passive.
Set vt := ctp; vy := vt, where y is the end event of p.

4.4.5 Real time computations

Computations involving real-time use time-out using Rwait, analogous to Vwait .
Consider the case where there is a single real-time clock at every client, but the
real-time clocks at different clients are not necessarily synchronized.

Suppose events e1 and e2 occur at a client at real times r1 and r2 and have
(virtual) time-stamps v1 and v2. From monotonicity, r1 < r2 ⇒ v1 ≤ v2.
Taking the contrapositive (and switching the roles of v1 and v2), v1 < v2 ⇒
r1 ≤ r2. Note that events occurring at the same real time may have different
time-stamps, and events occurring at different real times may have the same
time-stamp.

To preserve the semantics of real-time time-out, computation must resume
immediately following a Rwait. That is, it should be possible to time-stamp
the end event of any pending Rwait as soon as it occurs. In order to apply the
optimization of Section 4.4.2, page 19, we require that ldp ≤ vt, for any Rwait

step p. This is possible only if the lower-bound for every Rwait is 0.
Further, we do not expect the presence of a real-time time-out in a client

program to restrict execution of any other step of that client. That is, Rwait

should not have an upper-deadline such that a competing step in a concurrent
thread is prevented from continuing in action (C3). Therefore, we take all
Rwaits to have upper-bound of ∞.
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Given these time bounds, execution of Rwaits may bypass the execution of
the time-stamping algorithm, as we have described in Section 4.4.1, page 18.

Example 3 Consider two concurrent threads in a client. One thread executes
Rwait(2) and the other Vwait(5) followed by Rwait(1). Let r1, r2 and v5
denote the start events of Rwait(1), Rwait(2) and Vwait(5) respectively, and the
corresponding primed variables denote their end events. We show the possible
timed traces in Table 2; events at the top, time-stamps at bottom. Events r2
and v5 may be transposed in the last four traces.

r2 r2′ v5 v5′ r1 r1′

0 0 0 5 5 5
r2 v5 r2′ v5′ r1 r1′

0 0 0 5 5 5
r2 v5 v5′ r2′ r1 r1′

0 0 5 5 5 5
r2 v5 v5′ r1 r2′ r1′

0 0 5 5 5 5
r2 v5 v5′ r1 r1′ r2′

0 0 5 5 5 5

Table 2: Intermingled Real time and Virtual time time-outs

5 Applications

The monotonicity condition allows us to impose order on causally unrelated
events at a client using explicit values of virtual time; Section 5.1 shows an
example. We consider the problem of distributing a simulation among several
clients in Section 5.3. A longer combinatorial example, computing shortest path
in a graph, is taken up in Section 6.

5.1 Ordering causally unrelated events

We give a small example in which use of virtual time simplifies program design.
A set of concurrent threads, numbered from 0 through n, are to be executed. It
is required to start the threads sequentially, thread i+1 after thread i, 0 ≤ i < n.
Since the threads are independent, there is no causal order among them. If each
thread is executed on a separate client, a causal order among their start events
has to be imposed. One possibility is to have thread i send a token to thread
i + 1 after it starts, 0 ≤ i < n, and thread i + 1 starts only after receiving
the token. If all threads are executed on a single client, a simpler strategy is
applicable. Thread i waits for i units of time (real or virtual) before starting.
Waiting for virtual time has the advantage over waiting for real time in that
(1) no real time is wasted, and (2) sequencing is guaranteed by the conditions
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imposed on virtual time, whereas threads may start out-of-order if the unit of
real time is too small and the time-out mechanism is inexact.

We show that this scheme meets the specification. From the eagerness con-
dition, all Vwait(i), 0 ≤ i ≤ n, start at virtual time 0. If Vwait(i) completes,
from the duration condition it completes at virtual time i. From the eagerness
condition, thread i starts at virtual time i. From monotonicity condition, all
events at virtual time i come before those at virtual time i+1 since the threads
are implemented on one client; therefore, thread i + 1 starts after thread i. Ad-
ditionally, if it is specified that all steps in each thread consume 0 virtual time,
then all events in thread i come before any event of thread i + 1. That is, the
threads are executed sequentially.

If the threads are implemented on two clients, say threads 0 through k − 1
on client 1 and k through n on client 2, we can combine both strategies: thread
i in client 1, 0 ≤ i < k, waits for i units of virtual time and then starts, client
2 starts only after receiving a token from (thread k − 1 in) client 1, and then
thread j, k ≤ j ≤ n, waits for j − k units of virtual time before starting.

5.2 Plane-sweep algorithms in Computational Geometry

Plane-sweep is a powerful algorithmic technique in computational geometry.
Algorithms using plane-sweep can always be described using virtual time, where
the current value of virtual time denotes the position of the line that sweeps
the plane. The advantage of such a description is that book-keeping aspects of
plane-sweep can be completely ignored. We study an algorithm, due to Bentley
and Ottman [2, 14], for enumerating the intersection points of a given set of line
segments in a plane.

Line Segment Intersections We are given a finite set of line segments in
a plane, where each segment is described by the pair of its end points. It is
required to enumerate the points of intersection of all pairs of segments. The
algorithm has the following salient features.

1. It maintains a list data structure, A. The list is initially empty.

2. All end points and intersection points are processed in order of their x-
coordinates.

3. Processing a point may update A and create new intersection points.

The algorithm terminates, because there are a finite number of end points
and intersection points, and each processing step terminates. The exact de-
tails of processing are not germane for our discussion; it can be shown that all
intersection points are generated by the processing steps.

For sequential processing of the points in order of their x-coordinates, all
end points are initially stored in a queue. At any step, the point with the
smallest x-coordinate is removed from the queue and processed, which may cause
intersection points to be added to the queue. This is reminiscent of sequential
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simulation. We can simplify the description by creating a thread for each point
(x, y) which is processed at virtual time x; assume that x-coordinates of all such
points are distinct. All threads are executed at a single client, and computation
steps take no virtual time. A sketch of the algorithm is given below, where c

denotes the current virtual time.

Initially, c = 0 and A is the empty list;
concurrently, for each end point p: process(p).

Procedure process(p) =
Vwait(t − c), where t is the x-coordinate of p; c := t;
update A, and using A compute a set of new intersection points S;
concurrently, for each q in S: process(q).

5.3 Distributed Simulation

Distributed simulations [4, 11, 3, 7] have become essential for analyzing sys-
tems consisting of thousands, or even millions, of components. A distributed
simulation is implemented on several processors, each implementing a client.
Typically, the clients communicate directly via asynchronous channels, without
using explicit servers. Each client is an event5 processing engine: it processes an
event, possibly creating new events to be processed by other clients at specific
virtual times, and then communicates these events and times to other clients.

An event happening at one client has to be communicated to another client
with its virtual time of occurrence. A client can not advance its virtual clock
unless it is assured that it will receive no future communication in real time
from another client at a lower virtual time. In terms of our model, a get step
on a channel can not specify its upper bound; the step is completed at exactly
the time dictated by the corresponding put step. So, a dependent step, get,
does not have ∞ as its upper bound, the independence theorem of Section 6
is not applicable, and extension of execution can not be guaranteed. In fact,
deadlock is the major problem with distributed simulation; different heuristics
are employed to overcome deadlock.

The algorithm proposed in this paper can be applied in a limited sense
to distributed simulation. A simulation problem has to be partitioned among
clients where communications across clients are periodic so that no client has
to wait too long to acquire the virtual clock value of any client with whom it
communicates.

6 Shortest path

We show a solution to the well-known shortest path problem expressed as a
concurrent algorithm using virtual time. The algorithm of Dijkstra [5] is in fact
a sequential implementation of this algorithm.

5Here, “event” refers to real-world events, not the events in our formal model.
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It is required to find a shortest path from a source node to a sink node in a
finite directed graph in which each edge has a positive length. We will merely
record the length of the shortest path from source to every node reachable from
it; determining the shortest path itself is a small extension of this scheme.

Imagine that the length of an edge is the amount of time taken by a light
ray to traverse that edge. First, the source records 0, the length of the shortest
path to itself. Then it sends rays along all its outgoing edges simultaneously at
time 0. On receiving a light ray along any of its incoming edges, a node records
the time and sends rays along all its outgoing edges immediately. It can be
shown that every path length to a node is eventually recorded by the node in
order of (non-decreasing) length. The computation may be terminated as soon
as the sink node records its first value, which has to be the shortest path length
to it. A node may stop its computation after recording its first value, because
only its shortest path may be included in the shortest path to any other node.

6.1 The Shortest Path Program

We implement the proposed scheme below, where eval(u) is a procedure.

def eval(u) =

record current virtual time value in a FIFO channel for u;

in parallel, for every successor v of u with edge length d:

wait for d time units and then call eval(v)

Initially: eval(source)

Waiting for d units of time is accomplished by Vwait(d). Other steps,
including for recording, consume no virtual time. The algorithm can be de-
scribed in any programming language that supports concurrency, virtual time
and virtual-timeout. Appendix B has a (concise) program in programming lan-
guage Orc [12].

Let ch(v) be the channel corresponding to node v. If the algorithm is im-
plemented on a single client, but possibly multiple servers corresponding to the
channels, it records the lengths of paths to any node v in ch(v) in order of their
magnitude. The first value in ch(sink) is the length of the shortest path to sink.
If there is no path from source to sink, no value will ever be stored in ch(sink).

Simulating the concurrent algorithm on a single processor gives us Dijkstra’s
algorithm [5]. The concurrent algorithm is simple to develop and justify. The
simulation merely involves additional book-keeping that is best left to the time-
stamping algorithm.

6.2 Correctness of Shortest Path Program

We prove that the proposed program, using the time-stamping algorithm of
Section 4.1, eventually computes the length of the shortest path to sink if there
is a path from source to sink. We assume that any recording step has both lower
and upper bounds of 0. Note that all steps are independent.
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Lemma 7 Every pending Vwait is eventually completed.

Proof: The program has no dependent step. Therefore, from Corollary 2,
page 18, the execution will be extended if there is a pending step. There is
at most one recording step per node that can be completed before some Vwait
is executed. Therefore, only a finite number of extensions by recording steps are
possible before all steps become pending. Some pending Vwait(k), where k > 0,
is eventually completed, thus increasing vt. The value of vt can not increase
past the upper deadline of any pending Vwait step, from the duration condition
of Section 3, page 8. Therefore, every pending Vwait will be completed. 2

Theorem 7 Let dist(v) = {t| t is a path length to v}. Then,
t ∈ dist(v) ≡ (eval(v) is called at virtual time t).

Proof: Proof is by induction on t.

• Base case, t = 0: First, we show that 0 ∈ dist(v) ≡ eval(v) is called at 0.
Since every edge length is positive, 0 ∈ dist(v) ≡ v = source. So, we have to
show that eval(source) is called at time 0 and no other node is called at time 0.
The first part follows from the initial condition of the program. Next, any other
call to eval is made from eval after a positive delay, because for every Vwait(k),
k > 0. Therefore, the only call made at time 0 to eval is made initially.

• Inductive case, t > 0:

t ∈ dist(v)
≡ {definition of dist(v)}

t is a path length to v

≡ {t > 0 means the path has at least one edge.
Let the penultimate node in the path be u, and
let t′ be the length of the path to u along this path}

there exist u and t′, where t′ ∈ dist(u) and t = t′ + d(u, v)
≡ {all edge lengths are positive, so t′ < t; induction hypothesis}

there exist u and t′, where eval(u) is called at t′ and t = t′ + d(u, v)
≡ {see below}

eval(v) is called at t

The proof of the last step is by mutual implication. If there exist u and t′

where eval(u) is called at t′ and t = t′ + d(u, v) then, using eagerness, eval(v)
is called at t. Conversely, if eval(v) is called at t, from the program there exist
u and t′ such that eval(u) is called at t′ and t = t′ + d(u, v) 2

This theorem has established that all elements of dist(v), for any v, will
eventually be added to ch(v). But it has not established that they will be
added in order. We need to execute the program at a single client so that we
can establish this result using the monotonicity condition.

Theorem 8 Given that the program is executed at a single client, every channel
contains items in order.
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Proof: An item is added to channel ch(v) only through eval(v). From Theo-
rem 7, if item t is added to ch(v) it is added at virtual time t. Further, the
recording step on ch(v) consumes 0 virtual time. So, item t is stored in the
channel by virtual time t. From the monotonicity condition, Section 3 (page 8),
if the program is executed at a single client, items are stored in order of virtual
times, and, hence, in order of their values. 2

From Theorems 7 and 8, the length of the shortest path from source to sink,
if there is one, is eventually added to ch(sink) as its first item.

A Appendix: Proof of Lemma 1

Lemma 1: Network traces satisfy the conditions on traces, i.e.,

1. Tx is a network trace implies T is a network trace, and for all z, where
z ≺ x, z ∈ T .

2. Txy is a network trace and Ty is not a network trace implies x ≺ y.

Proof of (1): Given that Tx is a network trace, from the definition of network
trace, we first conclude that (Tx)u is a trace of u, for every entity u. Now, Tu

is a prefix of (Tx)u. From prefix closure for u, Tu is a trace of u. Next, Tx is a
network trace; so, for any event in Tx all its precedents come before it in Tx.
Therefore, for any event in T all its precedents come before it in T . Combining
these two results, T is a network trace and for all z, where z ≺ x, z ∈ T .

Proof of (2): We have to show:

(Ty)u is a trace of u for every entity u, and (2.1)

For any event in Ty all its precedents come before it in Ty. (2.2)

Proof of (2.1): Let y be an event of entity w. First, we prove that (Ty)u is a
trace of u for every entity u, u 6= w. Since Txy is a network trace, its prefix T

is a network trace, from Proof of (1). So, Tu is a trace of u. And, (Ty)u = Tu.
Next, we show that (Ty)w = Twy is a trace of w. Consider two cases.

Case 1) x is an event of w: Since Txy is a network trace (Txy)w = Twxy is
a trace of w. We have x 6≺ y in the network; hence x 6≺ y in entity w because
both x and y are events of w. From the trace condition in w, Twy is a trace of w.

Case 2) x is not an event of w: Since Txy is a network trace, (Txy)w = Twy

is trace of w.

Proof of (2.2): Given that Txy is a network trace, for every event in T all
its precedents come before it in T . For y, given that x 6≺ y, all precedents of y

are in T . Therefore, for any event in Ty all its precedents come before it in Ty.

26



B Appendix: Shortest Path Program in Orc

We describe the shortest path program in programming language Orc [12, 8].
Below, we use u for the channel corresponding to node u that is used for record-
ing values of shortest paths to node u. Step u.put(t) appends t to channel
u. Step Vtime() returns the current value of virtual time. It completes in all
cases and consumes no virtual time, i.e., its associated lower and upper bounds
for virtual time consumption are both zero. The symbol >> denotes sequencing.
Calls to Succ(u) returns all pairs (d,v), where v is a successor of node u and
d is the length of the edge from node u to node v. For each returned pair a new
thread consisting of Vwait(d) >> eval(v) is initiated. Execution of Succ(u)
consumes no virtual time.

def eval(u) =

u.put(Vtime()) >>

Succ(u) >(d,v)>

Vwait(d) >> eval(v)

eval(source)
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