
Using Concurrency for Structuring

Jayadev Misra

Department of Computer Science
University of Texas at Austin

http://orc.csres.utexas.edu

Why concurrency?

• To speed up things

• To model an inherently concurrent system

• To structure a system (e.g. operating systems)

Quick Intro to Orc; Parallel Composition

1

:: 1 — publishes1

1 | 2

:: 1 — publishes both1

:: 2 — and 2

Quick Intro to Orc; Sequential Composition

1 >x> x + 3

:: 4

(1 | 2) >x> x

:: 1

:: 2

(1 | 2) ≫ 3

:: 3

:: 3

Quick Intro to Orc; Pruning

x + 1 <x< 1

:: 1

x <x< (1 | 2)

:: 2

val x = (1 | 2)

Example: Fibonacci numbers

def H(0) = (1, 1)

def H(n) =
val (x, y) = H(n− 1)

(y, x + y)

def Fib(n) = H(n) >(x, _)> x

– Goal expression
Fib(5)

Quick Intro to Orc; Otherwise Combinator

1 ; 2

:: 1

stop; 2

:: 2

1 ≫ stop; 2

:: 2

Site

• An Orc program callssitesto carry out some of its work.

• Fundamental Siteif (b), where b is boolean:
publish signal if b is true, silent otherwise.

• if (false) = stop

Subset Sum

Given is a list of positive integersxsand an integern.

Enumerate all sublists ofxs that add up ton.

Enumerate All Solutions to Subset Sum

def sums(0, _) = [] — n = 0

def sums(_, []) = stop — n 6= 0 and xs= []

def sums(n, x : xs) = — n 6= 0 and xs 6= []
if (n > 0) ≫

(sums(n− x, xs) >ys> x : ys | sums(n, xs))

Completing the Program

def enum(n, xs) = sums(n, xs) >ys> Some(ys) ; None()

enum(10, [2, 4, 1, 2, 3])

:: Some([2, 4, 1, 3])
:: Some([4, 1, 2, 3])

Enumerate at most one solution

def sums(0, _) = [] — n = 0

def sums(_, []) = stop — n 6= 0 and xs= []

def sums(n, x : xs) = — n 6= 0 and xs 6= []
if (n > 0) ≫

(sums(n− x, xs) >ys> x : ys | sums(n, xs))

def one(n, xs) = (Some(ys) <ys< sums(n, xs)) ; None()

one(10, [2, 4, 1, 2, 3])

:: Some([2, 4, 1, 3])

The first lexicographic solution

def sum(0, _) = [] — n = 0

def sum(_, []) = stop — n 6= 0 and xs= []

def sum(n, x : xs) = — n 6= 0 and xs 6= []
if (n > 0) ≫

(x : sum(n− x, xs) ; sum(n, xs))

def first(n, xs) = Some(sum(n, xs)) ; None()

first(15, [2, 4, 1, 2, 3])

:: None()

Parsing using Recursive Descent

Consider the grammar:

expr ::= term | term+ expr
term ::= factor | factor ∗ term
factor ::= literal | (expr)
literal ::= 3 | 5

Parsing strategy
For each non-terminal, sayexpr, define expr(xs):
publish all suffixes ofxssuch that the prefix is aterm.

def isexpr(xs) = expr(xs) >[]> true ; false

To avoid multiple publications (in ambiguous grammars),

def isexpr(xs) =
val res= expr(xs) >[]> true ; false
res

isexpr
([”(”, ”(”, ”3”, ” ∗ ”, ”3”, ”)”, ”)”, ” + ”, ”(”, ”3”, ” + ”, ”3”, ”)”])

— ((3*3))+(3+3)

:: true

Function for each non-terminal

Given: expr ::= term | term+ expr
Rewrite: expr ::= term(ǫ | + expr)

def expr(xs) = term(xs) >ys> (ys | ys >“+′′ : zs> expr(zs))

def term(xs) = factor(xs) >ys> (ys | ys >“∗′′ : zs> term(zs))

def factor(xs) = literal(xs)
| xs >“(′′: ys> expr(ys) >“)′′ : zs> zs

def literal(n : xs) = n >“3′′> xs | n >“5′′> xs
def literal([]) = stop

Exception Handling; callback

• A client requests a service from a server.

• Typically, the server fulfills the request.

• Sometimes, server requests authentication.

Exception Handling Program

def request() =
val exc= Buffer() — returns a buffer site

server.req(exc) >v> Some(v)

| exc.get() >r> exc.put(auth(r)) ≫ stop

