
A Few Small Orc Programs

Jayadev Misra

Department of Computer Science
University of Texas at Austin

http://orc.csres.utexas.edu

ETH, Zurich
March 7, 2014

A Orc program

• An experimenttosses two dice.
Experiment is a success if the dice throws sum to 7.

• exp(n) runs n experiments and reports the number of successes.

def toss() = Random(6) + 1
−− tossreturns a random number between 1 and 6

def exp(0) = 0
def exp(n) = exp(n− 1)

+ (if toss() + toss() = 7 then 1 else 0)

2

Translation of the dice throw program

def toss() = add(x, 1) <x< Random(6)
def exp(n) =

(Ift(b) ≫ 0
| Iff (b) ≫

(add(x, y)
<x< (exp(m) <m< sub(n, 1))
<y< (Ift(bb) ≫ 1 | Iff (bb) ≫ 0)

<bb< equals(p, 7)
<p< add(q, r)

<q< toss()
<r< toss()

)

) <b< equals(n, 0)

Note: 2n parallel calls totoss().
3

Orc Calculus

• External sites:

• A site is called like a procedure with parameters.

• Site returns any number of values.

• The value ispublished.

• Combinators

• Definitions

No notion of data type, thread, process, channel,
synchronization, parallelism· · ·

4

Orc Language

• Orc Calculus

• Syntactic Sweeteners

• Data Types: Number, Boolean, String, with Java operators

• Conditional Expression: if E then F else G

• Data structures: Tuple, List, Record

• Pattern Matching; Clausal Definition

• Closure

• Class for active objects

• Site Library

Every Orc language program is translated to Orc calculus.

5

Orc Calculus: Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f dog f >x> g Sequential composition

f | g: Evaluate f and g independently. Publish all values from both.

f >x> g:
For all values published byf do g. Publish only the values fromg.

6

Orc Calculus: Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f dog f >x> g Sequential composition

f | g: Evaluate f and g independently. Publish all values from both.

f >x> g:
For all values published byf do g. Publish only the values fromg.

6

Orc Calculus: Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f dog f >x> g Sequential composition

f | g: Evaluate f and g independently. Publish all values from both.

f >x> g:
For all values published byf do g. Publish only the values fromg.

6

Orc Calculus: Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f dog f >x> g Sequential composition

f | g: Evaluate f and g independently. Publish all values from both.

f >x> g:
For all values published byf do g. Publish only the values fromg.

6

Schematic of Sequential composition

Figure:Schematic off >x> g

7

Sequential composition:f >x> g

For all values published byf do g.
Publish only the values fromg.

• CNN(d) >x> Email(address, x)

• Call CNN(d).
• Bind result (if any) tox.
• Call Email(address, x).
• Publish the value, if any, returned byEmail.

• (CNN(d) | BBC(d)) >x> Email(address, x)

• May call Email twice.
• Publishes up to two values fromEmail.

Notation: f ≫ g for f >x> g, if x is unused ing.

Right Associative: f >x> g >y> h is f >x> (g >y> h)

8

Subset Sum

Given integern and list of integersxs.

parsum(n, xs) publishes all sublists ofxs that sum ton.

parsum(5,[1,2,1,2]) = [1,2,2], [2,1,2]

parsum(5,[1,2,1]) is silent

def parsum(0, []) = []

def parsum(n, []) = stop

def parsum(n, x : xs) =
parsum(n, xs) −− all sublists that do not includex

| parsum(n− x, xs) >ys> x : ys −− all sublists that includex

9

Subset Sum

Given integern and list of integersxs.

parsum(n, xs) publishes all sublists ofxs that sum ton.

parsum(5,[1,2,1,2]) = [1,2,2], [2,1,2]

parsum(5,[1,2,1]) is silent

def parsum(0, []) = []

def parsum(n, []) = stop

def parsum(n, x : xs) =
parsum(n, xs) −− all sublists that do not includex

| parsum(n− x, xs) >ys> x : ys −− all sublists that includex

9

Subset Sum

Given integern and list of integersxs.

parsum(n, xs) publishes all sublists ofxs that sum ton.

parsum(5,[1,2,1,2]) = [1,2,2], [2,1,2]

parsum(5,[1,2,1]) is silent

def parsum(0, []) = []

def parsum(n, []) = stop

def parsum(n, x : xs) =
parsum(n, xs) −− all sublists that do not includex

| parsum(n− x, xs) >ys> x : ys −− all sublists that includex

9

Structure of Orc Expression

• Simple: just a site call,CNN(d)

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition

for all x from f dog f >x> g Sequential composition

→ if f halts without publishing dog f ; g Otherwise

10

Subset Sum (Contd.), Backtracking

Given integern and list of integersxs.

seqsum(n, xs) publishes thefirst sublist of xs that sums ton.

“First” is smallest by index, lexicographically.
seqsum(5,[1,2,1,2]) = [1,2,2]

seqsum(5,[1,2,1]) is silent

def seqsum(0, []) = []

def seqsum(n, []) = stop

def seqsum(n, x : xs) =
x : seqsum(n− x, xs)

; seqsum(n, xs)

11

Structure of Orc Expression

• Simple: just a site call,CNN(d)

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition

for all x from f dog f >x> g Sequential composition

→for somex from g do f f <x< g Pruning

if f halts without publishing dog f ; g Otherwise

12

Pruning: f <x< g

For some value published byg do f .

• Evaluate f and g in parallel.

• Site calls that needx are suspended.
Consider(M() | N(x)) <x< g

• When g returns a (first) value:

• Bind the value tox.
• Kill g.
• Resume suspended calls.

• Values published byf are the values of(f <x< g).

Notation: f ≪ g for f <x< g, if x is unused inf .

Left Associative: f <x< g <y< h is (f <x< g) <y< h

Note: Concurrent computation off , g and h, above.

13

Subset Sum (Contd.), Concurrent Backtracking

Publish thefirst sublist of xs that sums ton.

Run the searches concurrently.

def parseqsum(0, []) = []

def parseqsum(n, []) = stop

def parseqsum(n, x : xs) =
(p ; q)

<p< x : parseqsum(n − x, xs)
<q< parseqsum(n, xs)

Note: Neither search in the last clause may succeed.

14

val; a syntactic sweetener

Write f <x< g as

val x = g
f

15

Deflation

• Given expressionC(..., e, ..), single value expected ate.
Translated toC(..., x, ..) <x< ewhere x is fresh.

• Applicable hierarchically.

(1|2) ∗ (10|100) is translated to

(Times(x, y) <x< (1 | 2)) <y< (10 | 100), or without parentheses
Times(x, y) <x< (1 | 2) <y< (10 | 100)

• Implication:
Arguments of site calls are evaluated in parallel.
Note: A strict site is called when all arguments have been evaluated.

16

Deflation

• Given expressionC(..., e, ..), single value expected ate.
Translated toC(..., x, ..) <x< ewhere x is fresh.

• Applicable hierarchically.

(1|2) ∗ (10|100) is translated to

(Times(x, y) <x< (1 | 2)) <y< (10 | 100), or without parentheses
Times(x, y) <x< (1 | 2) <y< (10 | 100)

• Implication:
Arguments of site calls are evaluated in parallel.
Note: A strict site is called when all arguments have been evaluated.

16

Deflation

• Given expressionC(..., e, ..), single value expected ate.
Translated toC(..., x, ..) <x< ewhere x is fresh.

• Applicable hierarchically.

(1|2) ∗ (10|100) is translated to

(Times(x, y) <x< (1 | 2)) <y< (10 | 100), or without parentheses
Times(x, y) <x< (1 | 2) <y< (10 | 100)

• Implication:
Arguments of site calls are evaluated in parallel.
Note: A strict site is called when all arguments have been evaluated.

16

Parsing using Recursive Descent

Consider the grammar:

expr ::= term | term+ expr

term ::= factor | factor∗ term

factor ::= literal | (expr)

literal ::= 3 | 5

17

Parsing strategy
For each non-terminal, sayexpr, define expr(xs) for string xs:
publish all suffixes ofxssuch that the prefix is aexpr.

def isexpr(xs) = expr(xs) >[]> true ; false

To avoid multiple publications (in ambiguous grammars),

def isexpr(xs) =
val res= expr(xs) >[]> true ; false
res

−− Test

isexpr
([”(”, ”(”, ”3”, ” ∗ ”, ”3”, ”)”, ”)”, ” + ”, ”(”, ”3”, ” + ”, ”3”, ”)”])

−− ((3*3))+(3+3)

:: true

18

Site for each non-terminal

Given: expr ::= term| term+ expr
Rewrite: expr ::= term(ǫ | + expr)

def expr(xs) = term(xs) >ys> (ys| ys > ”+” : zs> expr(zs))

def term(xs) = factor(xs) >ys> (ys| ys > ”*” : zs> term(zs))

def factor(xs) = literal(xs)
| xs > ”(” : ys> expr(ys) > ”)” : zs> zs

def literal(n : xs) = n > ”3” > xs| n > ”5” > xs
def literal([]) = stop

19

Parallel or

Expressionsf and g return single booleans. Compute theparallel or.

Ift(b), Iff (b): booleanb,
Returns asignalif b is true/false; remainssilentotherwise.

val x = f
val y = g

Ift(x) ≫ true | Ift(y) ≫ true | (x || y)

20

Parallel or

Expressionsf and g return single booleans. Compute theparallel or.

Ift(b), Iff (b): booleanb,
Returns asignalif b is true/false; remainssilentotherwise.

val x = f
val y = g

Ift(x) ≫ true | Ift(y) ≫ true | (x || y)

20

Parallel or; contd.

Compute theparallel orand return just one value:

val x = f
val y = g
val z= Ift(x) ≫ true | Ift(y) ≫ true | (x || y)

z

But this continues execution ofg if f first returns true.

val z=
val x = f
val y = g

Ift(x) ≫ true | Ift(y) ≫ true | (x || y)
z

21

Parallel or; contd.

Compute theparallel orand return just one value:

val x = f
val y = g
val z= Ift(x) ≫ true | Ift(y) ≫ true | (x || y)

z

But this continues execution ofg if f first returns true.

val z=
val x = f
val y = g

Ift(x) ≫ true | Ift(y) ≫ true | (x || y)
z

21

Mutable Store: Some Factory Sites

Ref(n) Mutable reference with initial valuen
Array(n) Array of sizen of Refs
Semaphore(n) Semaphore with initial value n
Channel() Unbounded (asynchronous) channel
Table(n,f) Array of sizen of immutable values off

Ref(3) >r> r.write(5) ≫ r.read(), or Ref(3) >r> r := 5 ≫ r?

Array(3) >a> a(0) := true ≫ a(1)?

Semaphore(1) >s> s.acquire() ≫ Println(0) ≫ s.release()

Channel() >ch> (ch.get() | ch.put(3) ≫ stop)

val ch= Table(10, lambda(_) = Channel())

22

Exception Handling

Client calls siteserver to request service.
The server “may” request authentication information.

def request(x) =
val exc= Channel() −− returns a channel site

server(x, exc)
| exc.get() >r> exc.put(auth(r)) ≫ stop

23

Packet Reassembly Using Sequence Numbers

Figure:Packet Reassembler

• Packet with sequence numberi is at position pi in the input channel.

• Given: |i − pi | ≤ k, for some positive integerk.

• Then pi ≤ i + k ≤ pi+2×k. Let d = 2× k.

24

Packet Reassembly Program

def reassembly(read, write, d) = −− d must be positive

val ch= Table(d, lambda(_) = Channel())

def input() = read() >(n, v)> ch(n%d).put(v) ≫ input()

def output(i) = ch(i).get() >v> write(v) ≫ output((i + 1)%d)

input() | output(0) −− Goal expression

Note: n%d is n modd.

25

Depth-first search of undirected graph
Recursion over Mutable Structure

N: Number of nodes in the graph.

conn: conn(i) the list of neighbors of nodei, 0 ≤ i < N

parent: Mutable array of lengthN.
parent(i) = v, v ≥ 0, meansv is the parent node ofi
parent(i) < 0 means parent ofi is yet to be determined

Once i has a parent, it continues to have that parent.

Start Depth-first search from node 0.
parent(0) = N

26

Invariant

dfs(i, xs): starts a depth-first search from all nodes inxs in order,

i already has a parent ori = N.

xs⊆ conn(i), i.e., xs is some set of neighbors ofi.

All neighbors of i not in xsalready have parents.

27

Depth-first search

val N = 6 −− N is the number of nodes in the graph
val parent= Table(N, lambda(_) = Ref(−1))

def dfs(_, []) = signal

def dfs(i, x : xs) =

if (parent(x)? ≥ 0) then dfs(i, xs)

else parent(x) := i ≫ dfs(x, conn(x)) ≫ dfs(i, xs)

dfs(N, [0]) −− start depth-first search from node 0

28

Quicksort

• In situ permutation of an array.

• Array segments are simultaneously sorted.

• Partition of an array segment proceed from left and right simultaneously.

• Combine Concurrency, Recursion, and Mutable Data Structures.

Traditional approaches

• Pure functional programs do not admit in-situ permutation.

• Imperative programs do not highlight concurrency.

• Typical concurrency constructs do not combine well with recursion.

29

Program Structure

• array a to be sorted.

• segmentsort(u, v) sorts the segmenta(u)..a(v − 1) in place and
publishes a signal.

• To sort the whole array:segmentsort(0, a.length?)

30

Program Structure; Contd.
• part(p, s, t) partitions segment(s, t) with elementp. Publishesm

where:

left subsegment: a(i) ≤ p for all i, s≤ i ≤ m, and
right subsegment: a(i) > p, for all i, m < i < t.

• Assumea(s)? ≤ p, so the left subsegment is non-empty.

def swap(i, j) = (i?, j?) >(x, y)> (i := y, j := x) ≫ signal

def quicksort(a) =
def segmentsort(u, v) =

if v− u > 1 then
part(a(u)?, u, v) >m>
swap(a(u), a(m)) ≫

(segmentsort(u, m), segmentsort(m + 1, v)) ≫ signal
else signal

segmentsort(0, a.length?)

31

Partition segment(s, t) with elementp, given a(s) ≤ p

• lr (i) publishes the index of the leftmost item in the segment that exceeds
p; publishes t if no such item.

• rl(i) publishes the index of the rightmost item that is less than orequal
to p. Since a(s) ≤ p, item exists.

def lr (i) = Ift(i <: t) ≫ Ift(a(i)? ≤ p) ≫ lr (i + 1) ; i

def rl(i) = Ift(a(i)? :> p) ≫ rl(i − 1) ; i

Goal Expression ofpart(p, s, t):

(lr (s+ 1), rl(t − 1)) >(s′, t′)>
(if (s′ < t′) then swap(a(s′), a(t′)) ≫ part(p, s′, t′)
else t′)

32

Putting the Pieces together: Quicksort

def swap(i, j) = (i?, j?) >(x, y)> (i := y, j := x) ≫ signal

def quicksort(a) =
def segmentsort(u, v) =

def part(p, s, t) =
def lr (i) = Ift(i < t) ≫ Ift(a(i)? ≤ p) ≫ lr (i + 1) ; i
def rl(i) = Ift(a(i)? :> p) ≫ rl(i − 1) ; i #

(lr (s+ 1), rl(t − 1)) >(s′, t′)>
(if (s′ < t′) then swap(a(s′), a(t′)) ≫ part(p, s′, t′)
else t′) #

if v− u > 1 then
part(a(u)?, u, v) >m>
swap(a(u), a(m)) ≫

(segmentsort(u, m), segmentsort(m + 1, v)) ≫ signal
else signal

segmentsort(0, a.length?)
33

Class: Pure Rendezvous

def class pairSync() =
val s= Semaphore(0)
val t = Semaphore(0)

def put() = s.acquire() ≫ t.release()
def get() = s.release() ≫ t.acquire()

stop

34

Rendezvous with Data Transfer

def class zeroChannel() =
val s= Semaphore(0)
val w = BoundedChannel(1)

def put(x) = s.acquire() ≫ w.put(x)
def get() = s.release() ≫ w.get()

stop

35

Class: Readers-Writers

• Readers and Writers need access to a shared file.

• Any number of readers may read the file simultaneously.

• A writer needs exclusive access.

36

Readers-Writers API

• A reader callsstart(true), writer start(false) to gain access.

• The system (class) returns a signal to grant access.

• Both readers and writers callend() on completion of access.

• start(· · ·) is blocking, end() non-blocking.

37

Implementation Strategy

• Each call tostart is queued with the id of the caller.

• A managerloops forever, maintaining the invariant:
There is no active writer (no writer has been granted access).
Number of active readers =na.value, where na is a counter.

• On each iteration,managerpicks the next queue entry.
If a reader: grant access and incrementna.
If a writer:
wait until all readers complete (na’s value = 0),
grant access to writer,
wait until the writer completes.

38

Implementation Strategy; Callback

• The id assigned to a caller is a new semaphore.

• A request is(b, s): b boolean,ssemaphore.
b = true for reader,b = falsefor writer,
each caller waits ons.acquire()

• The manager grants a request by executings.release()

39

Reader-Writer; Call API

val req= Channel()
val na= Counter()

def startread() =
val s= Semaphore(0)
req.put((true, s)) ≫ s.acquire()

def startwrite() =
val s= Semaphore(0)
req.put((false, s)) ≫ s.acquire()

def endread() = na.dec()

def endwrite() = na.dec()

40

Reader-Writer; Main Loop

def manager() = grant(req.get()) ≫ manager()

def grant((true, s)) = na.inc() ≫ s.release() −− Reader

def grant((false, s)) = −− Writer
na.onZero() ≫ na.inc() ≫ s.release() ≫ na.onZero()

41

Putting the pieces together: Reader-Writer

def class readerWriter1() =
val req= Channel() val na= Counter()

def startread() = val s= Semaphore(0)
req.put((true, s)) ≫ s.acquire()

def startwrite() = val s= Semaphore(0)
req.put((false, s)) ≫ s.acquire()

def endread() = na.dec()
def endwrite() = na.dec()

def grant((true, s)) = na.inc() ≫ s.release() −− Reader

def grant((false, s)) = −− Writer
na.onZero() ≫ na.inc() ≫ s.release() ≫ na.onZero()

def manager() = grant(req.get()) ≫ manager()

manager()
42

Callback using one semaphore each for Readers and Writers

def class readerWriter2() =
val req= Channel()
val na= Counter()
val (r, w) = (Semaphore(0), Semaphore(0))

def startread() = req.put(true) ≫ r.acquire()
def startwrite() = req.put(false) ≫ w.acquire()

def endread() = na.dec()
def endwrite() = na.dec()

def grant(true) = na.inc() ≫ r.release() −− Reader

def grant(false) = −− Writer
na.onZero() ≫ na.inc() ≫ w.release() ≫ na.onZero()

def manager() = grant(req.get()) ≫ manager()

manager()

43

Reader-Writer; dispense with the queue

• Dispense with the queue.
Introduce a class that keepsnr and nw, counts of readers and writers.

• Calling put(true/false) increments the appropriate count.

• Calling get() decrements a count and returnstrue/false.

• Simulate fairness forget, as in removing from a channel.
If nr? > 0, nr? is eventually decremented.
If nw? > 0, nw? is eventually decremented.

Use coin toss to simulate fairness.

44

Real time: Metronome
External siteRwait(t) returns a signal aftert time units.
metronomepublishes asignal every time unit.

def metronome() = signal
︸ ︷︷ ︸

S

| (Rwait(1) ≫ metronome()
︸ ︷︷ ︸

R

)

S R

S R

45

Unending string of Random digits

metronome() ≫ Random(10) −− one every unit

def rand_seq(dd) = −− at a specified rate

Random(10) | Rwait(dd) ≫ rand_seq(dd)

46

A time-based class; Stopwatch

• A stopwatch allows the following operations:

start(): (re)starts and publishes a signal

halt(): stops and publishes current value

• Other operations:reset() and isrunning().

47

Application: Measure running time of a site

def class profile(f) =
val sw= Stopwatch()

def runningtime() = sw.start() ≫ f () ≫ sw.halt()

stop

−− Usage
def burntime() = Rwait(100)

profile(burntime).runningtime()

48

Response Time Game

• Show a random digit,v, for 3 secs.

• Then print an unending sequence of random digits.

• The user presses a key when he thinks he seesv.

• Output (true, response time), or (false, _) if v has not appeared.
Then end the game.

49

Response Game: Program

val sw= Stopwatch()
val (id, dd) = (3000, 100) −− initial delay, digit delay
def rand_seq() = −− Publish a random sequence of digits

Random(10) | Rwait(dd) ≫ rand_seq()
def game() =

val v = Random(10) −− v is the seed for one game
val (b, w) =

Rwait(id) ≫ sw.reset() ≫ rand_seq() >x> Println(x) ≫

Ift(x = v) ≫ sw.start() ≫ stop

| Prompt("Press ENTER for SEED "+v) ≫

sw.isrunning() >b> sw.pause() >w> (b, w)

if b then −− Goal expression ofgame()
("Your response time = " +w + " milliseconds.")

else ("You jumped the gun.")
game()

50

Shortest Path Algorithm with Lights and Mirrors

• Source node sends rays of light to each neighbor.

• Edge weight is the time for the ray to traverse the edge.

• When a node receives its first ray, sends rays to all neighbors.
Ignores subsequent rays.

• Shortest path length= time for sink to receive its first ray.
Shortest path length to nodei = time for i to receive its first ray.

51

Graph structure inSucc()

u

x y z

2 1 5

Figure:Graph Structure

Succ(u) publishes(x, 2), (y, 1), (z, 5).

52

Algorithm

def eval(u, t) = record valuet for u ≫

for every successorv with d = length of (u, v) :
wait for d time units ≫

eval(v, t + d)

Goal : eval(source, 0) |
read the value recorded for thesink

Record path lengths for nodeu in FIFO channelu.

53

Algorithm(contd.)
def eval(u, t) = record valuet for u ≫

for every successorv with d = length of (u, v) :
wait for d time units ≫

eval(v, t + d)

Goal : eval(source, 0) |
read the value recorded for thesink

———————————-
A cell for each node where the shortest path length is stored.

def eval(u, t) = u := t ≫

Succ(u) >(v, d)>
Rwait(d) ≫

eval(v, t + d)

{- Goal :-} eval(source, 0) | sink?

54

Algorithm(contd.)

def eval(u, t) = u := t ≫

Succ(u) >(v, d)>
Rwait(d) ≫

eval(v, t + d)

{- Goal :-} eval(source, 0) | sink?

• Any call to eval(u, t): Length of a path from source tou is t.

• First call to eval(u, t): Length of the shortest path from source tou is t.

• evaldoes not publish.

55

Drawbacks of this algorithm

• Running time proportional to shortest path length.

• Executions ofSucc, put and getshould take no time.

56

