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Preface

For every complex problem, there is a solution that is simple, neat and
wrong, so noted H. L. Mencken.1 It is with great trepidation, therefore, that
I propose a simple, and mostly neat, solution for designing distributed ap-
plications. The solution consists of an object-oriented programming model
that imposes a strict discipline on the form of the constituent objects and
interactions among them. Additionally, concerns of concurrency are elim-
inated from the model and introduced only during implementation. The
programmers do not have to deal with concurrency explicitly, and that, I
believe, is essential for effective concurrent programming.
There are several ways to gain productivity in programming, especially,

multiprogramming. First, avoid programming; instead reuse components
from a program library whenever possible. Second, employ automatic tools
—program analyzers, static type-checkers, performance profilers— that en-
hance productivity. Third, adopt programming methodologies —structured
programming, code walk-throughs, unit testing, rapid prototyping, etc.—
that have been known to reduce design errors. The theories and design
principles that contribute to productivity in specification, abstraction and
modularization are developed in this book. It has been the guiding prin-
ciple of my career in education and research to ensure that well-trained
professionals are considerably more effective than inspired amateurs. The
goal of this book is to widen the gap.

1Prejudices, second series (1920).
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A programming model is introduced in chapters 2 and 3. Chapter 2
describes action systems, in which a set of actions is executed fairly in ar-
bitrary order. These systems are relatively easy to analyze, partly because
executions of different actions are never concurrent. Chapter 3 enhances the
model in which a program consists of components, each an action system,
and the components communicate through procedure calls. Each compo-
nent resembles an object in object-oriented programming. Chapter 4 con-
tains a number of examples that illustrate various aspects of the model and
demonstrates that a few simple constructs are adequate for programming
a variety of concurrent applications. One notable class of such applications
is transaction processing [78]. Chapters 5 through 9 describe a logic for the
analysis of programs and their compositions. The logic is quite effective,
so that it is often cheaper to prove than to argue! That is, a well designed
proof is no longer than a convincing informal argument. A notion of com-
patibility among pairs of actions is defined in chapter 10. A theorem proved
in chapter 10 shows (roughly) that concurrent executions of compatible
actions are equivalent to some serial executions of these actions; this the-
orem permits implementations in which compatible actions are executed
concurrently, whereas the programming model simplifies the design task
by restricting the program executions to the sequential ones. Chapter 11
shows an implementation scheme on a platform of message-communicating
processors. Chapter 12 describes a logic for the object model of chapter 3.
Most of the chapters have a small amount of theory and a large number

of examples. The examples help illustrate the application of the theory;
additionally, the reader may appreciate the succinctness of the solutions
(which have worked as reality checks in my research). The examples are
mostly the standard ones from the literature: communications over bounded
and unbounded channels, maintaining a database, implementing a caching
strategy, mutual exclusions and synchronizations, resource allocation, etc.
These are now standard design patterns in software construction. Many
of them are so standard —mutual exclusion, for instance— that they have
been integrated into operating systems and even into hardware. The reason
for choosing these well known examples is to avoid the cost —pages of
explanation, patience of the reader— of introducing new examples. The
choice of examples makes it possible to compare solutions in this book
with other solutions in the literature. However, the more important reason
for choosing these examples is that they embody the kinds of problems that
programmers typically encounter in practice.
The most important omission in this book is empirical support for some

of the claims I like to have made on ease of programming and efficiency of
program execution. Though my students and I have applied our model to
a variety of examples, we cannot honestly assert (though we believe) that
telephony software, for instance, will be simplified significantly by using our
methods. Such a claim can be validated by a team of programmers working
over an extended period, a facility we do not have. We have implemented
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two versions of the programming system (using C++ and Java as the base
languages), but we do not have an extensive set of performance data to
evaluate the efficiency of the implementations.
The material in this book draws upon a large body of research in object-

oriented programming, database transaction processing, communicating
process theory, and action systems. I do not expect the reader to be fa-
miliar with all, or any, of these areas. In fact, very little background is
assumed of the reader. Familiarity with basic concepts in concurrent pro-
gramming, which are covered in a typical undergraduate-level course in
operating systems, will help, though all concepts and examples are ex-
plained to the extent required to follow the arguments in the book. All of
the formal material used in this book is developed here; little background
beyond basic predicate calculus (which is summarized in the Appendix) is
required to understand and appreciate the power of formal manipulations.
This book can be used in a graduate-level research course in computer

science. Additionally, I hope researchers and computing practitioners will
find the ideas worthy of serious consideration.

Acknowledgments

I owe a huge debt to my students, former students and associates: Will
Adams, Flemming Andersen, Al Carruth, Ernie Cohen, David Goldschlag,
Rajeev Joshi, Markus Kaltenbach, Edgar Knapp, Jacob Kornerup, Josyula
R. Rao, Steve Roberts, Ambuj Singh, and Mark Staskauskas. Will Adams
and Rajeev Joshi have contributed directly to this book through their
Ph.D. works. Works of Ernie Cohen and Josyula R. Rao were instrumental
in the development of the programming model. I am indebted to Edsger W.
Dijkstra for being a colleague, friend, critic, and mentor, excelling in each
of these roles. My interactions with C.A.R. Hoare have contributed to the
refinement of the model; the idea of pre-procedure is inspired by a similar
construct in CSP [91]. I am grateful to Lorenzo Alvisi, Don Batory, Robert
Blumofe, Gruia-Catalin Roman, Edsger W. Dijkstra, Rutger M. Dijkstra,
C.A.R. Hoare, Rajeev Joshi, Edgar Knapp, Rustan Leino, Pete Manolios,
Peter McCann, Doug McIlroy, Greg Nelson, Vijaya Ramachandran, Harrick
Vin, the PSP Research Group in Austin, the Eindhoven Tuesday After-
noon Club, especially Wim Feijen, and the Distributed Systems Reading
Group at the Technische Universität München, especially Ingolf Krüger,
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1
A Discipline of Multiprogramming

1.1 Wide-Area Computing

The main software challenge in developing application programs during the
1960s and the 1970s was that the programs had to operate within limited
resources, i.e., slow processors, small memories, and limited disk capacities.
Application programming became far more widespread during the 1980s be-
cause of the falling prices of hardware (which meant that more processing
power and storage were available for the same cost) and a better under-
standing of the application programming process. However, most applica-
tions still ran on mainframes or over a cluster of machines in a local-area
network; truly distributed applications that ran over wide-area networks
were few because of the latency and bandwidth limitations of long-haul
communication. The 1990s saw great strides in broad-band communica-
tion, and the World Wide Web provides a giant repository of information.
This combination promises development of a new generation of distributed
applications, ranging from mundane office tasks —e.g., planning a meeting
by reading the calendars of the participants— to real-time distributed con-
trol and coordination of hundreds of machines —e.g., as would be required
in a recovery effort from an earthquake.1

The obvious problems in applications design that are related to the char-
acteristics of wide-area communication are security and fault-tolerance.

1I am indebted to my colleague Harrick Vin for this example and extensive discussions
on related topics.
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These issues were present even when most computing was done on a single
processor, but they have been magnified because messages can be inter-
cepted more easily over a wide-area network, and it is more likely that some
node will fail in a 1,000-node network. We contend that growth in appli-
cations programming is hindered only slightly by these technical problems;
the crucial barrier is that distributed application design is an extremely
difficult task because it embodies many of the complexities associated with
concurrent programming.
The distributed applications we envisage have the structure that they

collect data from a number of sources, compute for a while, and then dis-
tribute the results to certain destinations. This simple paradigm hides a
multitude of issues. When should an application start executing— when
invoked by a human, by another application, periodically, say, at midnight,
or triggered by an event, say, upon detection of the failure of a communica-
tion link? How does an application ensure that the data it accesses during a
computation is not altered by another concurrently executing application?
How do communicating parties agree on the structure of the data being
communicated? How are conflicts in a concurrent computation arbitrated?
In short, the basic issues of concurrent computing, such as exclusive access
to resources, deadlock, and starvation, and maintaining consistent copies
of data, have to be revisited in the wide-area context.
One set of issues arises from the current structure of the World Wide

Web. The Web sites are designed today under the assumption that their
users are humans, not machines. Therefore, the sites are suitable for nav-
igation by humans, and the browsers make it pleasant —by permitting
clicks on hyper-links, for instance— for humans to visit related sites from a
given site. The emphasis on human interaction has made it difficult, unfor-
tunately, for machines to extract data from one or more sites, compute, and
distribute the results to a number of users. For instance, given a database
of news sites, it is not easy to “display all stories about cyclones published
in the last 3 days”. Given that professors in a department produce a grade
sheet for each course they teach, it is currently a major effort to collate this
information and produce the grade sheets for all students. Nor is it easy to
arrange a meeting of professors all of whose calendars are available online.

Proposal for a programming model
There seems to be an obvious methodology for designing distributed appli-
cations: represent each device (computer, robot, a site in the World Wide
Web) by an object and have the objects communicate by messages or by
calling each others’ methods. This representation maps conveniently to the
underlying hardware, and it induces a natural partition on the problem that
is amenable to stepwise refinement. We start with this model as the basis,
and simplify and enhance it so that it is possible to address the concurrent
programming issues.
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The current view of wide-area programming typically requires a human
being to invoke a method, and the method provides its results in a form
suitable for human consumption. A program that runs each week to plan
a meeting of a set of professors —by scanning their calendars, reserving a
room for that time, and notifying the affected parties— is quite cumber-
some to design today (see the example in section 1.2). Such programs that
run autonomously based on certain conditions —once a week, whenever
a grade is posted for a student, or when the stock market crashes— are
called actions in this book. The coding of methods and actions are essen-
tially identical, and we treat them similarly in the programming model.
We espouse a more elaborate view of methods (and actions) that is ap-

propriate for wide-area computing. It may not always be possible for a
method to be executed because the state of the object may not permit it.
Such is the case for a P -method on a semaphore [58] when the semaphore
value is zero, or a monitor [90] procedure that is called to remove an item
from a buffer when the buffer is empty. The traditional approach then is to
queue the caller, accept calls on other methods that may change the object
state, and complete a queued call only when the object state permits it.
Therefore, it is possible for a caller to be queued indefinitely.
We adopt a different approach: a call should be accepted by a method

only if its completion is guaranteed, and rejected otherwise; a rejected caller
may attempt its call in the future. Callers are not queued, and each caller
is guaranteed a response from the called procedure in finite time.
The programming model proposed in this book and the associated theory

have been christened Seuss. The major goal of Seuss is to simplify multi-
programming2. To this end, we separate the concern of concurrent imple-
mentation from the core program design problem. A program execution is
understood as a single thread of control —sequential executions of actions
that are chosen according to some scheduling policy— yet program imple-
mentation permits concurrent executions of multiple threads (i.e., actions).
As a consequence, it is possible to reason about the properties of a program
from its single execution thread, whereas an implementation may exploit
the inherent concurrency for efficient execution. A central theorem estab-
lishes that multiple execution threads implement single execution threads;
i.e., for any concurrent execution of actions there exists an equivalent serial
execution of those actions.
The programming model is minimal; all well-known constructs of con-

current programming —process, message communication, synchronization,
rendezvous, waiting, sharing, and mutual exclusion— are absent. However,
the built-in primitives are powerful enough to encode all known communi-
cation and synchronization protocols succinctly. The fundamental concepts

2We use the terms “multiprogramming” and “concurrent programming” synony-
mously.
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in the model are objects and procedures; a procedure is a method or an
action. No specific communication or synchronization mechanism, except
procedure call, is built in.
Seuss proposes a complete disentanglement of the sequential and con-

current aspects of programming. We expect large sections of concurrent
programs to be designed, understood, and reasoned about as sequential
programs. A concurrent program merely orchestrates executions of its con-
stituent sequential programs, by specifying the conditions under which each
sequential program is to be executed.

1.2 An Example: Planning a Meeting

To illustrate the intricacies of concurrent programming and motivate dis-
cussion of the programming model, we consider a small though realistic
example.

1.2.1 Problem description
Professors in a university have to plan meetings from time to time. Each
meeting involves a nonempty set P of professors; the meeting has to be
held in one of a specified set R of rooms. A meeting can be held at time t
provided that all members of P can meet at t and some room in R is free
at t. Henceforth, time is a natural number and each meeting lasts one unit
of time. The calendar of professor p can be retrieved by calling procedure
p.next with a time value as argument: p.next(t) is the earliest time at or
after t when p can meet. Similarly, for room r, r.next(t) is the earliest time
at or after t when r is free. Thus, p.next(t) = t denotes that p can meet at
t, and there is a similar interpretation of r.next(t) = t.
Our goal is to write a procedure plan that returns the earliest meeting

time within an interval [L,U), where the interval includes L and excludes
U , given P and R as arguments; if no such meeting time exists, that fact is
reported. Once a suitable meeting time and the associated room are deter-
mined, the calendars of the affected professors and the room are changed to
reflect that they are busy at that time. To this end, each professor or room
x has a procedure x.reserve; calling x.reserve(t) reserves x for a meeting
at t.
A simpler version of this problem appears in [32, section 1.4] and is also

treated in sections 5.5.2 and 6.5.2 of this book. In these versions, room
allocation is not a constraint. In the current version, professors impose a
universal constraint —all professors in P have to meet at the scheduled
time— and the rooms impose an existential constraint —some room in R
should be free then.
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1.2.2 Program development
Assume that rooms are represented by integers so that they can be numer-
ically compared. Also, for any professor or room x, x.next is ascending and
monotonic; i.e., for all times s and t,

t ≤ x.next(t), and
s ≤ t ⇒ x.next(s) ≤ x.next(t) .

See section 5.5.2 for a discussion of these requirements.

Notation The notations for arithmetic and boolean expressions used in
this example are explained in appendix A.2.1. In this section

〈∀x : x ∈ P : t = x.next(t)〉
means that all professors in P can meet at t,

〈∃y : y ∈ R : t = y.next(t)〉
means that some room in R is free at t,

〈max p : p ∈ P : p.next(t)〉
is the maximum over all p in P of p.next(t), and

〈min y : y ∈ R ∧ t = y.next(t) : y〉
is the smallest (numbered) room in R that is free at t.
The value of the expression is ∞ if no room is free at t. ✷

Define time t to be a common meeting time (abbreviated to com) if all
professors in P can meet and some room in R is free at t. That is,

com(t) ≡
〈∀x : x ∈ P : t = x.next(t)〉 ∧ 〈∃y : y ∈ R : t = y.next(t)〉.

Note that,

〈∀x : x ∈ P : t = x.next(t)〉 ≡ (t = 〈max p : p ∈ P : p.next(t)〉).
Similarly,

〈∃y : y ∈ R : t = y.next(t)〉 ≡ (t = 〈min r : r ∈ R : r.next(t)〉).
Therefore,

com(t) ≡
t = 〈max p : p ∈ P : p.next(t)〉 ∧ t = 〈min r : r ∈ R : r.next(t)〉.

In the following procedure, variable t is repeatedly assigned values of the
expressions in the two given conjuncts of com(t) (in a specific order, though
any order would do) until com(t) holds or t falls outside the interval [L,U).
If there is a common meeting time in [L,U), then t is set to the earliest
such time and r to a room in R that is free at t. If there is no such time
in [L,U), t is set to a value above the interval, i.e., t ≥ U ; the value of r is
then irrelevant. We assert without proof that L ≤ t is an invariant of the
main loop in procedure plan given next.
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————————————
procedure plan(P ,R,L,U , t , r)

t := L;
while ¬com(t) ∧ t < U do
t := 〈max p : p ∈ P : p.next(t)〉;
t := 〈min r : r ∈ R : r.next(t)〉

enddo ;
{(L ≤ t) ∧ (com(t) ∨ t ≥ U)}

if t < U then {com(t) ∧ L ≤ t < U}

{reserve the professors in P at t}
for p ∈ P do p.reserve(t) endfor ;

{find a room in R and reserve it at t}
r := 〈min y : y ∈ R ∧ t = y.next(t) : y〉;
r.reserve(t)

endif
end {plan}
————————————

1.2.3 Correctness and performance of plan
There are two ways to look at the correctness question: (1) plan is correct if
none of the calendars (of the professors or the rooms) is changed during its
execution by another program, and (2) plan is correct even when the cal-
endars are changed during its execution. The first proposition, sequential
correctness, is considerably easier to establish. For the current discussion,
sequential correctness is not the central issue. There are well-known meth-
ods to establish such results; we refer the reader to sections 5.5.2 and 6.5.2
of this book for a thorough treatment of a variation of this problem. 3

The second problem listed, correctness under concurrent execution, is
very hard. Procedure plan may not work correctly if the calendar for some
member of P or R is changed during its execution. In particular, concurrent
executions of two instances of plan may reserve a room (or a professor) for
two meetings simultaneously.
The problem is eliminated if each instance of plan gains exclusive access

to the shared data, by explicitly locking the calendars of the members of P

3Correctness arguments can be based on the following facts: (1) any common meeting
time in the interval [L, U) is at least t (therefore, if plan returns such a time, t is the
earliest common meeting time), and (2) if ¬com(t) ∧ t < U holds, t will be increased
eventually (therefore, either a common meeting time will be found or t ≥ U will hold).
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and R before it commences execution. A more sophisticated strategy is to
employ two-phase locking [20, 67]: all locks are acquired before any unlock-
ing. Additionally, if the locks are acquired in a specific order, deadlock can
be avoided. The programmer can introduce explicit locks into the code, or
a compiler can insert them. Another possible protocol is as follows: each
professor or room tentatively commits to a time whenever next is invoked
and a commitment becomes permanent when reserve is invoked.
To execute several instances of plan concurrently, we can also exploit

some of the properties of the program. For instance, if two instances of
plan have disjoint sets of professors and disjoint sets of rooms or disjoint
intervals [L,U), their executions are non-interfering, and they can be ex-
ecuted concurrently. A more sophisticated scheme is to run exactly one
iteration of the loop in each invocation of plan; if the iteration finds a com-
mon meeting time, then the rest of the procedure is executed to reserve the
room and the professors and inform the caller; if no such time is found and
t < U after an iteration, then the call is rejected, i.e., the caller is asked
to retry the call in the future. Thus, each call of plan locks the required
data for only one iteration. Successive calls to plan may start with differ-
ent calendars, and the requirement of the earliest meeting time may have
to be replaced with any meeting time. However, such strategies are prob-
lem dependent; we cannot expect a program analyzer to deduce program
properties and implement such strategies automatically.

1.3 Issues in Multiprogram Design

1.3.1 Concurrency is not a primary issue in design
We espouse the thesis that programmers should be concerned primarily
with the problems they are solving and only secondarily with the imple-
mentation issues, such as concurrency. We have advocated this thesis for
a number of years and demonstrated it in a number of examples in [32].
We continue to advocate that explicit concurrency considerations do not
belong in program design, at least not in the early stages. A concurrent
program should be designed as if each component in it will be executed
in isolation; all other programs in the universe are suspended in favor of
the executing component, and all state changes are attributable to this
component alone.
The immediate consequence of this suggestion is that concurrent pro-

gramming is now a vastly simpler task. Unfortunately, it is also a vastly
impractical task because of severe degradation in performance. We exam-
ine these two issues next —correctness in this section and performance in
section 1.3.3.
As we argued in section 1.2.3, correctness is much easier to establish if

each component of a program is executed in isolation. In this book, the
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unit of uninterrupted execution, called an action, is a sequential program.4

If several actions have to be executed, they are executed in arbitrary, but
serial, order; i.e., their internal steps are never interleaved. Thus, execution
of an action completes before another is started.
Correctness of an individual action is established using traditional theo-

ries. An action is specified by a pair of predicates, its pre-condition and
post-condition, and its correctness criterion is as follows: starting in a
state where the pre-condition holds, execution of the action terminates
in a state where the post-condition holds. (Termination is discussed later.)
This aspect of programming and proof theory is in the domain of sequen-
tial programming, and we have little to say about it in this book. We are
concerned largely with how to compose programs from objects and ob-
jects from procedures. We develop notations, methodology, and logic for
designs of such programs. Correctness of a program can be deduced from
the specifications of its constituent actions using some flavor of tempo-
ral logic [32, 118, 127, 128, 138, 139]; we develop an enhanced version of
UNITY logic [32] in this book.
The constraint on executions of actions —execution of an action com-

pletes before another is started— has the consequence that “waiting” is
now a meaningless concept. Since an action is executed alone, it cannot
wait for another action to establish a condition for continuation of its exe-
cution. A process may wait neither to receive data along its input channel
nor for a resource that it has requested to be granted; queuing up for a
semaphore is a fruitless activity. Rendezvous-based communication that
requires simultaneous participations of a sender and a receiver is outside
our programming model. Our actions are all wait-free. Further, if an action
is executed forever, it prevents execution of every other action. Therefore,
execution of each action must be guaranteed to terminate (when started in
an appropriate state). Termination guarantee is part of sequential correct-
ness and is an obligation on the programmer. Our concern, therefore, is to
develop a theory of programs consisting of wait-free, terminating actions.

1.3.2 Structuring through objects, not processes
The unit of abstraction in a typical concurrent program is a process. Pro-
cesses are executed autonomously and concurrently, and they communicate
with each other either through global shared variables or messages. Our
model —a program is a set of wait-free, terminating actions— admits a
different style of structuring, consisting of objects, and process communi-
cation is replaced by method call.

4An action can be a parallel program as long as its semantics can be specified by a
pre-condition and a post-condition.
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A program consists of a set of objects. Each object includes a set of pro-
cedures, where a procedure is either a method or an action. Actions and
methods are similar; the only difference is that an action is executed au-
tonomously, while a method is executed when it is called, as p.next and
r.next are executed by being called from plan. The rule for action execution
obeys a weak fairness condition: each action is executed infinitely often.
(Therefore, a program execution is nonterminating, though each compo-
nent action execution terminates.) Execution of a procedure —action or
method— is strictly sequential: if a procedure calls a method of another
object, the caller is suspended and resumes only on completion of the called
method. Recall that completion of each method is guaranteed.
For the meeting planning problem, imagine that each committee of pro-

fessors is represented by an object; this object may include an action that is
executed periodically, say, at the start of each workweek to plan a meeting
for that week. Procedure plan is a method that belongs to another object.
Also, each professor and room is a separate object that includes the meth-
ods next and reserve. Execution of the action in committee initiates a call
to plan, with professors in that committee and a set of appropriate rooms
as arguments. Execution of plan calls on methods next and reserve of pro-
fessor and room objects, as shown earlier. On completion of its execution,
plan returns control to the calling action in committee. That action may
then inform the members of the meeting time and the room (or that no
meeting can be planned for that week).
Observe that there is no need to explicitly lock or unlock the calendars

of the professors and rooms, because at most one instance of plan is exe-
cuting at any moment. The program can be studied entirely as a sequential
program, because concurrency aspects have been excluded during program
design.

1.3.3 Implementation for efficient execution
The suggested execution strategy of one action execution at a time is only
an illusion. The strategy makes it easier to design and understand pro-
grams, but it is totally impractical since it does not permit any concurrent
execution; no two sites in the universe can have programs executing simul-
taneously.5 What we want, ideally, is for the actions of a program to be
executed concurrently for performance reasons, yet for humans to under-
stand the program as if the actions are executed sequentially.
Two actions that are completely independent —i.e., no object is accessed

or modified by both— can be executed simultaneously without causing
interference. The notion of independence can be refined to allow concurrent

5Purists may argue that simultaneity is a meaningless concept in an Einsteinian
universe.
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executions of actions if their executions have the same effect as their serial
executions in some order. In chapter 10, we define a binary relation, called
compatibility, over the procedures and show that concurrent executions of
compatible actions are equivalent to some serial executions of these actions.
Operations P and V on general semaphores are compatible and so are

put and get over unbounded first-in–first-out channels. That is, whenever a
call on get can be accepted, an execution of put before or after get has the
same effect on the program state. However, operations read and write on a
shared file are not compatible, as would be expected; the outcome of a read
may depend on whether a write precedes or follows it. For the planning
problem, p.next and q.next are compatible for all professors and rooms p
and q (including p = q). However, p.next and p.reserve are not compatible
because executing them in different order may yield different outcomes.
Therefore, two invocations of plan cannot be executed concurrently if one
may possibly call p.next and the other p.reserve.
Programmers have been successful in writing concurrent programs be-

cause, we believe, most pairs of actions are compatible. A scheduler can
be employed to ensure that only compatible actions are executed concur-
rently; see an implementation in chapter 11. The programmer need only
specify the pairs of methods in each object that are compatible; an effi-
cient algorithm determines compatibility for all pairs of procedures given
this information. The programmer’s specification may be incomplete; if no
pairs are specified to be compatible, the program is still executed correctly
but with a reduced amount of concurrency. The scheduler in chapter 11
effectively simulates acquisition and release of locks. The scheduler can be
distributed. Other implementation schemes, inspired by database commit
protocols, can also be developed.

1.3.4 Transformational and reactive procedures
What happens when a procedure calls a method to request a resource and
the resource is unavailable, such as attempting to receive a message from
a channel that is empty? The called method can return an exception code
to denote that it cannot be executed successfully. However, this type of
interaction is common enough in concurrent programming that we distin-
guish between methods that always accept calls (execute their codes and,
possibly, return some values) and those that may reject a call (to denote
that the method cannot be executed in the present state). The former are
called total methods and the latter partial methods. This distinction plays
a central role in the programming model as well as in the development of
the theory of concurrent execution.
A procedure in traditional sequential programming —to sort an array

of integers, for instance— is a total method in our model. A procedure
such as a P operation on a semaphore or a get operation on a channel
is a partial method, because P and get can cause a caller to wait. Since
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our model does not admit waiting, partial methods reject a call whenever
completion cannot be guaranteed. In fact, a rejection should happen as
early as possible in the execution of an action. In our model, rejection
takes place before any change in the caller’s state, and rejection itself does
not affect the caller’s state. Therefore, the caller is oblivious to rejection. In
database terminology, rejection is “abort”, and abort, in general, requires
a rollback of the system to a valid state. However, our model avoids this
problem because a call is rejected before causing any state change that
requires rollback.
A rejection represents a transient condition, whereas acceptance repre-

sents a stable condition. In traditional concurrent programming, if a pro-
cess polls its incoming channel and finds it empty, it cannot assert that
it is empty (and, hence, start a computation based on channel emptiness)
because the condition may be falsified even before the start of the compu-
tation.
A total procedure represents a transformational program; a partial pro-

cedure, a reactive program, in the terminology of Manna and Pnueli [127].
We exploit the distinction between total and partial procedures to get a
weaker definition of compatibility (i.e., more pairs of actions are compatible
—hence, more pairs can be executed concurrently— than would be possi-
ble if all methods were regarded as total). See section 3.4.1 for a longer
discussion on partial and total procedures.

1.4 Concluding Remarks

Most process control systems —e.g., telephony, avionics— are conveniently
represented using actions. Even an operating system can be structured in
this manner. Typical actions in an operating system may be for garbage
collection, response to a device failure, and allocation of resources in re-
sponse to a request. A process control system includes actions that receive
and process data from external sources, update internal data structures,
and detect dangerous operating conditions. Each of these actions may in-
volve a large amount of computation, but at the level of program design
it makes sense to regard each action as a unit and design a larger system
based on the units.
Programming of individual actions is a much-studied subject in the arena

of sequential programming. This book contributes little to that effort. The
emphasis in this book is on the compositions of actions and objects. Com-
position is fundamental for designs of complex software systems. Our work
addresses some of the issues in program composition, including specifica-
tions of interfaces, predictions of system properties from the component
properties, and design principles for “safe” compositions of subsystems.
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A programming model is incomplete without an appropriate theory to aid
its user in the analysis of programs. This is particularly true for concurrent
programs because they tend to be harder. An action is often designed
by assuming that the starting state, i.e., its pre-condition, satisfies some
invariant. The obligation of the action is to reestablish the invariant as a
post-condition. Additionally, establishment of progress properties, such as
that execution of each action achieves a certain goal —planning a meeting,
for instance— requires a theory that is more general than the study of
invariants. We propose such a theory in this book.

1.5 Bibliographic Notes

The programming model that most closely resembles the approach pre-
sented here is transaction processing. There is a vast amount of literature
on that subject; we refer the reader to Gray and Reuter [78] for a compre-
hensive survey. Bernstein and Lewis [19] contains a thorough treatment of
concurrency issues in database systems. See Broy [26] for another approach
to designs of distributed applications. Feijen and van Gasteren [69] have
developed a beautiful approach, based on the classic work of Owicki and
Gries [145], for designs of multiprograms, and they illustrate the approach
convincingly on a large number of examples. It is yet to be seen if their
work will scale up for larger problems. Jackson [95] discusses a number of
thought-provoking issues in specification and programming methodology.
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Action Systems

In chapter 1 we suggested that a program be structured as a set of objects.
Each object consists of actions and/or methods, where the actions are exe-
cuted autonomously (following a specific execution rule) and the methods
are executed when they are called. In this chapter, we consider a simpler
version of this model; we eliminate the methods altogether, retaining only
actions. The immediate consequence of this decision is that the objects
can no longer communicate through procedure calls; we require the objects
to communicate via shared variables. Actions from different objects can
read/write into these variables. However, at most one action is executed at
any time, so there is no possibility of concurrent write into a variable.
This is an appropriate model for programs where communications among

components play a minor role; computations of a single component are of
the primary interest. We have chosen to study this simpler model —called
action systems— because many of the basic concepts of the general model
can be explained within it. The simpler model suffices for many problems;
we can express the solution to a problem as an action system and study its
properties employing a simple logic, which we develop in chapters 5 to 9.
We describe the general programming model in chapter 3 and a logic for it
in chapter 12.
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2.1 An Informal View of Action Systems

An action system, often called a state transition system, is a program that
consists of a set of objects and shared (global) variables. Each object may
have local variables. The program state is given by the values of its vari-
ables, local and global. Each object has one or more actions that may
change the program state. The objects interact by reading and writing the
shared variables. Interaction is not the primary subject of this chapter;
therefore, in most cases we deal with a single object and study how its
actions change the values of the variables.
We employ a neutral term, box, for an object. A program has a set of

boxes. When the program consists of a single box, we refer to the box
and program synonymously. Also, we use the terms “action system” and
“program” synonymously in all cases.
The variable values at any point during a computation define the current

state, and all possible combinations of variable values define the state space.
An odometer in a car, for instance, may be regarded as a system with six
variables, one for each position; each of these variables may, independently,
assume a value between 0 and 9. Thus, the state space may be represented
by six-digit numbers. For the six-digit odometer, there is usually a single
action whose effect is to add 1 (modulo 106) to the current state (a mechanic
may have access to another method that resets the odometer to 0).
Mathematically, an action is a binary relation over the state space. For

any state, an action describes a set of successor states. If the successor set
of state s has exactly one state, the effect of the action is to transform s to
its unique successor; such is the case for the odometer, described above. If
the successor set has more than one state, the current state is transformed
to any of its successors; such an action is called nondeterministic. If the
successor set is empty, the action is not enabled in the given state. If an
action is executed in a state in which it is not enabled, its execution has
no effect; i.e., the state does not change. (This rule can be modeled by
including the pair (s, s) in the relation for an action that is not enabled at
s.)
What constitutes an action is a methodological issue. In designing a sort-

ing routine, for instance, we may make use of an action that exchanges a
pair of data items, whereas in a spreadsheet program we may assume that
sorting is a built-in primitive. A programming problem often specifies the
set of available actions. In concurrent programming, a sequence of steps
that may be executed without interruption is typically regarded as an ac-
tion.
We focus attention on discrete action systems: “discrete” means that

there are no continuously changing variables, such as flow in a pipe or
voltage in an oscillating analog circuit. We do allow finite as well as infinite
numbers of states. We assume that there is a finite number of actions,
though our theory is largely applicable to infinite action systems, as well.
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2.2 Syntax and Semantics of Action Systems

The notation used to describe an action system is mostly irrelevant for our
purpose. Any reasonable notation may be used; we choose one to illustrate
the concepts and show some examples.
An action system is given by the (1) specification of the state space and

(2) specifications of the actions. We assume that a finite number of variables
can define the state space. As an example,

boolean b;
integer x, y

defines a state space where each state is a triple that describes the values
of b, x, and y.
The initial states are specified by declaring the initial values of some (or

all) of the variables; e.g.,

boolean b = false;
integer x, y = 0, 0

The initial condition of a program is a predicate that holds at exactly the
initial states. For the example, the initial condition is

¬b ∧ x = 0 ∧ y = 0 .

An action is a guarded command [55]; it consists of a guard —a predi-
cate over the state space— and a command —a prescription for the state
change. We employ traditional notations for guards and commands, with
→ to separate the guard and command parts. Thus,

x < y → x := x+ 1; y := y − 1
is an action whose guard is x < y and command is x := x+ 1; y := y − 1.
We use the symbol [] to separate the codes of different actions. A missing
guard should be taken to mean the guard true.

Requirement on actions Execution of an action, when started in a
state where its guard holds, terminates. This has to be ensured by the
programmer of the action. ✷

Execution rule
An execution of an action system starts in an initial state and consists of
an infinite number of steps. In each step an arbitrary action is executed.
Execution of an action is ineffective if the guard of the action does not
hold when it is executed; otherwise, it is effective. Ineffective execution of
an action is a skip; it does not change the state. Effective execution of
an action consists of executing its body, which may change the state (it is
guaranteed to terminate; see the requirement on actions). The executions
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of a program are restricted by the following fairness condition: each action
is executed infinitely often in each execution.
It may seem that an infinite execution is meaningless if the computa-

tion is guaranteed to terminate. A terminating computation continues to
execute its actions, but no action execution has any effect; therefore, the
final state repeats forever. The execution rule defines a logical view of the
execution; in an implementation, once it is detected that a final state has
been reached, the execution may be stopped and the resources released
for other tasks. However, the logical view is convenient for developing a
uniform treatment of terminating and nonterminating computations.

Variable types The basic types used for variables in this book are inte-
ger, boolean, and nat (for natural, i.e., non-negative integers). Enumerated
type with values {a, b, c, d}, for instance, is written as enum {a, b, c, d}. We
simply write type to denote a polymorphic type, when type information
has no relevance to the discussion. The structured types used are record,
set, bag, array, and seq (for sequence). For a structured variable the type
of its elements is also specified, and for each array its bounds. We write 〈 〉
for an empty sequence, and ∅ for both empty set and empty bag. ✷

2.3 Properties of Action Systems

A thorough treatment of program properties is given in chapters 5 and 6.
Here, we describe two of the main concepts —invariant and fixed point—
that are necessary for understanding the examples in this chapter. Progress
properties —that a program eventually reaches a desired state— are de-
scribed in detail in chapter 6; for the moment, we rely on the reader’s
intuition to establish progress properties.

2.3.1 Invariant
An invariant is a predicate that is initially true and is preserved by ex-
ecution of each action. Therefore, an invariant is always true during an
execution. (The states reached during an execution are the initial state
and the state following the execution of each action. The states that are
reached during execution of an action are invisible; we can observe the
states only before and on completion of each action execution.) Formally,
predicate p is an invariant if both of the following conditions hold.

initial condition ⇒ p
for each action of the form g → s, {p ∧ g} s {p}

Here, {p ∧ g} s {p} denotes that any execution of s started in a state
that satisfies p∧ g terminates in a state that satisfies p; see appendix A.4.1
for details about this notation.
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As an example, consider a program that consists of the following box
only.

————————————
box small
integer x, y = 0, 0;

x < y → x := x+ 1
[] y := max(x, y) + 1

end {small}
————————————

We claim that x ≤ y is an invariant for this program. We have

initially x = 0 ∧ y = 0

which implies x ≤ y. We can show that

{x ≤ y ∧ x < y} x := x+ 1 {x ≤ y}
{x ≤ y} y := max(x, y) + 1 {x ≤ y}

The notion of invariant is perhaps the most important foundational con-
cept in this book. It is essential for writing specifications and designing
programs.

2.3.2 fixed point
A fixed point of a program is a state that remains unchanged by execution
of any action. Therefore, once a fixed point is reached, further execution
of the program has no effect. The set of all fixed points is described by a
predicate called FP .
It is possible to compute FP from the code of a program provided that

we know the states left unchanged by each action. Consider a program
whose action i is of the form gi → si. Let predicate bi hold in exactly
those states where the execution of si has no effect. Then

FP ≡ 〈∀i :: gi ⇒ bi〉
Observe that FP holds in any state where all gis are false.
It is easy to compute bi if si is an assignment statement. For the as-

signment statement x := e the corresponding predicate is x = e. That is,
execution of x := e has no effect exactly when x = e holds prior to the
execution. This observation may easily be extended to sequences of assign-
ments and conditional statements; see section 5.3.2 for details. For program
small of section 2.3.1, we compute1

1See appendix A.2.1 for an explanation of the proof format used here.
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FP
≡ {from the definition of FP}

(x < y ⇒ x = x+ 1) ∧ (y = max(x, y) + 1)
≡ {arithmetic and predicate calculus}

(x ≥ y) ∧ (false)
≡ {predicate calculus}

false

That is, each state of small can potentially be changed.
There is no direct method for computing the FP if the command portion

of an action contains loops.
Most of the systems we consider in this book are never expected to reach

a fixed point; they should run forever, so their FP should be false. In many
cases, though, a box may reach a fixed point, but then a change in a shared
variable by some other box may cause its FP to become false, and enable
some of its actions to be executed effectively.

2.4 Examples

2.4.1 Finite state machine
Finite state machines are conveniently represented by action systems: the
machine state can be encoded in a variable, and each state transition is an
action. Alternatively, it may be possible to define a set of variables where
the variable values encode the states and each transition affects only a small
number of variables.
We show two different representations of a finite state machine that ac-

cepts binary strings that have an even number of zeroes and an odd number
of ones. A pictorial representation of the machine is given in Fig. 2.1. In
this figure, the initial state is a and state c is the only accepting state.

a b

c d

1

0

0

1

Figure 2.1: Finite state machine accepting even number of 0’s and odd 1’s

A box FSM1 that represents this finite state machine follows. Variable
state assumes one of the values a, b, c, and d. Variable x holds the next
binary digit to be scanned. Some external box E stores a value into x after
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FSM1 has scanned the digit; E is usually called the environment of FSM1 .
The following protocol is used by E and FSM1 to read/write into x. The
value of x is φ when there is no value to be scanned; in this case box E
may store a binary digit in x. Box FSM1 reads a value from x if x �= φ and
then it sets x to φ.

————————————
box FSM1
enum {a, b, c, d} state = a;
enum {0, 1, φ} x;

x = 0 → if state = a then state := b
elseif state = b then state := a
elseif state = c then state := d
else {state = d} state := c

endif ; x := φ

[] x = 1 → if state = a then state := c
elseif state = b then state := d
elseif state = c then state := a
else {state = d} state := b

endif ; x := φ
end {FSM1}
————————————

Box FSM1 reaches a fixed point when x �= 0 ∧ x �= 1, i.e., x = φ. Then
FSM1 is merely waiting for input from its environment.
In the following box, we encode the state by two boolean variables p0

and p1, where p0 is true iff the number of scanned 0’s is even; p1 is simi-
larly defined. Thus, states a, b, c, d are encoded by the following values of
p0, p1, respectively: (true, true), (false, true), (true, false), (false, false). Note
that the resulting box is considerably simpler because of the choice of vari-
ables that represent the states.

————————————
box FSM2
boolean p0, p1 = true, true;
enum{0, 1, φ} x;

x = 0 → p0 := ¬p0; x := φ
[] x = 1 → p1 := ¬p1; x := φ

end {FSM2}
————————————

Let n0 and n1 denote, respectively, the number of 0’s and 1’s scanned.
Variables n0 and n1 are auxiliary variables that can be introduced into
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FSM2 : initially, both of these variables are 0; n0 is incremented in the first
action and n1 in the second. It can be shown that

invariant p0 ≡ even(n0)
invariant p1 ≡ even(n1)

2.4.2 Odometer
We consider a three-digit odometer whose state is described by the values
of the variables d0, d1, and d2 (d0 is the least significant and d2 the most
significant digit). An external process, the environment of the odometer,
sets variable c0 to true to signify that the odometer should be incremented.
The odometer is incremented eventually if c0 remains true, and then c0 is
set to false (to denote that the incrementation has been completed).
In the first design, we have a single action that increments the odometer

when c0 is found to be true.

————————————
box Odometer1
enum(0..9) d0, d1, d2 = 0, 0, 0;
boolean c0;

c0 → c0 := false;
d0 := (d0 + 1) mod 10;
if d0 = 0 then d1 := (d1 + 1) mod 10;

if d1 = 0 then d2 := (d2 + 1) mod 10 endif
endif

end {Odometer1}
————————————

Observe that if c0 becomes true, from the fairness condition, the odome-
ter will be incremented and c0 set to false.
There is a deficiency in our modeling of a physical odometer as an action

system. We cannot guarantee that the odometer will be incremented within
a very short time of c0 being set to true; the guarantee that the odometer
is incremented eventually may have little value in practice if several miles
elapse before an incrementation. We discuss this issue in some detail in
chapter 6.

A note on the notation We have not distinguished variable c0 from vari-
ables d0, d1, and d2 syntactically, even though the latter variables are local
to the box (i.e., they cannot be changed by an external action) whereas c0
can be changed by an external action. We introduce a syntactic distinction
in section 8.2.1. ✷
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The next design treats incrementation of each digit as a separate action.
Analogous to c0, we introduce booleans c1 and c2 that signify if d1 and
d2, respectively, are to be incremented. These variables, which are merely
carries from the previous digits, are local to the Odometer2 box. Variable
c0 remains true until all the digits have been incremented appropriately;
that is, c0 is set to false only when there is no carry to the next digit or after
the incrementation of d2. In the following box we label the three actions,
and we use these labels in further discussions.

————————————
box Odometer2
enum(0..9) d0, d1, d2 = 0, 0, 0;
boolean c0;
boolean c1, c2 = false, false;

α:: c0 ∧ ¬c1 ∧ ¬c2 →
d0 := (d0 + 1) mod 10; c1 := (d0 = 0); c0 := c1

[] β:: c1 →
d1 := (d1 + 1) mod 10; c1 := false; c2 := (d1 = 0); c0 := c2

[] γ:: c2 →
d2 := (d2 + 1) mod 10; c2 := false; c0 := false

end {Odometer2}
————————————

As before, we would like to show that once c0 holds, the triple (d0, d1, d2)
is incremented eventually. Also, we would like to show that as long as
c0 remains false the state is unchanged. These claims are obviously true
for the first box, Odometer1 ; but they are not so obvious for Odometer2
because, with the decoupling of the actions, it seems plausible that β may
be executed before α when c0 becomes true, for instance.
For Odometer2 , we claim the following invariant. The proof of this in-

variant is left to the reader.

invariant 〈(c1 ∨ c2)⇒ c0〉 ∧ 〈¬(c1 ∧ c2)〉
Given this invariant, we see that if ¬c0 holds, then ¬c1∧¬c2 holds as well;

hence, no action execution has any effect. (The following computation of
FP confirms this fact.) Therefore, as long as c0 remains false, the odometer
is unchanged. Whenever c0 holds, exactly one action execution has some
effect: α if ¬c1∧¬c2 holds, β if c1∧¬c2 holds, and γ if ¬c1∧ c2 holds; the
remaining possibility, c1 ∧ c2, is ruled out by the second conjunct in the
invariant. For the progress proof, use an operational argument to conclude
that once c0∧¬c1∧¬c2 holds, the odometer is incremented eventually and
¬c0 ∧ ¬c1 ∧ ¬c2 is established.
We compute the FP for this box as follows. The command portion of α

has an assignment d0 := (d0 + 1) mod 10; setting its left and right side
equal yields false (similarly for β and γ). The computed FP is
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(c0 ∧ ¬c1 ∧ ¬c2 ⇒ false) ∧ (c1 ⇒ false) ∧ (c2 ⇒ false)
≡ {predicate calculus}

¬(c0 ∧ ¬c1 ∧ ¬c2) ∧ ¬c1 ∧ ¬c2
≡ {predicate calculus}

¬c0 ∧ ¬c1 ∧ ¬c2

The first conjunct in the invariant implies that ¬c0 ⇒ (¬c1 ∧ ¬c2).
Therefore, the FP is equivalent to ¬c0; i.e., once ¬c0 holds, the state re-
mains unchanged by the actions of Odometer2 .

2.4.3 Greatest common divisor
Action systems are typically used to describe never-ending computations, as
in an operating system or a telephone switch. To illustrate the generality of
action systems, we show a small combinatorial problem, computation of the
greatest common divisor (gcd) using repeated subtraction. This example
also illustrates the use of invariants and fixed points. Another combinatorial
example, computations of shortest paths in a graph, is given in section 2.4.6.
LetM and N be two positive integers whose gcd is to be computed. The

following scheme is well known.

————————————
box GCD
integer m,n =M,N ;

m > n → m,n := m− n, n
[] n > m → m,n := m,n−m

end {GCD}
————————————

We show that the following predicate P is an invariant of box GCD :

P :: m > 0 ∧ n > 0 ∧ gcd(m,n) = gcd(M,N) .

Initially, P holds because m,n =M,N andM and N are positive integers.
Next, we show

{P ∧ m > n} m,n := m− n, n {P}
{P ∧ n > m} m,n := m,n−m {P}

These assertions can be proved from the following properties of gcd
(which we do not prove here). For positive integers x and y:

gcd(x, y) = gcd(y, x)
x > y ⇒ gcd(x, y) = gcd(x− y, y)

Next, we show that m = gcd(M,N) holds at any fixed point reached by
the box GCD . First, compute the FP for this box.
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FP
≡ {from the definition of FP}

〈(m > n) ⇒ (m,n = m− n, n)〉 ∧
〈(n > m) ⇒ (m,n = m,n−m)〉

≡ {Simplify}
〈(m > n)⇒ (n = 0)〉 ∧ 〈(n > m)⇒ (m = 0)〉

Any fixed point reached by the box satisfies the invariant and this FP ;
hence, at a reachable fixed point

P ∧ 〈(m > n)⇒ (n = 0)〉 ∧ 〈(n > m)⇒ (m = 0)〉
⇒ {P ⇒ n > 0. And m > n ⇒ n = 0. So m ≤ n.

Similarly, n ≤ m}
m ≤ n ∧ n ≤ m ∧ gcd(m,n) = gcd(M,N)

⇒ {arithmetic}
m = n ∧ gcd(m,n) = gcd(M,N)

⇒ {gcd(x, x) = x, for any positive integer x}
m = gcd(M,N)

The remaining proof obligation is that every execution of GCD eventu-
ally reaches a fixed point. This result does not follow from anything we
have proved so far: if we replace m− n with m+ n and n−m with n+m,
all the proof steps remain valid, yet the box will never reach a fixed point.
Since we have not developed a theory of progress, we provide an opera-
tional argument to justify that a fixed point will be reached. Observe that
if m �= n, execution of one of the actions changes m or n, thus decreas-
ing m + n, whereas the other action has no effect. From the fairness rule
that each action is eventually executed, we conclude that m + n will be
decreased eventually if m �= n. Since both m and n are always positive
(see the invariant), m+ n can be decreased a finite number of times only.
Hence, within finite time m = n, and this implies FP .

2.4.4 Merging sorted sequences
This example demonstrates that message-communicating processes may
be represented easily as action systems. We design a box that merges the
data received along three input channels. Each channel carries an increasing
sequence of positive integers; the output of the box is an increasing sequence
that includes all (and only) the received values, and this sequence is sent
along an output channel. Since the output sequence is increasing, no value
appears more than once in the output channel, even though the same value
may appear in different input channels. This box is used as part of a larger
example in section 4.5.
The shared variables in this example are channels. A channel is an un-

bounded sequence; an empty channel is denoted by the empty sequence,
〈〉. Sending value x along channel c has the same effect as
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c := c ++ x

where ++ is the concatenation operator. Receiving a value from c into v
is effected by

c �= 〈〉 → v, c := c.head, c.tail

In this example, some external box appends values to the input channels,
and box Merge, shown below, removes values from these channels. Dually,
Merge appends values to the output channel, and some external box re-
ceives those values. The protocol shown here guarantees that the channels
are first-in–first-out (fifo).
The algorithm used in Merge is as follows. The input channels are called

f , g, and h, and the output channel, out. Each input channel has an integer
variable associated with it —vf , vg , and vh with f, g, and h, respectively—
that holds the last value read from the channel that has not yet been output;
in case all values read from a channel have been output, the corresponding
variable value is 0 (recall that the channels carry only positive integers). A
value is read from channel f and stored in vf provided that vf = 0 and the
channel is nonempty; similarly for the other channels. A value is output
only if vf , vg , and vh are all nonzero; in that case, the smallest of these
values is output, and vf , vg , vh are appropriately modified.

————————————
box Merge
seq f, g, h, out;
integer vf , vg , vh = 0, 0, 0;
integer m;

vf = 0 ∧ f �= 〈〉 → vf , f := f.head, f.tail
[] vg = 0 ∧ g �= 〈〉 → vg, g := g.head, g.tail
[] vh = 0 ∧ h �= 〈〉 → vh, h := h.head, h.tail
[] vf �= 0 ∧ vg �= 0 ∧ vh �= 0 →

m := min(vf , vg, vh); out := out ++ m;
if m = vf then vf := 0 endif ;
if m = vg then vg := 0 endif ;
if m = vh then vh := 0 endif

end {Merge}
————————————

Box Merge expects a never-ending stream of values along each input
channel. In case a channel carries a finite number of values, some of the
values from the other channels may never be output (for instance, if f
carries some values and g and h are permanently empty). In that case,
each finite sequence should be terminated by a special end marker, say ∞,
and the box should be modified to ignore that channel after receiving the
special value.
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The properties of Merge that are of interest are as follows.

1. Each value in out is from f , g, or h.

2. out is a strictly increasing sequence.

3. Each value from f , g, and h appears eventually in out.

The first two properties can be stated as invariants of Merge and the last
one is a progress property.

2.4.5 Mutual exclusion
Mutual exclusion is a classic problem in concurrent computing. We treat
the problem here not because of its intrinsic difficulty or its central place in
concurrent computing but as an illustration of refinement in action systems.
Two or more processes each have a section of code called the critical

section, and it is required that at most one process execute its critical
section at any time. Therefore, if two processes attempt to execute their
critical sections simultaneously, then one of them will be forced to wait at
least until the other has completed execution of its critical section. Addi-
tionally, a reasonable progress requirement is that some process eventually
executes its critical section if there are processes waiting to enter their crit-
ical sections. A stronger progress requirement is that every waiting process
eventually be allowed to enter its critical section.
The Merge example of section 2.4.4 is part of a loosely coupled system,

where the components —boxes that write into the input channels of Merge
and read from its output channel, and the Merge box itself— can be devel-
oped and understood without detailed understanding of the other compo-
nents. These components interact only through the shared channels, and
such interactions are easy to understand. The thesis in this book is that all
large programs should be loosely coupled. In contrast to Merge, a solution
to the mutual exclusion problem is usually tightly coupled; such a solution
is difficult to understand by examining the code of each process in isola-
tion. The shared variables are manipulated in an intricate manner, and it
is preferable to study the program, consisting of all its components, in its
entirety.
In this section, we develop a mutual exclusion algorithm due to Peter-

son [151]. We start with a high-level solution that is loosely coupled. Next,
we refine this solution, implementing a complex shared data structure using
elementary data structures. Ultimately, we represent Peterson’s solution as
a single action system. To show the power of refinement, we derive a second
mutual exclusion algorithm from the same high-level program.
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Mutual exclusion using a shared queue
The mutual exclusion problem is easily solved if there is a shared queue that
the processes can access in an exclusive manner (it seems paradoxical to
solve the mutual exclusion problem using a facility that already implements
mutual exclusion in access to a data structure; we eliminate this paradox
during refinement). A process that attempts to enter its critical section
appends its process-id to the back of the queue; the process at the head
of the queue enters its critical section, and upon completion removes its id
from the queue. The correctness of this solution is easy to see: the process
that is executing its critical section is at the head of the queue; hence,
at most one process can execute its critical section at any time. Further,
a process attempting to execute its critical section will eventually do so
if every process completes its critical section in finite time. This follows
from (1) the process at the head of the queue enters its critical section,
completes it, and then removes the head item of the queue; (2) hence,
every item in the queue eventually becomes the head item, so every queued
process eventually enters its critical section; (3) a process attempting to
enter its critical section appends its id to the queue and, from (2), enters
its critical section eventually.
We write a concurrent program using traditional notation. Here, q is the

shared queue. The algorithm is described for two processes u and v; we
write their ids as “u” and “v”, respectively. Each assignment statement is
atomic. A guarded command is executed as follows. A process checks the
guard from time to time, and the command is executed (atomically) only
if the guard holds. The process waits as long as the guard does not hold.

————————————————————————
program MutualExclusion
seq q = 〈〉 {initially q is empty};

process u process v

loop loop
noncritical section; noncritical section;
q := q ++ “u”; q := q ++ “v”;
q.head =“u” → skip; q.head =“v” → skip;
critical section; critical section;
q := q.tail q := q.tail

end end

end {MutualExclusion}
————————————————————————
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Implementing the shared queue: Peterson’s algorithm
Queue q, defined in the previous box, takes on five possible values when it is
shared between two processes: 〈〉, “u”, “v”, “u v”, “v u” (here “u v” repre-
sents the queue that has “u” as the head item followed by “v”). Therefore,
we need at least three boolean variables to represent the queue. Let boolean
variables u and v be true when the corresponding id is in the queue. Then
it remains to distinguish between the two queue values, “u v” and “v u”.
We introduce a boolean variable turn that is true when q = “v u” and
false when q = “u v”; the value of turn in other cases is irrelevant. The
operations on q can now be written in terms of the operations on u, v, and
turn as follows.

q = 〈〉 is u, v = false, false
q := q ++ “u” is u, turn := true, true
q := q ++ “v” is v, turn := true, false
q.head =“u” is ¬v ∨ ¬turn
q.head =“v” is ¬u ∨ turn
q := q.tail is u := false {in process u}
q := q.tail is v := false {in process v}

To see the transformation for q := q ++ “u”, note that q becomes “u”
or “v u” as a result of appending “u” to it. In the first case, turn’s value
is irrelevant and in the second case, turn has to be set to true; therefore,
we set turn to true in both cases in addition to setting u to true. The test
q.head =“u”, given that u is in q, is equivalent to q =“u” ∨ q =“u v”, i.e.,
¬v ∨ ¬turn. Applying the given transformations, we obtain the following
program.

————————————————————————
program MutualExclusionRefined
boolean u, v = false, false;

process u process v

loop loop
noncritical section; noncritical section;
u,turn:=true, true; v,turn:=true, false;
¬v ∨ ¬turn → skip; ¬u ∨ turn → skip;
critical section; critical section;
u := false v := false

end end

end {MutualExclusionRefined}
————————————————————————
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From multiple assignments to single assignments The preceding
algorithm is almost identical to Peterson’s two-process mutual exclusion
algorithm. The remaining step is to decouple the assignments to u and
turn in process u (and similarly v and turn in process v). We can show
that (see Misra [134, note 13]) it is safe to replace

u,turn := true, true
by

u := true; turn := true ✷

Note Switching the order of the two assignments for either process makes
the program incorrect. To see this, suppose that processes u and v have
the following codes.

process u:: u := true; turn := true
process v:: turn := false; v := true

Consider an execution in which process u sets u to true, process v sets
turn to false, and u then sets turn to true. Now u enters its critical section
(¬v holds); then, process v sets v to true and enters its critical section
(because turn holds), thus violating mutual exclusion. ✷

Peterson’s algorithm as an action system
It is easy to translate the two-process mutual exclusion program into an
action system. First, we rewrite the program using two explicit program
counters —m for process u and n for process v— that take on integer values
between 0 and 3.

————————————————————————
program MutualExclusionRefined1
boolean u, v = false, false;
integer m,n = 0, 0;

process u process v

loop loop
noncritical section; noncritical section;
u,m := true, 1; turn,m := true, 2; v, n := true, 1, turn, n := false, 2;
¬v ∨ ¬turn → skip; ¬u ∨ turn → skip;
{enter critical section} m := 3; {enter critical section} n := 3;
critical section; critical section;
u,m := false, 0 v, n := false, 0

end end
end {MutualExclusionRefined1}
————————————————————————



2.4 Examples 29

We translate this program to the action system shown below. In the
translation, we introduce predicates u.h and v.h, which are controlled by
external boxes. Predicate u.h is set to true to denote that process u is
waiting to enter its critical section, and it is set to false while process u is
in its critical section; v.h is manipulated similarly.
The fact that every critical section is eventually completed is simulated

by setting m to 0 sometime after it becomes 3 (similarly for n).

————————————
program mutex
boolean u, v = false, false;
integer m,n = 0, 0;

{process u’s box}
u.h ∧ m = 0 → u,m := true, 1

[] m = 1 → turn,m := true, 2
[] m = 2 ∧ (¬v ∨ ¬turn) → m := 3
[] m = 3 → u,m := false, 0

{process v’s box}
[] v.h ∧ n = 0 → v, n := true, 1
[] n = 1 → turn, n := false, 2
[] n = 2 ∧ (¬u ∨ turn) → n := 3
[] n = 3 → v, n := false, 0

end{mutex}
————————————

Proof of mutual exclusion
We constructed program mutex through a series of transformations start-
ing from the program that used a shared queue. Since mutex is a correct
refinement of a correct mutual exclusion algorithm it also enforces mutual
exclusion. That is, m and n cannot both be 3 simultaneously:

invariant ¬(m = 3 ∧ n = 3)

This fact cannot be proved directly from the program text; we prove
invariants (I1) and (I2), given below, from which this fact can be deduced.

invariant 〈m �= 0 ≡ u〉 ∧ 〈(m = 3) ⇒ (¬v ∨ ¬turn)〉 (I1)
invariant 〈n �= 0 ≡ v〉 ∧ 〈(n = 3) ⇒ (¬u ∨ turn)〉 (I2)

Invariants (I1) and (I2) can be proved by showing that they hold initially
and that every action preserves the truth of each of these predicates. The
proof is straightforward, and we leave it to the reader. Given (I1) and (I2),
we conclude from their conjunction that both processes cannot be in their
critical sections simultaneously, as follows.
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• Proof of ¬(m = 3 ∧ n = 3):

m = 3 ∧ n = 3
⇒ {From (I1), m = 3 ⇒ u ∧ (¬v ∨ ¬turn), similarly from (I2)}

u ∧ (¬v ∨ ¬turn) ∧ v ∧ (¬u ∨ turn)
⇒ {simplify}

u ∧ ¬turn ∧ v ∧ turn
⇒ {predicate calculus}

false

Using the methods of chapter 6, we can show that once u.h holds, m = 3
holds eventually (and similarly for process v); i.e., every process waiting to
enter its critical section will do so eventually.

A new two-process mutual exclusion algorithm
We suggest a different implementation of shared queue q. As before, let u
and v be true whenever the corresponding process-id is in the queue. We
introduce a boolean variable p that is true when the queue has v as its head
(i.e., the queue is “v” or “v u”) and false when the queue has u as its head;
the value of p is immaterial if the queue is empty.
Note that p has different values when q =“v u” and when q =“u v”.

Thus, all five possible queue values are distinguished by u, v, and p. Also,
note that p is more defined than turn of the previous algorithm: when the
queue has two elements, the two variable values match; when the queue
has one element, turn’s value is irrelevant, though p’s value is determined;
for empty queue both variable values are irrelevant.
The tests and assignments in both processes are transformed as follows.

q = 〈〉 is u, v = false, false
q := q ++ “u” is p, u := v, true
q := q ++ “v” is p, v := ¬u, true
q.head =“u” is ¬p
q.head =“v” is p
q := q.tail is p, u := true, false {in process u}
q := q.tail is p, v := false, false {in process v}

Appending “u” to q in q := q ++ “u” causes q to become either “u” or
“v u”. In either case, u is to be set to true. In the first case, p is set to true
and in the second to false; in either case p acquires the value of v. The test
q.head =“u” is ¬p, from the definition of p. Removing the head item of q
in process u causes q to become either “v” or 〈〉; in either case, p can be
set to true. The other transformations are similarly justified.
After applying all the transformations, we obtain the program shown

next.
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————————————————————————
program MutualExclusionRefined2
boolean u, v = false, false;
boolean p;

process u process v

loop loop
noncritical section; noncritical section;
p, u := v, true; p, v := ¬u, true;
¬p → skip; p → skip;
critical section; critical section;
p, u := true, false p, v := false, false

end end

end {MutualExclusionRefined2}
————————————————————————

This program has the advantage over Peterson’s that exactly one boolean
variable has to be checked in the guarded command. Unfortunately, the pro-
gram requires assignments of the form p := v and p := ¬u, naming shared
variables on both sides of an assignment, which are difficult to implement
as atomic actions.
The multiple assignment statements can be replaced by the following

sequences of single assignments; see [134, note 13] and also see the note on
page 28.

p, u := v, true by u := true; p := v
p, v := ¬u, true by v := true; p := ¬u

2.4.6 Shortest path
Dijkstra’s shortest path algorithm [56] has by now become a classic (the
cited paper is officially designated “classic” by the Citation Index Service).
Typical descriptions (and derivations) of this algorithm start by postu-
lating that the shortest paths be enumerated in the order of increasing
distances from the source. In this section, we present a derivation that is
quite different in character. We view the problem as the computation of
a “greatest solution” of a set of equations. We prescribe an action system
whose implementation results in Dijkstra’s algorithm.
The bulk of the work in our derivation is in designing the appropriate

heuristics that guarantee termination (i.e., reaching a fixed point); this is
in contrast to traditional derivations, where most of the effort is directed
toward postulating and maintaining the appropriate invariant.
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The shortest path problem
Given is a finite directed graph that has (1) a source node, henceforth,
designated by s, and (2) for each edge (i, j) a non-negative real number,
wij , called its length. The length of a path is the sum of the edge lengths
along the path. It is required to compute the shortest path, i.e., a path of
minimum length, from s to every node. Henceforth, shortest path to a node
means the shortest path from s to that node, and distance to a node is the
length of the shortest path. The distance to a reachable node from s is a
non-negative real number and the distance to an unreachable node is ∞.
For the moment, assume that every node in the graph is reachable from s;
the general case, where some of the nodes are unreachable, is taken up on
page 34. We restrict ourselves to computing the distances to all nodes; a
minor modification of this algorithm can be used to compute the shortest
paths.

Equations for distances
Let Dk denote the distance to node k; this is a non-negative real number
since all nodes are reachable from s. Note that Ds = 0. Call i a predecessor
of k if there is an edge (i, k) in the graph. For node k, k �= s, whose only
predecessors are i and j,

Dk = min(Di + wik, Dj + wjk)

This is because the shortest path to k passes through either i or j, and any
initial segment of a shortest path is a shortest path to the corresponding
node. Therefore, D —where D is a vector, with the nodes ordered in some
fixed manner— is the unique solution for the unknowns d in the following
equations E.

E:: ds = 0
〈∀j : j �= s : dj = (min i : i is a predecessor of j : di + wij)〉

Since all nodes are assumed to be reachable from s, every j, j �= s, has a
predecessor.

Inequalities for distances; relaxing the equations
An equation of the form

dk = min(di + wik, dj + wjk)

implies that dk ≤ di + wik, and dk ≤ dj + wjk. We convert E into a set of
such inequalities, one for each edge. Let F be the system of inequalities so
constructed along with the equation ds = 0.

F:: ds = 0
〈∀(i, j) : (i, j) is an edge : dj ≤ di + wij〉
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It is clear that any solution of E —the only solution of E is D— is a
solution of F. However, F may have many more solutions; for instance, a
vector of all zeroes is a solution of F.

The distance vector is the greatest solution of F
Define a partial order � over vectors as follows. For vectors u and v,

u � v ≡ 〈∀i :: ui ≤ vi〉

Theorem (GS) Distance vector D is the greatest solution of F. That is,
D is a solution of F and for any solution d, d � D .
Proof: As stated earlier, D is a solution of F. We prove that d � D for any
solution d of F. Let hj be the number of edges in the shortest path to node
j; if there are several shortest paths to j, then one with the fewest edges
determines hj . Since every node is reachable from s, hj is defined for all j.
First, we prove the following proposition by induction on natural numbers.

H:: 〈∀n ::
(∀j :: hj = n ⇒ dj ≤ Dj )

〉

Case n = 0: We have to show that 〈∀j :: hj = 0⇒ dj ≤ Dj 〉. From the
definition of h,

(hj = 0) ⇒ (j = s)
⇒ {from F, (j = s)⇒ (dj = 0). Also, (j = s)⇒ (Dj = 0)}

(hj = 0) ⇒ (dj = 0 ∧ Dj = 0)
⇒ {arithmetic}

(hj = 0) ⇒ (dj ≤ Dj )

Case n + 1: Assume for all k, hk = n ⇒ dk ≤ Dk . We show that
hj = (n+ 1) ⇒ dj ≤ Dj . From equations E and the definition of h, node
j has a predecessor i such that Dj = Di + wij and hj = hi + 1. Since
hj = (n+ 1) we have hi = n.

dj

≤ {d is a solution of F; hence dj ≤ di + wij}
di + wij

≤ {hi = n ⇒ di ≤ Di , from induction hypothesis}
Di + wij

= {Dj = Di + wij}
Dj

Now, for every node j there is some n such that hj = n; hence, from H,
dj ≤ Dj , for every j.
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Unreachable nodes So far our treatment has assumed that all nodes are
reachable from s. Under that assumption there is a unique solution to E,
which is the distance to the nodes. If there are unreachable nodes, there are
several solutions to E: for instance, let u and v be distinct nodes, different
from s, that are each other’s predecessor, they have no other predecessors,
and the lengths of the two edges, (u, v) and (v, u), are both zero. Then E
yields the equations du = dv and dv = du, permitting these variables to be
set arbitrarily.
It can be shown that D is the greatest solution of E in that case, and

theorem (GS) is still valid. The proof of H ⇒ 〈∀j :: dj ≤ Dj 〉 (in the proof
of GS) will have a case distinction for reachable and unreachable nodes. ✷

Computing the distances
We first suggest a naive method for obtaining the greatest solution of F.
The inequality corresponding to edge (i, j) is dj ≤ di+wij . This inequality
is equivalent to the equation dj = min(dj , di+wij). Convert this equation
to the following action for edge (i, j):

Sij :: dj := min(dj , di + wij).

Note that the only effect of executing Sij is possibly to decrease dj .
The execution strategy is to start in a state where ds = 0 and dj =∞ for

all j, j �= s, and to execute an arbitrary action in each step, ensuring that
every action is executed eventually. We show that eventually the distances
are computed, i.e., d = D .

fixed point, invariant
Execution of dj := min(dj , di+wij) has no effect iff dj = min(dj , di+wij),
or dj ≤ di + wij , i.e., a fixed point is a solution of F. From theorem (GS),
d � D at any fixed point.
Below, we show that D � d is an invariant of the proposed execution.

Coupled with d � D at a fixed point, we have d = D at any fixed point
reached by this execution (recall that � is a partial order). In the next
section we address the question of reaching a fixed point.
We can derive that initially D � d because, initially ds = 0 and

initially dj =∞, for all j, j �= s. We show that execution of any action

Sij :: dj := min(dj , di + wij)

preserves D � d. Execution of Sij affects only dj ; therefore, it is sufficient
to show that Dj ≤ dj is a post-condition of Sij given that D � d is a
pre-condition. Applying the axiom of assignment (see appendix A.4.1), we
have to show that Dj ≤ min(dj , di + wij) is a pre-condition of Sij . Prior
to execution of Sij ,



2.4 Examples 35

Dj
= {From D � d: Dj ≤ dj}

min(dj , Dj)
≤ {D is a solution of F; hence Dj ≤ Di + wij}

min(dj , Di + wij)
≤ {From D � d: Di ≤ di}

min(dj , di + wij)

Reaching a fixed point
It can be shown that picking an arbitrary action for execution, as long as
every action is executed eventually, reaches a fixed point in a finite number
of steps. However, this strategy is wasteful because it may consecutively
repeat execution of an action even though such executions have no effect.
Define the measure of action Sij to be di. Call an action active if its

measure has changed since its last execution; the action is idle otherwise.
More formally, initially all actions are active. An action becomes idle by
being executed; an idle action becomes active only if its measure changes.
Therefore, idle action Sjk may become active as a result of executing Sij ,
for some i, if it changes dj .
It follows that (1) execution of an idle action does not change the program

state; (2) therefore, if all actions are idle, the program state is a fixed point;
(3) execution of Sij can activate an idle action of the form Sjk provided
that dj > di+wij holds prior to the execution of Sjk, because the measure
dj of Sjk changes only under this condition.
We propose that only active actions be picked for execution. Such a

computation reaches a fixed point. We propose next a refinement of this
strategy and prove its correctness.

Refinement of the execution strategy: BF strategy
Dijkstra’s algorithm is the implementation of the following breadth-first
strategy. We show that this strategy reaches a fixed point.

BF strategy Pick an active action of smallest measure (among all active
actions) for execution.

Observation BF strategy has the following properties.

1. An idle action remains idle.

2. The following proposition C is invariant:

C:: measure of any idle action ≤ measure of any active action.

Proof: Proposition C holds initially because there is no idle action.
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Let Sij be an active action of smallest measure, chosen for execution in a
step. First, we show that all idle actions remain idle. We need consider only
idle actions of the form Sjk because execution of Sij can change only dj ,
and thus possibly make Sjk active. Prior to Sij ’s execution, the measure
dj of Sjk is at most the measure di of Sij , from invariant C. Therefore,
execution of Sij ,

Sij :: dj := min(dj , di + wij)

does not change dj , leaving Sjk idle.
Now we prove that C holds after execution of Sij . Before execution of

Sij , the measure of any idle action ≤ di (from C and that Sij was active).
Execution of Sij does not change the measure of any idle action (see pre-
ceding paragraph), and it makes Sij idle. Therefore, after execution of Sij ,
the highest measure for any idle action is di. The lowest measure for any
active action before execution of Sij was di. Execution of Sij may change
the measure dj for an active action of the form Sjk to di + wij . Hence,
every active action’s measure ≥ di, thus preserving C.
Since each step increases the number of idle actions (the active action

chosen for execution becomes idle), a fixed point is reached eventually.

Implementation of the BF strategy
We show that the BF strategy can be implemented in O(n2) time, where
n is the number of nodes.
Let Sij be an active action of smallest measure. Then, from the definition

of measure, any active action Sik also has the smallest measure, because
both these measures are equal to di. Further, execution of Sij leaves an
active Sik with the smallest measure active: execution of Sij can possibly
change dj to di + wij , which is at least di, the measure of Sik. Therefore,
we propose that once an active action Sij of smallest measure is identified,
then Sik for all k be executed (if Sik is idle its execution has no effect).
The implementation strategy is (1) find i such that Sij is an active action

of smallest measure and (2) execute Sik for all k.
Call (1,2) above a superstep with node i. Such a superstep makes Sik

for all k idle, and they remain idle forever. Call node i idle if Sik for all
k are idle; i is active otherwise. The proposed implementation strategy
guarantees that if Sij is chosen in a superstep, i is active, and following the
superstep i is permanently idle.
A superstep may be implemented in O(n) time. Associate a label, idle

or active, with each node; initially all nodes are active. Scan the list of
d-values to locate an active node i such that di is lowest among all active
nodes; this is an O(n) computation. Then execute Sik for all k and mark
i idle; this is again an O(n) computation. Since i remains idle afterward,
there are exactly n supersteps before all nodes (and actions) become idle.
Hence, the entire algorithm is implemented in O(n2) time.
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2.5 Concluding Remarks

This chapter discussed program components, i.e., boxes, whose interactions
with their environments are minimal. Typically, the environment sets the
values of certain shared variables, simulating a message send or a method
call; a box reads the shared variable values and resets them to simulate
return of values and indicate the completion of its computation. The em-
phasis in this chapter has been on the computational aspects, for which
invariants and fixed points provide the logical foundation.
Programming with shared variables is error-prone unless considerable

care is exercised, say, by restricting the shared variables to behave like
message sequences (i.e., channels). The general programming model we
develop in the next chapter includes method calls as the sole means of
communication.

2.6 Bibliographic Notes

For theories of action systems see Back and Kurki-Suonio [14, 15], Chandy
and Misra [32], Lamport [118], and Lynch and Tuttle [124]. The execution
rule for action systems proposed here is from [32]. Meseguer [130] has ex-
tensively developed the theory and practice of term rewriting systems in
a manner akin to action systems, and he reports impressive performance
numbers. Action systems have been used effectively in designs of large-scale
software in industry; see Pizzarello [152], and Creveuil and Roman [50].
The mutual exclusion problem was introduced by Dijkstra [57]. Program

MutualExclusionRefined on page 28 closely resembles the algorithm from
Peterson [151]. The refinements of mutual exclusion algorithms shown in
this chapter are from Misra [134, note 13]; Dappert-Farquhar [52] reports
an error in this note and its correction. The shortest path algorithm in
section 2.4.6 is from Dijkstra [56]. The development of the shortest path
algorithm given in this chapter is from Misra [140]; portions of that paper
are reprinted here with permission from Elsevier Science.
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3
An Object-Oriented View of Action
Systems

3.1 Introduction

Action systems are used in chapter 2 to represent a message communicat-
ing process (Merge), a fragment of an operating system (mutual exclusion),
a process controller (odometer), and even solutions to combinatorial prob-
lems (gcd, shortest path). The syntax and semantics of action systems are
sparse, yet we developed succinct programs for several well-known prob-
lems. This chapter extends the programming model of chapter 2 to make
it easier to describe process interactions. Additionally, we address the issue
of program composition in some detail.
The typical mode of process interaction in chapter 2 is through shared

variables. For instance, in the odometer example of section 2.4.2, a boolean
variable c0 is shared by the odometer with its environment. The environ-
ment sets c0 to true to indicate that the value of the odometer should
be incremented, and the odometer program sets c0 to false on completion
of the incrementation. In this chapter, we eliminate shared variables alto-
gether, replacing them with “remote procedure calls”. Thus, the odometer
program will include a procedure for incrementation that can be called by
its environment. Fortunately, a procedure is quite similar to an action, so
we need to extend the model of action systems only minimally to accommo-
date procedure calls. We designate certain actions in a box to be methods,
and methods can be executed only when called. A box resembles an object
in object-oriented programming, though it may include actions —which
are executed autonomously, as before— in addition to the methods.
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There is a fundamental issue related to method calls. In wide-area com-
puting, in particular, a caller should not be made to wait indefinitely (i.e.,
for an unbounded number of computation steps); if there is no guarantee
that the method can be executed successfully to completion, the call should
be rejected. This is in contrast to current practices in concurrent computing
where a process that requests a resource is made to wait, perhaps forever,
if the resource is not available. Guaranteed termination of a method call
is an essential requirement of our theory; we insist that execution of every
action terminate, and this requirement can be met only if every method
called by an action is also guaranteed to terminate.
This model of programming is called Seuss. Seuss is basically an action

system with a minimal amount of additional machinery to facilitate inter-
actions among its components. Our examples in this chapter and the next
attest to the effectiveness of this model of programming on a variety of
computing problems.

Overview of the model
We use the box construct from chapter 2 that plays the role of an object.
As before, a program consists of a set of boxes, though there are no shared
variables. Typically, a user defines generic boxes, called cats (cat is short
for category), and creates several boxes from each cat through instantiation.
A cat is similar to a class; a box is similar to a class instance.
The state of a box is given by the values of its variables. The variables

are local to the box. Therefore, their values can be changed only by the
steps taken within the box. Each box includes a set of procedures, where
a procedure is either an action or a method. A method is called by a
procedure of another box; method call is the only mechanism for interac-
tions among boxes. An action is not called like a traditional procedure; it
is executed from time to time under the following fairness rule: each ac-
tion is eventually executed. Both actions and methods can change the state
(values of the variables) of their own box and possibly of other boxes by
calling their methods. A method may have parameters; an action does not
have any parameter.
A method may accept or reject a call made upon it. If the state of the

box does not permit a method to be executed —for instance, a get method
on a channel cannot be executed if the channel is empty— then the call is
rejected. Otherwise, the call is accepted. Some methods accept every call;
such methods are called total methods. A method that may reject a call is
called a partial method. Similarly, we have total and partial actions.
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3.2 Seuss Syntax

In this section we introduce a notation for writing programs. The nota-
tion is intended for implementation on top of a variety of host languages,
each of which should provide facilities for sequential programming. There-
fore, no commitment has been made in the syntax about the sequential
programming aspects.

Notational Conventions

The notation is described using BNF. All nonterminal identifiers are in
Roman and all terminal identifiers are in boldface type. The traditional
meta symbols of BNF, ::= { } [ ] ( ), are used, along with ∨ to stand for
alternation (the usual symbol for alternation, “|”, is a terminal symbol in
our notation). The special symbols used as terminals are | � | ; : :: →
in the syntax given below. A syntactic unit enclosed within “{” and “}”
in a production may be instantiated zero or more times, and a unit within
“[” and “]” may be instantiated zero or one time. In the right-hand side
of a production, (p ∨ q) denotes that a choice is to be made between the
syntactic units p and q in instantiating this production; the parentheses,
“(” and “)” , are omitted when no confusion can arise. Text enclosed within
“{” and “}” in a program is to be treated as a comment. The traditional
keywords of sequential programming appear in small boldface, e.g, if, then,
else, endif, do, while, and enddo.

3.2.1 Program
program ::= program program-id {cat ∨ box} end
cat ::= cat cat-name [parameters]: {variable} {procedure} end
box ::= box box-id [parameters]: cat-id [arguments]

A program consists of a set of cats and boxes. The declaration of a cat
or box includes its name and possibly parameters. The ids of programs,
cats, and boxes are simple identifiers. The parameters of a cat or box can
be ordinary variables, cats or boxes (see program MutualExclusion1 on
page 47 for an example of cat declaration with parameters). A cat consists
of zero or more variable declarations followed by procedure declarations.
A box is an instance of a cat. We adopt the convention that several boxes
may be instantiated under one “box” declaration. Variables are declared
and initialized in a cat as in traditional programming languages.

Example

We use a single running example to illustrate the syntax of Seuss. A ubiq-
uitous concept in multiprogramming is a Semaphore. The skeletal program
given below includes a definition of Semaphore as a cat and two instances of
Semaphore, boxes s and t. Cat user describes a group of users that execute
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their critical sections only if they hold both semaphores, s and t; there are
three instances of user .

————————————
program MutualExclusion
cat Semaphore
nat n = 1 {initially, the semaphore value is 1};
{The procedures of Semaphore are to be included here}

end {Semaphore}

box s, t : Semaphore

cat user
boolean hs, ht = false, false;
{hs is true when user holds s. Similarly, ht.}
{The procedures of user are to be included here}

end {user}

box u, v, w : user
end {MutualExclusion}
————————————

3.2.2 Procedure
procedure ::= partial-procedure ∨ total-procedure
partial-procedure ::= partial partial-method ∨ partial-action
total-procedure ::= total total-method ∨ total-action
partial-method ::= method head :: partial-body
partial-action ::= action [label] :: partial-body
total-method ::= method head :: total-body
total-action ::= action [label] :: total-body

A procedure is either partial or total, and it is either a method or an
action. Thus, there are four possible headings identifying each procedure.
Each method has a head and a body. The head is similar to the form used
in typical imperative languages; it has a procedure name followed by a list
of parameters and their types. The labels are optional for actions; they
have no effect on program execution.
The convention for parameter-passing is call by value-result. First, the

arguments of the procedure call are stored into the parameters; the parame-
ters are treated as local variables of the called procedure. Upon termination
of the execution of the called procedure the parameter values are assigned
to the arguments.
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Example (continued)

We add the procedure names to the previous skeletal program.

————————————
program MutualExclusion
cat Semaphore
nat n = 1 {initially, the semaphore value is 1};
partial method P :: {Body of P goes here}
total method V :: {Body of V goes here}

end {Semaphore}

box s, t : Semaphore

cat user
boolean hs, ht = false, false;
partial action s.acquire:: {acquire s and set hs to true.}
partial action t .acquire:: {acquire t and set ht to true.}
partial action execute::
{execute body if both hs, ht are true. Then set hs, ht to false.}

end {user}

box u, v, w : user
end {MutualExclusion}
————————————

3.2.3 Procedure body
A procedure body has different forms for partial and total procedures. In
this book, a total-body is any sequential program; it may include calls upon
total methods of other boxes. The partial-body is defined by:

partial-body ::= alternative {( | alternative) ∨ ( � | alternative)}
alternative ::= pre-condition [; pre-procedure] → total-body
pre-condition ::= predicate
pre-procedure ::= partial-method-call

The body of a partial procedure consists of one or more alternatives;
we defer discussion of | and � | to section 3.2.4. Each alternative has a pre-
condition, an optional pre-procedure and a total-body. A pre-condition is
a predicate that may name only the procedure parameters and the local
variables of the box in which the procedure appears. A pre-procedure is a
partial method of some other box.
Next, we show examples of partial procedures that have only single al-

ternatives. A discussion of multiple alternatives appears in section 3.2.4,
and examples are given in section 3.2.5.
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Example (continued)
Below, we include code for each procedure body in MutualExclusion. The
partial actions s.acquire and t .acquire in user call on partial methods s.P
and t.P as pre-procedures. Partial action execute in user calls the total
methods s.V and t.V in its body. Partial action P in Semaphore has no
pre-procedure.

————————————
program MutualExclusion
cat Semaphore
nat n = 1 {initially, the semaphore value is 1};
partial method P :: n > 0 → n := n− 1
total method V :: n := n+ 1

end {Semaphore}

box s, t : Semaphore

cat user
boolean hs, ht = false, false;
partial action s.acquire:: ¬hs; s.P → hs := true
partial action t .acquire:: ¬ht; t.P → ht := true
partial action execute:: hs ∧ ht →

critical section; s.V ; t.V ; hs := false; ht := false
end {user}

box u, v, w : user
end {MutualExclusion}
————————————

The operational semantics of Seuss programs are described in section 3.3.
The program given above may become deadlocked, i.e., it may not allow
any user to enter its critical section, because one may have acquired s and
another t. This problem may be avoided by first acquiring s and then t;
i.e., by changing the pre-condition of t .acquire to hs ∧ ¬ht.

3.2.4 Multiple alternatives
Each alternative in a partial procedure is positive or negative: the first
alternative is always positive; an alternative preceded by | is positive and
one preceded by � | is negative. For each partial procedure at most one of its
alternatives holds in any state; i.e., the pre-conditions of the alternatives
are pairwise disjoint.
The programmer must ensure that a negative alternative never modifies

the value of any argument of its call.
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The effect of a procedure call is described in detail in section 3.3. In
short, a procedure none of whose alternatives has a true pre-condition re-
jects the call. If an alternative has a true pre-condition (there can be at
most one, because the alternatives have disjoint pre-conditions), then its
pre-procedure is called; if the pre-procedure rejects, the alternative (and
this procedure) rejects; and if the pre-procedure accepts, the body of the
alternative is executed. The distinction between positive and negative alter-
native plays a role only after the execution of the body; the call is rejected
if it is a negative alternative and accepted if the alternative is positive.
A negative alternative allows the state of the called box to be changed

while the caller’s state remains unchanged (this is why we required that it
should not modify the value of any argument). This is a powerful mecha-
nism to devise starvation-free solutions, such as in implementing a strong
semaphore (section 4.9.2).

3.2.5 Examples of alternatives

Use of positive alternatives
Cat multiplexor includes method get, which returns items from channels
in1 and in2 alternately, starting with in1. Variable c is 1 if the next item
is to be retrieved from in1; c = 2 otherwise.

————————————
cat multiplexor
enum {1, 2} c = 1;

partial method get(x: type)::
c = 1; in1.get(x) → c := 2

| c = 2; in2.get(x) → c := 1
end {multiplexor}
————————————

The program below attempts to avoid the use of alternatives. Variable
y’s value is the next item to be returned, or φ when it holds no item.

————————————
cat multiplexor1
enum {1, 2} c = 1;
type y = φ;

partial method get(x: type):: y �= φ → x, y := y, φ
partial action get1:: c = 1 ∧ y = φ; in1.get(y) → c := 2
partial action get2:: c = 2 ∧ y = φ; in2.get(y) → c := 1

end {multiplexor1}
————————————
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The execution of multiplexor1 does not quite match that of multiplexor ,
because multiplexor1 implements a one-item look-ahead. In general, al-
ternatives cannot be eliminated. Also, the alternatives in a partial action
cannot generally be split into separate actions.

Use of negative alternatives: strong semaphore
A group of users share a semaphore. Each user calls method P persistently
in the following sense: if its call is rejected, it calls again. Also, every user
that is granted the semaphore relinquishes it eventually. We implement a
strong binary semaphore, which guarantees that each caller is eventually
granted the semaphore.
The implementation is as follows. Each caller passes its id as an argument

to P . A negative alternative is used to record the ids of the callers to P
whose calls have been rejected, so that they can be granted the semaphore
in the same sequence in which they called P . The program uses the following
variables:

q: the sequence of users each of whose last call on P was rejected
avail: a boolean whose value is “the semaphore is available”

————————————
cat StrongSemaphore
seq(id) q = 〈〉;
boolean avail = true;

partial method P(i : id) ::
avail ∧ i = q.head → avail, q := false, q.tail

� | i �∈ q → q := q ++ i {i is appended to q}

total method V :: avail := true
end {StrongSemaphore}
————————————

The reader can argue operationally that (1) at most one caller is granted
the semaphore at any time, and (2) if each caller is persistent, the solution
is starvation-free: each caller is eventually granted the semaphore, provided
that each caller that is granted the semaphore relinquishes it eventually.
Several variations of semaphores are treated in section 4.9.

Note: StrongSemaphore rejects the first call on P even though q = 〈〉.
Modify the solution so that P accepts the call in this case. ✷
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Mutual exclusion using negative alternatives
In the example of section 3.2.3, a user acquires semaphores s and t to enter
its critical section. Seuss prohibits calling multiple partial methods from a
procedure. Thus, it is illegal to write in box user

partial action execute:: true ; s.P ; t.P → critical section; s.V ; t.V

This is clearly the intent, though, and we show how to simulate this using
negative alternatives. We introduce a cat, MultiSemaphore, whose partial
method PP accepts only if it holds both s and t. Total method VV releases
both semaphores. A user calls MultiSemaphore.PP repeatedly to enter its
critical section and MultiSemaphore.VV to release both semaphores. The
instance u′ of MultiSemaphore acts on u’s behalf; similarly, v′ and w′.
Method PP in MultiSemaphore first acquires s and then t to avoid dead-

lock. It rejects a call, using a negative alternative, even if it acquires s.
After acquiring s it accepts a call only if it can acquire t.

————————————
program MutualExclusion1
cat Semaphore
nat n = 1 {initially, the semaphore value is 1};
partial method P :: n > 0 → n := n− 1
total method V :: n := n+ 1

end {Semaphore}

box s, t : Semaphore

cat MultiSemaphore
boolean hs, ht = false, false;
partial method PP ::

hs ∧ ¬ht; t.P → ht := true
� | ¬hs; s.P → hs := true

total method VV :: s.V ; t.V ; hs := false; ht := false
end {MultiSemaphore}

cat user(ms : MultiSemaphore)
partial action execute::
true ; ms.PP → critical section; ms.VV

end {user}

box u′, v′, w′ : MultiSemaphore
box u : user(u ′), v : user(v ′), w : user(w ′)

end {MutualExclusion1}
————————————



48 3. An Object-Oriented View of Action Systems

Exercise Devise a general strategy that simulates the effect of having
multiple partial procedures in a guard. Use the ideas from the solution
given above for mutual exclusion with two semaphores. ✷

3.2.6 Constraints on programs

Procedure call A total-body can call only total methods; a partial
method cannot be called by a total body. A partial method can appear
only as a pre-procedure in an alternative of a partial procedure. The syntax
specifies that an alternative can have at most one pre-procedure. ✷

Partial order on boxes Every procedure p should impose a partial
order ≥p over the boxes of the program in the following sense: during an
execution of p a procedure of box b can call a procedure of box b′ provided
that b >p b

′ (i.e., b ≥p b
′ ∧ b �= b′), that is, a procedure calls a procedure

of a lower box in the order defined by ≥p. See section 10.2.3 for a formal
description of this condition. In the example of section 3.2.3, user boxes
(u, v, w) call upon Semaphore boxes (s and t), but not conversely. ✷

In most cases, all procedures impose the same partial order over the
boxes, as is the case in the example of section 3.2.3. However, there are
important exceptions for which we allow different procedures to impose
different partial orders over boxes; see section 3.4.4.
A consequence of the requirement of partial order is that if some proce-

dure of a box is being executed, then no procedure of that box is called;
therefore, at most one procedure from any box is being executed at any
moment.

Termination condition Execution of each total body (the body part of
any action, total or partial) terminates; the programmer has to prove that
this requirement is met by the program. ✷

The termination condition can be proved by induction on the “level”
of a procedure. First, show that any procedure that calls no other proce-
dure terminates whenever it accepts a call. Next, show that execution of
a procedure terminates assuming that executions of all procedures it calls
terminate.

3.3 Seuss Semantics (Operational)

At run time, a program consists of a set of boxes; their states are initialized
at the beginning of the execution. There are two different execution styles
for a program. In a tight execution, one action is executed at a time. There
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is no notion of concurrent execution; each action completes before the next
action is started. In a loose execution, actions may be executed concurrently.
The programmer understands a program by reasoning about its tight

executions only. We have developed a logic for this reasoning. An imple-
mentation may choose a loose execution for a program to maximize resource
utilization. Loose execution is described in chapter 10, and the correspon-
dence between loose and tight executions is established in that chapter. An
implementation for loose execution is suggested in chapter 11.

3.3.1 Tight execution
A tight execution consists of an infinite number of steps; in each step, an
action of a box is chosen and executed as described below in section 3.3.2.
The choice of action to be executed in a step is arbitrary except for the
following fairness constraint: each action of each box is chosen eventually.
Observe that methods are executed only when they are called from other

methods or actions, though actions are executed autonomously (and even-
tually).

3.3.2 Procedure execution
A method is executed when it is called. To simplify the description, imagine
that an action is called by a scheduler. Then the distinction between a
method and an action vanishes; each procedure is executed when called.
A procedure accepts or rejects a call. A total procedure always accepts

calls. A partial procedure may accept or reject a call, as described below.
A partial procedure that has a single (positive) alternative is of the form:

partial method g(x, y):: p; h(u, v) → S

Execution of g can be described by the following rules.

————————————
if ¬p then reject
else {p holds} call h with arguments (u, v);

if h rejects then reject
else {h accepts}
execute S;
return accept code and parameter values (x, y) to the caller of g

endif
endif
————————————

As stated earlier, the programmer must ensure that execution of each
total procedure terminates. It can then be shown that execution of any
partial procedure g terminates by using induction on the partial order
induced by ≥g (see section 3.2.6).
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The caller is oblivious to rejection, because then its body is not executed
and its state remains unchanged. If all alternatives in a program are posi-
tive, then the state does not change for any box in case of rejection; only
acceptance may cause some box state to change. This is because if any
procedure rejects during execution of an action, the entire action rejects.
If any procedure accepts —a procedure that has no pre-procedure accepts
first, followed by acceptances by its callers in the reverse order of calls—
then the entire action accepts. This execution strategy meets the commit
requirement in database protocols, where a transaction is either executed
to completion or not executed at all.
We have described execution of a partial procedure that has a single

(positive) alternative. If a procedure has several alternatives, positive and
negative, the following execution strategy is adopted. Recall that the pre-
conditions of the alternatives are disjoint.

————————————
if pre-conditions of all alternatives are false then reject
else {pre-condition of exactly one alternative f holds}

if f is a positive alternative then execute as described earlier
else {f is a negative alternative}
execute f as a positive alternative except on completion of f :
reject the call

endif
endif
————————————

Execution of a negative alternative always results in rejection. The caller
is still oblivious to rejection, because the caller’s body is not executed and
its state remains unchanged. However, a called method may change the
state of its own box even when it rejects a call, by executing a negative
alternative.
For a partial action the effect of execution is identical for positive and

negative alternatives because the scheduler does not discriminate between
acceptance and rejection of an action. Therefore, partial actions have no
negative alternatives.

Effective Execution

For the action systems of chapter 2, execution of an action is effective if its
guard —which consists only of a pre-condition— holds when it is executed.
The definition of effective execution is more involved in the presence of pre-
procedures in guards, and particularly with negative alternatives. Now, we
discuss when a “call” to a procedure is effective.
Calls to total procedures and accepted calls to partial procedures are

always effective; a rejected call may or may not be effective. The general
rule for partial procedures is: a call is ineffective iff its execution calls a
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partial procedure whose alternatives’ pre-conditions are all false. It can
be shown that an accepted call or any call that causes a state change
is effective. Therefore, a call that is rejected from a negative alternative
may be effective if the body of the alternative is executed. An ineffective
execution causes no state change; not every effective execution causes a
state change because a procedure may have skip as its body.

3.4 Discussion

3.4.1 Total vs. partial procedures
It may seem that total and partial procedures are interchangeable. A total
procedure f can be coded as the partial procedure true → f . Also, a
partial procedure can be coded as a total procedure where the outcome of
the call —acceptance or rejection— is coded explicitly as an argument that
can be tested by the caller.
But the distinction between total and partial procedures is fundamental.

Total procedures model terminating computations, i.e., transformational
aspects of programming, and partial procedures model potentially nonter-
minating computations, or reactive aspects of programming [127]. In this
view, a P operation on a semaphore is modeled by a partial procedure
—because it may never terminate— whereas a V operation is a total pro-
cedure.
The distinction between total and partial procedures is important for

concurrent implementation. We show in chapter 10 that two threads can
be executed concurrently given that (1) total procedures in different threads
commute and (2) partial procedures in each thread semicommute with to-
tal procedures in the other thread (there is no requirement on the partial
procedures of different threads). This condition allows a richer set of con-
current computations, because not all procedures are required to commute.

Total procedure
The body of a total procedure is a wait-free program. A total procedure can
be assigned a meaning based only on its inputs and outputs; if the proce-
dure is started in a state that satisfies the input specification, it terminates
eventually in a state that satisfies the output specification. Procedures to
sort a list, to find a minimum spanning tree in a graph and to send a job
to an unbounded print queue are examples of total procedures. A total
procedure need not be deterministic; e.g., any minimum spanning tree can
be returned by the procedure. Further, a total procedure need not be im-
plemented on a single processor; e.g., the list may be sorted by a sorting
network [18]. Data parallel programs and other synchronous computation
schemes are usually total procedures. A total procedure may even be a
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multiprogram in our model that admits of asynchronous execution pro-
vided that it is guaranteed to terminate, and its effect can be understood
only through its inputs and outputs; therefore, such a procedure never waits
to receive input, for instance. An example of a total procedure that inter-
acts with its environment is one that sends jobs to a print queue (without
waiting); the jobs may be processed by the environment while the proce-
dure continues its execution. All total procedures shown in this book are
sequential programs.
A total procedure may call only total procedures. When a total procedure

is called, its execution may (1) terminate normally, (2) continue forever, or
(3) fail. Nontermination of a total procedure is the result of a programming
error. We require (see Termination condition in section 3.2.6) the program-
mer to establish that the procedure is invoked only in those states where
its execution is finite.
A failure is also caused by a programming error; it occurs when a proce-

dure is invoked in a state in which it should not be invoked, for instance, if
the computation requires a number to be divided by 0 or a natural number
to be reduced below 0. Failure is a general programming issue, not just
an issue in Seuss or multiprogramming. We interpret failure to mean that
the resulting state is arbitrary; any step taken in a failed state results in
a failed state. Typically, a hardware or software trap aborts the program
when a failure occurs.

Example Consider V operation on a binary semaphore. If the semaphore
value is 0, execution of V changes it to 1. What happens if the semaphore
value is 1 prior to execution of V ? There are at least four possible imple-
mentations: (1) the operation is interpreted as a skip (i.e., the semaphore
value remains 1 and the operation terminates), (2) the operation fails, i.e.,
it changes the semaphore value arbitrarily to either 0 or 1, (3) the opera-
tion waits for the semaphore value to become 0 and then it changes it to 1,
and (4) the operation never terminates. If we adopt interpretations (1) or
(2), we may regard the V operation as a total procedure. With interpreta-
tion (3), the operation is viewed as a partial procedure. We insist that the
V operation be so implemented that possibility (4) does not arise. In this
book, we treat V as a total procedure with meaning (1). ✷

Partial procedure
Each execution of a partial procedure terminates although the procedure
may be called over and over (possibly infinitely often). For instance, in
traditional programming, the caller of P on a semaphore waits as long as
the semaphore value is 0 (typically, it is placed in a queue to wait for the
semaphore to become free). In our model, each call to P terminates, either
accepted or rejected. For an action c;P → S, body S is executed only if
P accepts the call; if P rejects the call, S is not executed, and the state of
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the caller’s box does not change (thus preserving c). To simulate waiting,
execution of this procedure is attempted repeatedly as long as c holds.
A partial procedure can call at most one partial procedure, and then as

a pre-procedure only. Thus, it is illegal to write

partial action execute:: true ; s.P ; t.P → . . .

The reason for this requirement is that we want to view an action as a unit
that is either executed to completion or not executed at all. In the example
above, if s.P accepts and t.P rejects, then execute should reject and roll
back the effect of s.P . Rollback requires an elaborate implementation, and
that is why we have decided to avoid rollback. Additionally, we allow a
partial procedure to appear only as a pre-procedure; i.e., the call on a
partial procedure is made before the calling procedure has changed its box
state; again, this policy avoids rollback in case the pre-procedure rejects
the call.

3.4.2 Tight vs. loose execution
In a tight execution, an action is completed before another action is started.
This allows a program execution to be understood as a single thread of
control, avoiding the complexity of reasoning about interleaved executions
of the action bodies. Each procedure, total or partial, may be understood
from its text alone, using the semantics of the procedures it calls without
consideration of interference by other procedures. A simple temporal logic,
such as UNITY logic [32], is suitable for deducing properties of a program
in this execution model.
An implementation need not be restricted to a single thread as long as

it achieves the same effect as a single-thread execution. In chapter 11, we
show how implementations may exploit the structures of Seuss programs
(and user-supplied directives) to run concurrent threads of actions with a
fine grain of interleaving; these loose executions preserve the semantics of
tight execution.
A consequence of having a single thread in a tight execution is that

the notion of waiting has to be abandoned, because a thread can afford
to wait only if there is another thread whose execution can establish a
state in which the first thread can resume execution. Rendezvous-based
interactions [92, 132], which require at least two threads of control to be
meaningful, do not appear in this model of computation. We have replaced
waiting by the refusal of a procedure to execute, i.e., by rejection.

3.4.3 The Seuss programming methodology
In the Seuss model, we view a multiprogram as a set of actions, where each
action deals with one aspect of the system functionality, and execution of
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an action is wait-free. Additionally, we specify the conditions under which
an action is to be executed.
Seuss partitions the multiprogramming world into (1) programming of

action bodies whose executions are wait-free, and (2) specification of the
conditions for orchestrating executions of the action bodies. Different theo-
ries and programming methodologies are appropriate for these two tasks. In
particular, if the action bodies are sequential programs, traditional sequen-
tial programming methodologies may be adopted for their developments.
The orchestration of the actions has to employ some multiprogramming
theory, but it is largely independent of the action bodies. Seuss addresses
the design aspects of multiprograms only —i.e., how to combine actions—
not the designs of the action bodies.
Seuss severely restricts the amount of control available to the program-

mer at the multiprogramming level. The component actions of a program
can be executed only through infinite repetitions. In particular, sequencing
of two actions has to be implemented explicitly. Such loss of flexibility is to
be expected when controlling larger abstractions. For an analogy, observe
that machine language offers complete control over all aspects of a ma-
chine operation: the instructions may be treated as data, data types may
be ignored entirely and control flow may be altered arbitrarily. Such flexi-
bility is appropriate when a piece of code is very short; then the human eye
can follow arbitrary jumps, and “mistreatment” of data can be explained
away in a comment. Flowcharts are particularly useful in unraveling in-
tent in a short and tangled piece of code. However, at higher levels control
structures for sequential programs are typically limited to sequential com-
position, alternation, and repetition; arbitrary jumps have nearly vanished
from all high-level programming. Flowcharts are of limited value at this
level of programming, because intricate manipulations are dangerous when
attempted at a higher level, and prudent programmers limit themselves to
appropriate programming methodologies to avoid such dangers. We expect
the structuring operators to be even simpler at the multiprogramming level.
That is why we propose that the component actions of a multiprogram be
executed using only a form of repeated nondeterministic selection.

3.4.4 Partial order on boxes
A partial order on the boxes of a program is imposed by each procedure.
This is in contrast to the usual views of process networks, in which the
processes communicate by messages or through a shared store. Typically,
such a network is not regarded as being partially ordered. For instance,
suppose that process P sends messages over channel cp to process Q and Q
sends over cq to P . The processes are viewed as nodes in a cycle where the
edges (channels), cp and cq, are directed between P and Q. Similar remarks
apply to processes communicating through shared memory. We view com-
munication media (message channels and memory) as boxes. Therefore, we
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represent this system as a set of four boxes —P , Q, cp, and cq— with the
procedures (send and receive) in cp and cq being called from P and Q but
not vice versa. The direction of message flow is immaterial in this hierarchy.
A partial order is extremely useful in deducing properties by induction on
the “levels” of the procedures.
The restriction that procedure calls be made along a partial order implies

that a partial procedure at a lowest level is of the form p → S, where
the pre-procedure is absent. A total procedure at a lowest level calls no
procedure.
We have introduced some flexibility by permitting each procedure to

impose a partial order over the boxes rather than have a single partial
order that is obeyed by all procedure calls. To see why this flexibility is
essential, consider a user who sets an alarm clock (AlarmClock) to ring
at a specified time, and AlarmClock notifies the user by ringing at the
specified time. Let the user and the AlarmClock be coded as boxes; an
action set in user calls a procedure in AlarmClock to set the clock, and a
procedure tick in AlarmClock calls WakeUp in user to wake up the user
at the specified time. So there is no fixed order of these two boxes: set
orders user higher than AlarmClock, and tick orders them in the opposite
manner. See section 4.4 for a more detailed treatment of this problem.

3.5 Concluding Remarks

The programming model described in this chapter incorporates ideas from
transaction processing [78], serializability and atomicity in databases [20],
notions of objects [131], communicating sequential processes [92], i/o au-
tomata [124, 125], and temporal logic of actions [118]. A partial procedure
is similar to a database (nested) transaction that may commit or abort;
the procedure commits (to execute) if its pre-condition holds and its pre-
procedure commits, and it aborts otherwise. A typical abort of a database
transaction requires a rollback to a valid state. In Seuss, a rejected call does
not require a rollback (though the call may change the program state).
The form of a partial procedure is inspired by communicating sequen-

tial processes [92]; a pre-procedure is a receive operation in that model.
A box may also be viewed as a monitor, see Hoare [90]; see also Brinch
Hansen [23, 24] and Dijkstra [59] for concepts similar to monitor. However,
unlike monitor procedures Seuss procedures never suspend their executions;
execution of a procedure always completes either by accepting or rejecting
the call. The wait and signal operations of monitors have been eliminated
in Seuss in favor of an optimizing scheduler; see section 11.7.
Seuss is an outgrowth of our earlier work on UNITY [32], which mod-

els action systems. The UNITY commands were particularly simple —
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assignments to program variables— and the model allowed few program-
ming abstractions besides asynchronous compositions of programs.
Seuss is an attempt to build a compositional model of multiprogram-

ming, retaining some of the advantages of UNITY. An action is similar to
a statement, though we expect actions to be much larger in size. We have
added more structure in Seuss, by distinguishing between total and par-
tial procedures, grouping the actions within boxes, and allowing procedure
calls among them. Executing actions as indivisible units would extract a
heavy penalty in performance; so we have developed a theory that per-
mits interleaved executions of the actions. Programs in UNITY interact
by operating on a shared data space; however, Seuss boxes have no shared
data, and they interact only through procedure calls. As in UNITY, issues
of deadlock, starvation, progress (liveness), etc. can be treated by mak-
ing assertions about the sequence of states in every execution. Also, as in
UNITY, program termination is not a basic concept. A program reaches a
fixed point when the pre-conditions of all actions are false; further execu-
tion of the program does not change its state, and an implementation may
then terminate the execution. This book contains an enhanced version of
UNITY logic that is applicable to Seuss programs.

3.6 Bibliographic Notes

The first paragraph of the previous section contains most of the general
references on which this work is based. A preliminary version of this model
appears in Misra [141]. Browne [25] and Newton and Browne [144] have de-
veloped and implemented parallel programming models in which parallel
and sequential aspects of computing are separated, as in Seuss. No atten-
tion is paid in this book to the development of total procedure bodies; we
refer the reader to Hehner [87] for a treatment of sequential programming
methodology. A calculus of objects is introduced in Abadi and Cardelli [1]
that develops a number of important ideas dealing with the semantics of
objects and their typing rules.
A practical programming language based on Seuss needs (1) a module

structure to associate scopes with names; (2) features for importing and
exporting cats and boxes; and (3) features for a program to interact with
programs written in other notations, particularly for input and output.
These issues have been addressed in two implementations of Seuss on C++,
see Krüger [109], and Java, see Alvisi et al. [8] and Joshi [98]. Particularly
important for practical programming are libraries; these implementations
support the building of libraries as modules that export cats.



4
Small Examples

A number of small examples are treated in this chapter. The goal is to show
that typical multiprogramming examples from the literature have succinct
representations in Seuss. Additionally, the small number of features of Seuss
is adequate for solving many well-known problems: communications over
bounded and unbounded channels, maintaining a database, implementing
a caching strategy, mutual exclusions and synchronizations, and resource
allocation. We show a number of variations of some of these examples,
implementing different progress guarantees, for instance.

Notational conventions
Single instance of a cat

A cat C with only one instance is abbreviated by declaring a box b with
the body of C appended to it. This eliminates explicit introduction of cat
name C.

Quantification

A notation for quantified expressions is described in appendix A.2.1. Here,
we extend the notation to permit constructions of a (bounded) number of
alternatives of a procedure and a (bounded) number of procedures. In all
cases, the form of a quantification is as follows: 〈⊗x : q(x) : e(x)〉, where ⊗
is any commutative, associative binary operator, x is the bound variable (or
a list of bound variables), q(x) is a predicate that determines the range of
the bound variables, and e(x) is an expression called the body. We extend
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the operator ⊗ to [], |, and � |, and the body to include alternatives and
procedures. Only actions, not methods, may be quantified. Two examples
are shown below.

〈[] i : 0 ≤ i < N :
partial action get(i):: c.i; sem[i].P → B.i

〉

partial action::
〈| i : 0 ≤ i < N : b.i → pos.i
� | i : N ≤ i < 2×N : b.i → neg.i
〉

The first partial action declaration creates N partial actions, named
get(i), 0 ≤ i < N . Action get(i) includes i as a parameter in its pre-
condition c.i, pre-procedure sem[i] and body B.i. The last partial action
declaration creates N positive and N negative alternatives. Each alterna-
tive may include i as a parameter in its pre-condition, pre-procedure, and
body.

4.1 Channels

4.1.1 Unbounded fifo channel
An unbounded first-in–first-out (fifo) channel is a cat that has two methods:
total method put (i.e., send) appends an element to the end of the message
sequence, and partial method get (i.e., receive) removes and returns the
head element of the message sequence, provided that it is nonempty. The
channel is represented below by variable r that is the sequence of values
sent but not yet received. We define a polymorphic version of the channel
where the message type is left unspecified.

————————————
cat FifoChannel(type)
seq(type) r = 〈〉 {r is initially empty};
partial method get(x: type) :: r �= 〈〉 → x, r := r.head, r.tail
total method put(x: type) :: r := r ++ x {append x to r}

end {FifoChannel}
————————————

As an application of FifoChannel , shown below is a box whose partial
action, transfer , copies the elements of in to out, both being boxes of
FifoChannel of integer. Since transfer is executed repeatedly, every element
of in is eventually transferred to out (assuming that no other box removes
items from in).
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————————————
box copy
integer x;
partial action transfer :: true; in.get(x) → out.put(x)

end {copy}
————————————

The following box is similar to copy except that it includes two partial
actions, to read from either in1 or in2 and output to out; boxes in1, in2,
and out are instances of FifoChannel . Since the two actions in merge are
executed infinitely often, this box implements a fair merge of in1 and in2
(again, we assume that no other box removes items from in1 or in2).

————————————
box merge
integer x;
partial action transfer1 :: true; in1.get(x) → out.put(x)
partial action transfer2 :: true; in2.get(x) → out.put(x)

end {merge}
————————————

4.1.2 Bounded fifo channel
We show a bounded fifo channel of size N , N > 0, below. Here both
procedures put and get are partial. The messages are kept in a circular
buffer, b. Let⊕ denote addition modN ; f is the index of the oldest message,
r is the index of the youngest message ⊕ 1, and k is the total number of
messages in the channel.

————————————
cat bch(N : nat, type)
array[0..N − 1](type) b;
enum (0..N) f, r, k = 0, 0, 0 {initially the channel is empty};
partial method put(x: type)::

k < N → r, b[r], k := r ⊕ 1, x, k + 1

partial method get(x: type)::
k > 0 → f, x, k := f ⊕ 1, b[f ], k − 1

end {bch}
————————————

As a special case, consider a channel that can hold at most one message,
i.e., a bounded channel with N = 1. The sender writes into the channel
only when the channel is empty, and writing makes the channel full. The
receiver reads and removes from the channel only when it is full, thereby
making the channel empty. Thus, the sender receives an acknowledgment
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(that its previous output has been received) when it is able to write into
the channel. As before, both get and put are partial methods. Variable w
holds the contents of the channel, if any, and full is true iff w contains data.

————————————
cat word(type)
type w;
boolean full = false {the channel is initially empty};
partial method put(x: type):: ¬full → w, full := x, true
partial method get(x: type):: full → x, full := w, false

end {word}
————————————

As an application of bounded channels, consider the following variation
of an example from Hoare [91]. A multiplexor process receives a stream
of messages from 10 different consoles. It acknowledges each message it
receives and sends the received message along a single output channel. A
console may terminate the stream by sending a special end-of-stream (eos)
message.
The solution in [91] uses rendezvous-based communication that elimi-

nates the need for acknowledging receipt of a message. We achieve a similar
effect by requiring that a console and the multiplexor communicate over a
bounded channel of size 1, i.e., a word . Then each console is assured that its
last message has been received if it is able to send another message. This is
slightly inferior to rendezvous-based communications where the buffer size
is zero and each communication is instantly acknowledged.
The multiplexor and console i, 0 ≤ i ≤ 9, communicate via c[i], where

c[i] is a word . The multiplexor sends its outputs along a FifoChannel called
out. Variable more[i] is true iff the multiplexor has not yet received an eos
message from channel i.

————————————
box multiplexor
type m;
array[0..9](boolean) more = true;

〈[]i : 0 ≤ i ≤ 9 :
partial action::
more[i]; c[i].get(m) → out.put(m); more[i] := (m �= eos)

〉
end {multiplexor}
————————————

There is no restriction on the order in which the partial actions in the
multiplexor are executed. The fairness constraint ensures that any message
sent by a console is eventually received and output by the multiplexor .
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4.1.3 Unordered channel
The fifo channel guarantees that the order of delivery of messages is the
same as the order in which they were put into the channel. Next, we consider
an unordered channel in which any message from the channel is returned
in response to a call on get, provided that the channel is nonempty. The
channel is implemented as a bag, and get is implemented as a nondetermin-
istic operation. We write x :∈ b to denote that x is assigned any value from
bag b, provided that b is nonempty. The usual notation for set operations
is used for bags in the following example.

————————————
cat uch(type)
bag(type) b = ∅ {initially b is empty};

partial method get(x: type) :: b �= ∅ → x :∈ b; b := b− {x}

total method put(x: type) :: b := b ∪ {x}
end {uch}
————————————

This implementation does not guarantee that every message will eventu-
ally be delivered, even if messages are removed from the bag an unbounded
number of times. Such a guarantee is, of course, established by the fifo
channel. We propose a solution below that implements this additional guar-
antee. In this solution every message has an index —a natural number—
and variable t is at most the smallest index. A message is assigned an index
strictly exceeding t whenever it is put in the channel; the indices of different
messages need not be distinct. The get method removes any message with
the smallest index and assigns to t the index of the removed message.

————————————
cat nch(type)
bag(index: nat, msg: type) b = ∅ {initially b is empty};
nat t = 0;
nat s;
type m;

partial method get(x: type)::
b �= ∅ → remove pair (s,m) with minimum index s from b;
t, x := s,m

total method put(x: type)::
b := b ∪ {(s, x)}, where s is any natural number, s > t

end {nch}
————————————
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Now we show that every message is removed eventually given that there
are an unbounded number of calls on get. For a message with index i we
show that the pair (i− t, p), where p is the number of messages in the bag
with index t, decreases lexicographically with each accepting execution of
get, and it never increases. Hence eventually i = t and p = 0, implying
that this message has been removed. An execution of put does not affect i,
t, or p, because the added message receives an index higher than t; thus,
(i− t, p) does not change. A get either increases t, thus decreasing i− t, or
keeps t the same and decreases p, thus decreasing (i− t, p).
In section 7.4.1 we show how to assign an arbitrary natural number to

n so that any natural number is a possible value of n. Let s be assigned
the value t + n + 1 in method put; then any value that exceeds t is a
possible value of s. The proposed solution is maximal in the sense that any
possible order of removal of items from b can be implemented in nch with
appropriate choices for the values assigned to s. This claim is proved in
section 7.5.

4.1.4 Task dispatcher
A task dispatcher interacts with a set of clients and servers. A client
generates a sequence of tasks each with a priority between 0 and N . A
server requests the dispatcher for a task whenever it is idle. A server can
process tasks of priority p or lower, for some p. The dispatcher responds to
a request from a server by sending it a task that the server can process.
A dispatcher is nothing but a glorified channel; it has two methods, put

and get. A client calls put, with a task and its priority as arguments, to
deposit the task in the channel. A server calls get with some priority p for
the dispatcher to send it a task of priority p or lower, if such a task exists.
Below, r[i] is a queue of tasks of priority i that are pending. Method get

returns a task of the highest priority that a server can process.

————————————
cat dispatcher
array[0..N ] seq(task) r = 〈〉;
enum (0..N) i;

partial method get(x: task, p : 0..N)::
{get a task of priority p or lower, as close to p as possible}
(∃j :: 0 ≤ j ≤ p ∧ r[j] �= 〈〉) →
i := (max j : 0 ≤ j ≤ p ∧ r[j] �= 〈〉 : j);
x, r[i] := r[i].head, r[i].tail

total method put(x: task, p : 0..N):: r[p] := r[p] ++ x
end {dispatcher}
————————————
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There is no guarantee that a task will be removed eventually, even though
servers that can process that task call dispatcher repeatedly. This modifi-
cation of dispatcher is left to the reader; use the ideas of section 4.1.3.

4.1.5 Disk head scheduler
The problem of coding a disk head scheduler is as follows. Several users
desire access to specific tracks on a disk. A user submits an access request
and then waits until the request is served. A filter process accepts requests
from the users; it imposes an order in which the requests are to be served.
The disk is controlled by a server process that can serve one access request
at a time; the server calls filter to receive the next request to be served.

Structure of users and server

The filter may be viewed as a channel between the users and the server .
A user submits a request by executing the partial action

b; filter .put(i, r) → {continue execution}
Here, b is the condition under which the user makes an access request, the
identity of the user is i, and r specifies the request (track number, the
locations from or into which the data is to be transferred). The user is
expected to let b remain true as long as its request has not been served;
therefore, once b becomes true, procedure filter .put(i, r) is called repeatedly
until it accepts.
The server executes a partial action:

true;filter .get(r) → {serve request r}
to receive the next request from the filter . Henceforth, a pair (i, r), where
i is a process-id and r is a request, is called a submission.

Structure of filter

The code of box filter is shown below. The local variables are ps, a set of
submissions that have already been served, and rq, a queue of submissions
that are yet to be served, arranged according to some ranking protocol.
Method get (called by the server) accepts a call provided that rq �= 〈〉; i.e.,
there is some submission that is yet to be served. In that case, the pair (i, r)
at the head of rq is removed and r is returned to the server ; additionally,
(i, r) is added to ps since the submission will be served immediately as part
of the action that calls filter .get.
Method put accepts a call with argument (i, r) only if this submission

has already been served, i.e., (i, r) ∈ ps; otherwise, the call is rejected.
This is justified given the structure of a user program (see the previous
paragraph). When a user calls put for the first time with a fresh submission
the submission is queued in rq and the call is rejected. Subsequent calls by
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the same user are rejected until the submission is served. The solution can
handle multiple requests from the same user .

————————————
box filter
seq(id, request) rq = 〈〉;
set(id, request) ps = ∅;

partial method get(r: request)::
rq �= 〈〉 → (i, r) := rq.head; rq := rq.tail; ps := ps ∪ {(i, r)}

partial method put(i: id, r: request)::
(i, r) ∈ ps → ps := ps− {(i, r)}

� | (i, r) /∈ ps ∧ (i, r) /∈ rq → add (i, r) to rq
end {filter}
————————————

This solution should be contrasted with the ones in [94, 75]. Our code is
considerably shorter because process synchronization requirements can be
stated very succinctly. Note particularly the manner in which the negative
alternative is used in method put to ensure that a call from the user is
accepted only after the submission has been processed by the server .

4.1.6 Faulty channel
Cat FaultyChannel , which simulates message loss, duplication, and out-of-
order delivery in a channel, is shown in this section. Such a channel has the
usual methods, put and get, by which the senders and receivers interact
with it. The channel may lose messages, it may duplicate any message an
unbounded (though finite) number of times, and it may permute the order
of messages.
We implement a faulty channel using a bag b, as in uch of section 4.1.3,

to simulate out-of-order delivery. To simulate message loss and duplication,
we associate a natural number n with each message that is added to b; n
denotes the number of times that the message is to be delivered. If n = 0
for a message, the message is immediately discarded, and if n > 0, the
message is added n times to b.
The faulty channel, as described, can provide no guarantee of any mes-

sage transmission at all because all messages may be lost; clearly, no useful
device can be built out of such a channel. The next requirement we add is
that a message that is put repeatedly is eventually delivered, provided that
the receiver calls get over and over. We implement this requirement by in-
sisting that n become nonzero periodically in method put. In section 7.2.1
we show a box that returns a natural number with this property. Below, we
use the notation defined for the unordered channel in section 4.1.3: write
x :∈ b to mean that x is to be assigned an arbitrary value from b.
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————————————
cat FaultyChannel(type)
bag(type) b = ∅ {initially b is empty};

partial method get(x: type)::
{remove one item from the bag if the bag is nonempty}
b �= ∅ → x :∈ b; b := b− {x}

total method put(x: type)::
{add x to the bag some random number of times}
Let n be a fair natural number (see section 7.2.1);
while n �= 0 do
b := b ∪ {x}; n := n− 1

enddo
end {FaultyChannel}
————————————

Now we argue that if put is called repeatedly with argument m and get
is called repeatedly, then m will eventually be returned as a result of get.
Repeated execution of put establishes n > 0 eventually, so message m is
eventually added to b. Let c be the number of elements of b that differ from
m at this point. Whenever a message other than m is returned in a call
to get, the value of c decreases. Also, no message other than m is added
to b by put; hence, c does not increase. Therefore, messages other than m
can be delivered only a finite number of times before m is returned as the
result of a call to get.
This fault model of a channel is assumed in the alternating bit proto-

col [159], without the possibility of message reordering.
It can be shown that the proposed solution is maximal (see section 7.6).

That is, it can display any possible behavior of the faulty channel. This is
a necessity if this program is to be used as a simulator for a faulty channel.

4.2 A Simple Database

We use a simple database example to illustrate the use of some of the cats
introduced so far.
Cat DataBase has total methods insert, delete, and query that act upon

a stored database D whose elements are of some specified type. Each of
these procedures stores one of three possible results in parameter r: eff
(effective), error (error), or ineff (ineffective). An insert of x has the out-
come eff if x is not in D (prior to the operation) and there is enough room
to add x to D. In this case, x is added to D. The outcome of insert is error
if x is not in D and there is not enough room to insert x; and the outcome
is ineff if x is already in D. A delete of x has an outcome eff if x is in D
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prior to the operation, and then x is removed from D; the outcome is ineff ,
otherwise. A query for x has an outcome eff if x is in D; the outcome is
ineff , otherwise.

————————————
type outcome = (eff , error , ineff )
cat DataBase(type)
set(type) D = ∅ {the database is initially empty};

total method insert(x: type, r: outcome)::
if x ∈ D then r := ineff

elseif there is room to add x then r := eff ; add x to D
else r := error

endif

total method delete(x: type, r: outcome)::
if x ∈ D then r := eff ; remove x from D

else r := ineff
endif

total method query(x: type, r: outcome)::
if x ∈ D then r := eff

else r := ineff
endif

end {DataBase}
————————————

We create one instance of DataBase with item-type “element”.

box store : DataBase(element)

Now consider two users, each of whom sends a stream of requests for oper-
ations on store. Requests are directed to a boxmultiplexor . Themultiplexor
accepts requests in arbitrary order. An operation’s result is a boolean; it is
true iff the operation was effective. The multiplexor also outputs a log of
the effective insert and delete operations, from which the database can be
reconstructed.
First, consider the communications between a user and the multiplexor .

We implement the communication of requests by using word , described in
section 4.1.2. We create two instances of word —xreq and yreq— for the
two users to send requests to the multiplexor , by the following declaration.

type request =
record op : (insert , delete, query),n: element endrecord

box xreq, yreq : word(request)

Box multiplexor creates a log of the effective insert and delete opera-
tions by sending the sequence of effective requests over an unbounded fifo
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channel (see section 4.1.1). We create a single box, log, for this purpose.
Also, we create two instances of FifoChannel —xrep and yrep— for the
multiplexor to communicate with the two users, sending them the results
of their requests.

box log : FifoChannel(request)
box xrep, yrep : FifoChannel(boolean)

Box multiplexor consists of two partial actions to read from the channels
xreq and yreq.

————————————
box multiplexor
request req;
outcome r;

partial action :: true; xreq.get(req) →
if req.op = insert then store.insert(req.n, r);

if r = eff then log.put(req) endif
elseif req.op = delete then store.delete(req.n, r);

if r = eff then log.put(req) endif
else {req.op = query} store.query(req.n, r)
endif ;
xrep.put(r = eff )

partial action :: true; yreq.get(req) →
if req.op = insert then store.insert(req.n, r);

if r = eff then log.put(req) endif
elseif req.op = delete then store.delete(req.n, r);

if r = eff then log.put(req) endif
else {req.op = query} store.query(req.n, r)
endif ;
yrep.put(r = eff )

end {multiplexor}
————————————

The trail of effective requests may alternatively be stored in a DataBase
instead of being sent on a fifo channel. In that case, declare log to be a box
of type DataBase(request), and let multiplexor insert the effective requests
into log . This implementation of DataBase does not save the sequence in
which the data are inserted. Therefore, multiplexor will have to add a
sequence number explicitly to each effective request before inserting it into
log .
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4.3 Management of Multilevel Memory: Lazy
Caching

We show an algorithm called Lazy Caching [6] that maintains consistency
among multiple caches. Our description uses different terminology from the
original paper; in particular, we have reduced the number of procedures by
at least half by using partial procedures. We refer the reader to the original
paper for the proof of correctness as well as an extensive discussion of cache
consistency.
The entire system consists of a main memory, several processors, and

their associated caches. We encode memory, processor, and cache as three
separate cats. There is only one instance of memory, but there may be
several processors, and there is a cache corresponding to each processor.
Additionally, there are two first-in–first-out channels, in and out, corre-
sponding to each cache.
The memory has two total methods, Mread and Mwrite; for location

a and value d, procedure Mread(d , a) assigns the value at a to d, and
Mwrite(d , a) assigns d to a.
A LazyCache is interposed between a processor and the main memory.

A processor calls read(d, a) and write(d, a) of its LazyCache to read and
write, respectively, from location a. Each instance of LazyCache includes a
local variable C that represents the cache memory, which is a subset of the
main memory; C(a) denotes the value at location a in C. Each LazyCache
has two integer variables, lenout and leninT ; the former is the number of
items in out and the latter is the number of true items in in (see below).
The clever idea in lazy caching is to let a processor continue after a

write(d, a); the pair (d, a) is simply appended to out. A read is delayed
until all previous writes by this processor have been processed.
Let u be a LazyCache; fifo channels in and out of u have the following

structure. Channel out includes pairs of the form (d, a) where d is a value
and a is a location. These are the pending write operations on the main
memory by u. Only u may apply put and get on its out channel. Channel
in has triples of the form (d, a, tag) where d is a value, a is a location, and
tag is a boolean. These are the pending updates to the cache due to writes
by u and other LazyCaches. Any LazyCache may apply put on in of cache
u, though only u may apply get on its own in channel; a true tag signifies
that the item was put by u as part of a write.
A LazyCache has two partial actions —conin and conout— which con-

sume items from in and out, respectively. Action conin removes the head
entry (d, a, tag) of in and assigns d to cache location a (if the cache does not
have a as a location, some entry is removed from the cache to make room
for it; this aspect of the algorithm is not shown in the program below).
Action conout removes the head entry (d, a) of out, writes d into location
a of the main memory and notifies the other processors —by appending
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(d, a, false) to the in channel of their caches— that they should update their
caches; also, (d, a, true) is appended to the in channel of its own cache.

————————————
cat LazyCache
set(value, location) C;
integer lenout = 0 {number of items in out};
integer leninT = 0 {number of items with true tag in in};

partial method read(d, a)::
lenout = 0 ∧ leninT = 0 ∧ a ∈ C → d := C(a)

� | a /∈ C → Mread(d , a); in.put(d, a, false)

total method write(d, a):: out.put(d, a); lenout := lenout+ 1

partial action conin::
true; in.get(d, a, tag) →
C(a) := d;
if tag then leninT := leninT − 1 endif

partial action conout::
true; out.get(d, a) →
lenout := lenout− 1;
Mwrite(d , a);
in.put(d, a, true);
leninT := leninT + 1
{append (d, a, false) to the in channel of all other caches}
〈∀p : p is in channel of another cache : p.put(d, a, false)〉

end {LazyCache}
————————————

4.4 Real-Time Controller; Discrete-Event
Simulation

A set of users, encoded by boxes user [0 ..N ], communicate with an alarm
clock, AlarmClock , in the following way. Action set in user [u] calls method
set in AlarmClock with argument d; procedure tick in AlarmClock wakes
up user[u] —by calling method WakeUp— after d clock ticks.
In section 3.2.6 we imposed the constraint that there is a partial order

over boxes so that a procedure may call another procedure only if the latter
is from a lower box. The purpose of this example is to illustrate that fixed
partial orders do not suffice, because there is no way to order user [u] and
AlarmClock : set in user [u] calls set in AlarmClock , and tick in AlarmClock
calls WakeUp in user [u]. That is why we allow each procedure to impose
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its own partial order; set in user [u] ranks user [u] higher than AlarmClock ,
and tick ranks them in the opposite order.
In user [u], boolean variable sleep is true in the interval after execution

of set and before execution of WakeUp. Predicate c in action set is the
condition under which the user sleeps. The exact value of d, the length
of the interval for which the user sleeps, is irrelevant for this example; we
assume d is set by some other procedure of user [u] that is not shown here.

————————————
box user [u: id]
boolean sleep = false;

partial action set::
integer d;
c ∧ ¬sleep → AlarmClock.set(u, d); sleep := true

total method WakeUp:: sleep := false
end {user}
————————————

Next, we design the AlarmClock . It has a local integer variable time,
and it includes a method tick, which is called periodically to advance time.
Whenever time is advanced, any wake-up calls scheduled then are executed.
In the following solution, we have adopted a simple implementation of the
event list: for each time i, event[i] is a list of users that have to be woken
up at i.

————————————
cat AlarmClock
integer time = 0;
array[0..M ] seq(id) event = 〈〉;

total method set(u, d)::
enum (0..N) j;
j := time+ d; event[j] := event[j] ++ u

total method tick::
time := time+ 1;
while event[time] �= 〈〉 do
u := event[time].head;
user[u].WakeUp;
event[time] := event[time].tail

enddo
end {AlarmClock}
————————————
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4.4.1 Discrete-event simulation
A particularly simple view of discrete-event simulation is that method tick
is called to advance time as soon as all the wake-up calls have been pro-
cessed for the current value of time. Thus, time represents the value of a
virtual clock. The counterpart of AlarmClock in simulation is an event-list
manager. Such a box includes methods to enqueue an event for future pro-
cessing and dequeue scheduled events; also, it includes an action to process
the next scheduled event and advance time. Note that time need not be
incremented in steps of 1; instead, it can be advanced to the point where
the next event is scheduled.

4.5 Example of a Process Network

It is required to compute the sequence of integers of the form 2i×3j×5k in
increasing order, for all natural numbers i, j, k. This example illustrates how
a network of processes may be employed to solve a combinatorial problem.

consume

H5

H

 H3

  H2
produce

Figure 4.1: Network to compute 2i × 3j × 5k

The computation strategy is as follows. Let H denote the sequence to be
computed. Then,

H = 〈1〉 ++ merge(2×H, 3×H, 5×H),

where function merge merges its argument sequences, each of which is
increasing, to form an increasing sequence (merge drops the duplicates
from its arguments). This equation has a unique solution in H.
The equation is implemented by the network shown in Fig. 4.1. Box

produce receives 2 × H, 3 × H, 5 × H along FifoChannels H2, H3, H5,
respectively, and it produces the desired sequence along H by merging its
inputs; initially, H has the integer 1 in it. Box consume removes items from
H; for a removed item h it sends 2×h, 3×h, 5×h along the FifoChannels
H2, H3, H5, respectively.
Program Hamming is shown below. Box produce is same as program

Merge of section 2.4.4, except for a change in channel names. This box
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has three variables, h2, h3, h5, where h2 is the last number received along
H2 that is yet to be sent along H; if all numbers received have already
been output, then h2 is 0; h3, h5 have similar meanings. Box produce has
two kinds of partial actions, read and write. A read action, say read2,
receives the next value from H2 provided that h2 = 0. Procedure write
outputs along H the smallest of h2, h3, and h5 when they are all nonzero,
and updates them appropriately. The computation is started by having 1
in channel H, initially; this is accomplished by executing method put(1) in
H. Box consume contains a single action that reads an input h from H and
outputs 2× h, 3× h, 5× h along FifoChannels H2, H3, H5, respectively.

————————————
program Hamming
box H2, H3, H5: FifoChannel(integer)
box H: FifoChannel(integer) init put(1)

box produce
nat h2, h3, h5 = 0, 0, 0;

partial action read2 :: h2 = 0; H2.get(h2) → skip
partial action read3 :: h3 = 0; H3.get(h3) → skip
partial action read5 :: h5 = 0; H5.get(h5) → skip

partial action write::
nat f ;
h2 �= 0 ∧ h3 �= 0 ∧ h5 �= 0 →
f := min(h2, h3, h5); H.put(f);
if f = h2 then h2 := 0;
if f = h3 then h3 := 0;
if f = h5 then h5 := 0

end {produce}

box consume
nat h;
partial action::
true; H .get(h) →
H2 .put(2 × h);
H3 .put(3 × h);
H5 .put(5 × h)

end {consume}

end {Hamming}
————————————
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4.6 Broadcast

We show a cat that implements broadcast-style message communication. A
set of writers attempt to broadcast a sequence of values to a set of readers.
A new value can be broadcast only if all previous values have been read by
all readers. Cat broadcast synchronizes the reads and writes as follows.
The value to be broadcast is stored in variable v, n is the number of

readers that have read v, and N is the total number of readers. Both read
and write are partial methods.
The pre-condition for read is that this particular reader has not read

the current value of v. To implement the pre-condition for reading, we
associate a sequence number with the value of v. It is sufficient to have
a one-bit sequence number, a boolean variable t, as in the alternating bit
protocol for communication over a faulty channel [159]. A reader calls read
with a boolean argument s that is the last sequence number read by this
reader . If s and t match, the reader has already read this value, so the call
on read is rejected. If s and t differ, the reader is allowed to read the value
and both s and n are updated. It is easy to show that n equals the number
of readers whose s-value equals the cat’s t-value. Initially, the local variable
s for each reader is true and v contains no unread value.
Writing is permitted only when all readers have read the value of v, i.e.,

n = N . The boolean sequence number t is reversed whenever a new value
is written to v.

————————————
cat broadcast(type)
type v;
enum (0..N) n = N ;
boolean t = true;

partial method read(s: boolean, x: type)::
s �= t → s, x, n := t, v, n+ 1

partial method write(x: type):: n = N → t, v, n := ¬t, x, 0
end {broadcast}
————————————

Ticket

Variable s used by a reader encodes its state. However, this variable is
never read or set by the reader . We call such a variable a ticket in this
book; tickets are similar to “cookies” used by several Web browsers. In
secure communication, a process is sometime given an encrypted message
by a trustworthy server that it is supposed to send to another party. The
message behaves like a ticket because its contents cannot be examined or
changed by the process.
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4.7 Barrier Synchronization

A group of concurrently executing user processes perform their computa-
tions in a sequence of phases. A user may start executing its phase p + 1
only after all users have completed their phase p, p ≥ 0. Each user has a
variable k, the highest phase that this user has completed; initially k = 0
for all users. Partial method sync of cat barrier is called by each user with
argument k in order for it to advance to phase k + 1. The protocol for a
user is shown below.

————————————
box user
nat k = 0;
partial action ::

true; barrier.sync(k) → do next phase
{Effective execution of barrier.sync(k) increases k by 1.}

end {user}
————————————

In the solution below, cat barrier has a variable p, which is the highest
phase that all users have completed. If a user calls sync with argument
k, the call should be accepted provided that k = p, i.e., all users have
completed phase k. To update p, we need to know how many users have
completed phase p; we accomplish that as follows.
Let the number of users be N . Let n be the number of users that have

not yet started their phase (p+1). Then, n is decremented whenever sync
accepts a call. If n becomes 0, then all users have completed phase p, so p
is set to p+ 1 and n to N .

————————————
box barrier
enum (0..N) n = N ;
nat p = 0;

partial method sync(k: nat)::
k = p → k, n := k + 1, n− 1;

if n = 0 then p, n := p+ 1, N endif
end {barrier}
————————————

We leave it to the reader to show that p ≤ k ≤ p + 1 is an invariant
of this program, for k of any user . Therefore, k = p may be evaluated by
comparing the lowest bits of k and p. Note that incrementation of a variable
—k and p in particular— causes its lowest bit to be inverted. We rewrite
the solution using the booleans s and t that represent the lowest bits of k
and p, respectively.
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————————————
box user1
boolean s = true;
partial action ::

true; barrier.sync(s) → do next phase
end {user1}
————————————

————————————
box barrier1
enum (0..N) n = N ;
boolean t = true;

partial method sync(s: boolean)::
s = t → s, n := ¬s, n− 1;

if n = 0 then t, n := ¬t,N endif
end {barrier1}
————————————

Note Variables k and s are tickets; s encodes the state of a user . No
process other than the barrier process may change the values of these
variables. ✷

4.8 Readers and Writers

We consider the classic readers-writers problem [49] in which a common
resource —say, a file— is shared among a set of readers and writers.
Any number of readers can have simultaneous access to the file, but a
writer needs exclusive access. There are two partial methods, StartRead
and StartWrite, by which a reader and a writer , respectively, gain access
to the resource. The readers and writers release the resource by calling total
methods EndRead and EndWrite. Reading and writing are finite, so each
accepted StartRead is eventually followed by an EndRead and a StartWrite
by EndWrite. Let nr and nw be the number of active readers and writers.

————————————
box ReaderWriter
integer nr, nw = 0, 0;
partial method StartRead :: nw = 0 → nr := nr + 1
partial method StartWrite :: nr = 0 ∧ nw = 0 → nw := 1
total method EndRead :: nr := nr − 1
total method EndWrite :: nw := 0

end {ReaderWriter}
————————————
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4.8.1 Guaranteed progress for writers
The solution given above can make no guarantee of progress for either
the readers or the writers. Our next solution guarantees that readers do
not permanently overtake writers: if there is a waiting writer , some writer
eventually gains access to the resource. The strategy is to reject calls on
StartRead if some writer is attempting to execute StartWrite. Boolean
variable WriteWait is set to true whenever a call on StartWrite is rejected
because there are active readers. We do not discuss the correctness of this
solution because a more general case is treated next. However, we note that
writers may permanently overtake the readers in this solution.

————————————
box ReaderWriter1
integer nr, nw = 0, 0;
boolean WriteWait = false;

partial method StartRead ::
nw = 0 ∧ ¬WriteWait → nr := nr + 1

partial method StartWrite ::
nr = 0 ∧ nw = 0→ nw := 1; WriteWait := false

� | nr �= 0 → WriteWait := true

total method EndRead :: nr := nr − 1

total method EndWrite :: nw := 0
end {ReaderWriter1}
————————————

4.8.2 Guaranteed progress for readers and writers
The next solution guarantees progress for both readers and writers; it is
similar to the previous solution — introduce a boolean variable ReadWait
analogous to WriteWait . However, the analysis is considerably more com-
plicated in this case. We outline an operational argument for the progress
guarantees; a formal proof appears in section 12.2.2.
We argue that if WriteWait is ever true, it will eventually be falsified,

ensuring that a call upon StartWrite will accept eventually. Similarly, if
ReadWait is ever true, it will eventually be falsified. To prove the first claim,
consider the state in which WriteWait is set to true (initially WriteWait
is false). Since nr �= 0 is a pre-condition for such an assignment, a read
operation is under way, so nw = 0. Once ¬WriteWait holds, no further
call on StartRead will be accepted, and successive calls on EndRead will
eventually establish nr = 0. Also, as long as there are no active writers,
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ReadWait will remain false because ReadWait is set to true only when
nw �= 0. Thus, eventually,

nr = 0 ∧ nw = 0 ∧ ¬ReadWait ∧ WriteWait

will hold. No method other than StartWrite can be executed effectively in
this state: none of the guards of the alternatives of StartRead holds; no call
on EndRead or EndWrite will be made because no read or write operation
is under way, from nr = 0 ∧ nw = 0. Therefore, a call on StartWrite
will be accepted, which will falsify WriteWait . The argument for eventual
falsification of ReadWait is similar.

————————————
box ReaderWriter2
integer nr, nw = 0, 0;
boolean WriteWait ,ReadWait = false, false;

partial method StartRead ::
nw = 0 ∧ ¬WriteWait → nr := nr + 1; ReadWait := false

� | nw �= 0 → ReadWait := true

partial method StartWrite ::
nr = 0 ∧ nw = 0 ∧ ¬ReadWait → nw := 1; WriteWait := false

� | nr �= 0 → WriteWait := true

total method EndRead :: nr := nr − 1

total method EndWrite :: nw := 0
end {ReaderWriter2}
————————————

A number of additional facts about this program are worth noting.
ReadWait is never set to true if there are active readers, and WriteWait
is never set to true if there is an active writer . This is essential. Other-
wise, consider the scenario in which there are several active readers, and
a writer calls StartWrite, setting WriteWait to true, and then, a reader
calls StartRead setting ReadWait to true. In this state, both ReadWait and
WriteWait are true and they will remain true forever, preventing StartRead
and StartWrite from ever accepting a call.

4.8.3 Starvation-freedom for writers
Our final variation guarantees absence of starvation for the writers but no
progress guarantees for the readers. We identify a writer by including its
process-id as an argument in the call to StartWrite. A queue of writer ids,
wq, is maintained and StartWrite accepts a call only if nr = 0 ∧ nw = 0
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holds and the caller is at the head of the queue. The test on variable
WriteWait is replaced by a test on the queue length. In the following,
“pid” stands for the type of process-id.

————————————
box ReaderWriter3
integer nr, nw = 0, 0;
seq(pid) wq = 〈〉 {wq is initially empty};

partial method StartRead ::
nw = 0 ∧ wq = 〈〉 → nr := nr + 1

partial method StartWrite(i: pid) ::
nr = 0 ∧ nw = 0 ∧ i = wq.head → nw := 1; wq := wq.tail

� | i /∈ wq → wq := wq ++ i

total method EndRead :: nr := nr − 1
total method EndWrite :: nw := 0

end {ReaderWriter3}
————————————

A solution that guarantees absence of starvation for both readers and
writers is slightly more involved. One strategy is to create a single queue in
which the list of reader and writer ids are kept for the calls that have been
rejected; subsequent calls are accepted in order of appearance in this queue.
Consecutive readers in the queue are permitted to have simultaneous access
to the resource.

4.9 Semaphore

A binary semaphore, often called a lock, is typically associated with a re-
source such as a file, device, or communication channel [58]. A process has
exclusive access to a resource only when it acquires (or holds) the corre-
sponding semaphore. A process acquires a semaphore by completing a P
operation, and it releases the semaphore by executing a V . We regard P
as a partial method and V as a total method.
Traditionally, a semaphore is weak or strong depending on the guarantees

made about the eventual success (i.e., acceptance) of the individual calls
on P . For a weak semaphore, no guarantee can be made about a particular
process acquiring the semaphore no matter how many times it attempts P ,
though it can be asserted that a call on P by some process is accepted if the
semaphore is available. Thus, a specific process may be starved; it is never
granted the semaphore even though another process may hold it arbitrarily
many times. A strong semaphore avoids individual (process) starvation; if
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the semaphore is available infinitely often, it is eventually acquired by each
process attempting the P operation. We discuss both types of semaphores
and show several subtle variations in their implementations.
In section 4.9.3, we introduce snoopy semaphore, a new kind of semaphore.

Unlike a typical semaphore that is first acquired and then released after its
associated resource has been used, the holder of a snoopy semaphore re-
leases the semaphore only if some other process requests it. This is a useful
strategy if there is low contention for the resource, because a process may
then use the resource as long as it is not required by the other processes.
We restrict ourselves to binary semaphores in all cases; extensions to

general semaphores are straightforward; see section 3.2.3 for an example of
a general weak semaphore.

4.9.1 Weak semaphore
In the following, semaphore is a weak binary semaphore, and user shows
how a semaphore s is called.

————————————
cat semaphore
boolean avail = true; {initially the semaphore is available}
partial method P :: avail → avail := false
total method V :: avail := true

end {semaphore}
————————————

————————————
box user
partial action :: c; s.P → use s’s resource; s.V
{other actions of the box}

end {user}
————————————

Usually, once pre-condition c in user becomes true, it remains true until
the process acquires the semaphore. However, there is no requirement in
Seuss that c will remain true as described. This feature can be used to
acquire either of the semaphores s and t, as shown below.

————————————
box user
partial action :: c; s.P → c := false; use s’s resource; s.V
partial action :: c; t.P → c := false; use t’s resource; t.V
{other actions of the cat}

end {user}
————————————



80 4. Small Examples

The implementation of the weak semaphore does not impose any restric-
tion on its callers; for instance, a process that does not hold the semaphore
may release it maliciously by executing a V operation, thereby causing the
semaphore to be acquired by a process while another process is still hold-
ing it. The previous implementation is appropriate when the semaphore
is shared among processes that are trustworthy. The more elaborate im-
plementation, shown below, permits only the semaphore-holder to invoke
the V operation successfully. If a non-holder attempts V , there is no effect
(another possibility would be to make the program fail in this case). In the
following, “pid” is the type of process-id; each caller on P or V supplies its
id as an argument. Value of holder is the id of the process that holds the
semaphore; holder is nil if no process holds the semaphore.

————————————
cat semaphore1
pid holder = nil {initially the semaphore is not held}
partial method P(i : pid) ::
holder = nil → holder := i

total method V (i : pid) ::
if holder = i then holder := nil endif

end {semaphore1}
————————————

In this solution a process cannot transfer a semaphore it holds to another
process, the latter to release the semaphore subsequently. Next, we use a
ticket: an accepted call on P returns a ticket (an arbitrary positive integer)
and a call on V has effect only if it is attempted by the ticket holder. Let
PN.pnat(j) return a positive integer in j, and any positive integer is a
possible output. See section 7.4 for an implementation of a box AN so that
AN.anat(k) returns a natural number in k and any natural number is a
possible output; box PN may be similarly implemented (or, PN.pnat(j)
may call AN.anat(k) and set j to k + 1).

————————————
cat semaphore2
nat holder = 0 {initially the semaphore is not held};

partial method P(i : nat) ::
nat j;
holder = 0 → PN.pnat(j); i, holder := j, j

total method V (i : nat) ::
if holder = i then holder := 0 endif

end {semaphore2}
————————————
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This solution still does not guarantee that the holder has exclusive access
to the resource. A determined intruder can attempt to guess the holder’s
ticket value in a series of attempts. For use in an environment where malice
rules, tickets should carry digital signatures [54, 157]. The current imple-
mentation may be effective against errors caused by poor programming or
hardware malfunction.
None of the implementations shown in this section guarantees absence of

individual starvation. Consider a cat that has a partial action of the form

c; s.P → . . .

where s is an instance of a weak semaphore and pre-condition c remains
true as long as s.P is not accepted. It cannot be guaranteed that the call on
s.P will ever be accepted. However, we can assert a simple form of progress:
if each accepted P is subsequently followed by a call on V , eventually some
process’s call on P is accepted.

4.9.2 Strong semaphore
A strong semaphore guarantees absence of individual starvation. In Seuss
terminology, if a cat contains a partial action of the form c; s.P → . . .,
where s is a strong semaphore and pre-condition c remains true as long as
s.P is rejected, execution of this partial action will eventually be effective.
A formal specification of the strong semaphore is given in section 12.5.
The following cat, shown in section 3.2.5, implements a strong semaphore.

The call on P includes the process-id as an argument. Procedure P adds
the caller-id to queue q if id is not in q, and it grants the semaphore to a
caller iff the semaphore is available and the caller-id is at the head of the
queue.

————————————
cat StrongSemaphore
seq(id) q = 〈〉;
boolean avail = true;

partial method P(i : id) ::
avail ∧ i = q.head → avail, q := false, q.tail

� | i �∈ q → q := q ++ i {i is appended to q}

total method V :: avail := true
end {StrongSemaphore}
————————————

Sequence q may be replaced by a fair bag, as was done for the unordered
channel nch (see section 4.1.3). Note that a call on P is rejected even when
the queue is empty and the semaphore is available. It is straightforward to
add an alternative to grant the semaphore in this case.
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Below, we consider a variation using ticket t as a parameter instead of
the process-id. The value of t is the position of the process in the queue, q.
A process calls P with t as an argument; t is 0 in the first call by a process.
Method P rejects the call, but it sets t to the position of this process in the
queue. If P is called with a t-value equal to the head position of the queue
and the semaphore is available, the call is accepted. A call on V makes the
semaphore available iff the caller shows the appropriate ticket; otherwise,
the call has no effect. Since the tickets have consecutive values as integers,
we use two variables, f and r, to keep the range of ticket values, i.e., we
have

invariant f ≤ r
the outstanding tickets are the integers i, f ≤ i < r

Note that f = r implies that there is no outstanding ticket.

————————————
cat StrongSemaphore1
nat f, r = 1, 1;
boolean avail = true; {initially the semaphore is available}

partial method P(t : nat) ::
avail ∧ f = t ∧ f < r → avail, f := false, f + 1

� | t = 0 → t, r := r, r + 1

total method V (t : nat)::
if t = f − 1 then avail := true endif

end {StrongSemaphore1}
————————————

This solution can be made more secure by assigning random integers as
ticket values, as was done for the weak semaphore. To guarantee absence
of starvation, the tickets are appended to a queue when they are issued.

————————————
cat StrongSemaphore2
seq(nat) q = 〈〉;
nat holder = 0 {initially the semaphore is available};

partial method P(t : nat) ::
holder = 0 ∧ t = q.head → holder, q := t, q.tail

� | t = 0 → change t so that t > 0 ∧ t /∈ q; q := q ++ t

total method V (t : nat)::
if holder = t then avail := true endif

end {StrongSemaphore2}
————————————
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A process that requests a semaphore is a persistent caller if it calls P
eventually following each rejected call. A caller that is not persistent is
transient. The solutions for the strong semaphore work only if all callers
are persistent. If there is even a single transient caller, it will block all
other callers from acquiring the semaphore. Unfortunately, there exists no
implementation for the strong semaphore in this case: there is no guarantee
that every persistent caller will eventually acquire the semaphore (given
that every holder of the semaphore eventually releases it) in the presence
of transient callers [100]. A reasonable compromise is to add a new total
method to the strong semaphore that a transient caller may call to remove
its process-id from the queue of callers.

4.9.3 Snoopy semaphore
Typically, a semaphore that is associated with a resource is first acquired
by a process by calling on P , then the resource is used, and finally the
semaphore is released by calling V . We consider a variation of this tradi-
tional model of semaphore usage.
A resource is acquired by calling P and released by calling V , as before.

However, the resource is not released unless there are outstanding requests
by the other processes. This is an appropriate strategy if there is low con-
tention for the resource, because a process may use the resource as long as
it is not required by the others.
We describe a new kind of semaphore, called SnoopySemaphore, and

show how it can be used to solve this problem. In section 4.10.3, we employ
the snoopy semaphore to solve a multiple resource allocation problem in a
starvation-free fashion.
We adopt the strategy that a process that has acquired and used a re-

source snoops from time to time to see if there is demand for it. If there is
demand, it releases the semaphore; otherwise, it may continue to use the
resource.
We add a new method, S (for snoop), to semaphore. Thus, Snoopy

Semaphore has three methods: P , V , and S. Methods P and V have the
same meaning as for traditional semaphores: a process attempts to acquire
the semaphore by calling partial method P and releases it by calling V .
The partial method S accepts a call only if the last call on P (by some
other process) has been rejected.
A process typically calls S after using the resource at least once, and

it releases the semaphore if S accepts. In the following implementation of
the snoopy semaphore, boolean variable b is set to false whenever a call on
P is accepted and true whenever a call on P is rejected. Thus, b is false
when a process acquires the semaphore; if it subsequently detects that b is
true (then the semaphore is in demand), it releases the semaphore. A weak
snoopy semaphore is shown next.
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————————————
cat SnoopySemaphore
boolean b = false {b is true if the last call on P is rejected};
boolean avail = true {initially the semaphore is available};

partial method P ::
avail → avail, b := false , false

� | ¬avail → b := true

total method V :: avail := true

partial method S :: b → skip
end {SnoopySemaphore}
————————————

In this solution, there is no guarantee that a specific process will ever
acquire the semaphore. The next solution is similar to StrongSemaphore.
Since that solution already maintains a queue of process-ids (whose calls
on P were rejected), we can implement S very simply.

————————————
cat StrongSnoopySemaphore
seq(pid) q = 〈〉;
boolean avail = true {initially the semaphore is available};

partial method P(i : pid) ::
avail ∧ i = q.head → avail, q := false , q.tail

� | i �∈ q → q := q ++ i

total method V :: avail := true

partial method S :: q �= 〈〉 → skip
end {StrongSnoopySemaphore}
————————————

The solutions employing tickets can also be used with snoopy semaphores.
Note that the two methods S and V may be combined into a single method
if every process calls V only after a call on S is accepted. We have retained
them as two separate methods to allow a process to release the semaphore
unconditionally.

Exercise (Dining philosophers) The following solution to the dining
philosophers problem is taken from [29]. The two incident forks on a process
(i.e., philosopher) are called left and right. Each fork has a state, clean or
dirty. Initially, all forks are dirty, a specific process M holds both incident
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forks and every other process, except the right neighbor of M holds its left
fork.
The solution consists of the following actions. A hungry process requests

any incident fork it does not hold; on acquiring it, the process cleans it. A
hungry process that holds both forks transits to eating, and then it dirties
the forks. A process releases a fork only if it is not eating, the fork is dirty,
and there is demand for the fork.
Solve the problem encoding each fork as a snoopy semaphore. ✷

Exercise (Committee coordination) The following problem, taken
from [32, chapter 14], combines exclusion and synchronization. A univer-
sity has a number of committees, each of which has one or more members
(a member is a professor). A member is either working or waiting. A com-
mittee can hold a meeting only if all its members are waiting (when a
meeting is started all its members switch their states to working), and no
two committees may meet simultaneously if they have a common member.
Every meeting ends eventually. Devise a solution so that if all members of
a committee are waiting, then some member attends a meeting, possibly of
another committee.
In asynchronous systems, a member is a process, a committee is a syn-

chronization, and a meeting is an occurrence of a synchronization event; in
rendezvous-based communication a committee has two members —sender
and receiver— and the goal of a meeting is to transfer a message.
Hint: Create a box for each committee and professor. There is an action

in each committee to start a meeting; its guard must guarantee that all its
members are waiting. Employ the technique shown for mutual exclusion
using negative alternatives (section 3.2.5), to code the guard succinctly. ✷

4.10 Multiple Resource Allocation

A typical problem in resource allocation has a set of resources and a set of
processes where each process is in one of three states: thinking, hungry,
and eating. A thinking process has no need for any resource. A thinking
process may become hungry for exclusive use of a subset of the resources;
the specific subset may differ with each thinking-to-hungry transition for a
process. A hungry process remains hungry until it acquires all the resources
it needs; then it transits to the eating state. Every eating process eventually
transits to the thinking state; then it releases all resources it holds.
A solution for this problem specifies the steps to be taken by a hungry

process to acquire all the resources it needs and the protocol for releasing
the resources. A solution is starvation-free if each hungry process eventually
transits to eating; a solution is deadlock-free if some hungry process even-
tually transits to eating. We associate a semaphore with each resource, and
henceforth we do not distinguish between the semaphore and the resource
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it represents. Different kinds of semaphores guarantee different properties
of the solutions.
The problem stated above is quite general. If there is a single resource, the

problem is equivalent to the mutual exclusion problem where the critical
section corresponds to the eating state: two processes cannot be in the
eating state simultaneously because the access to the resource would not
be exclusive. The problem also subsumes the classical dining philosophers
problem and its variations [29, 58]: there are an equal number of processes
and resources, numbered 0 through N , and process i needs resources i and
i⊕ 1 when it is hungry, where ⊕ is addition modulo (N + 1).
We show the code for a generic process. The action for transition from

thinking to hungry is not shown; it is part of an underlying program that
sets boolean array needs, where needs[i] is “the process needs resource i”.
Also, the transition from eating to thinking is not shown; every eating
process eventually transits to thinking and needs and d remain unchanged
by the transition. The resources are numbered 0 through N , and r is an
array [0..N ] of semaphores, one for each resource. The state of a process
—thinking, hungry, or eating— is in variable state. We write thinking as
an abbreviation for state = thinking; similarly hungry and eating.
The solutions we propose are all based on well-known algorithms from

operating systems: a hungry process acquires the resources it needs in
increasing order of resource index. Each process has a local variable d such
that a hungry process has acquired all resources it needs from 0 through
d− 1. That is, we have the invariant at each process that

〈∀i : 0 ≤ k < d :
(process is hungry and needs[k]) ⇒ process holds semaphore k

〉

4.10.1 A deadlock-free solution
In the first solution, the semaphores are weak semaphores, i.e., of type
semaphore from section 4.9.1. A process releases all semaphores it holds
when it is in thinking state; the order of release is immaterial.
We argue that this solution is deadlock-free. Assume to the contrary

that at some point in the computation a set of processes are hungry but
all processes remain hungry forever. Choose a point such that there is
no thinking-to-hungry transition beyond this point, because this transi-
tion can happen only a finite number of times before all processes become
hungry. Since no process eats, no semaphore is released. Consider a hungry
process j whose d value is dj . Since it is permanently hungry, its calls on
r[dj ].P are permanently rejected. Therefore, semaphore dj is held by a pro-
cess k. From the invariant, k is hungry, dj < dk, and k is blocked for dk.
Proceeding in this fashion, we can show an infinite sequence of increasing
d values, an impossibility.
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————————————
box r[0..N ]: semaphore

box useri

array[0..N ](boolean) needs = false;
enum (0..N + 1) d = 0;
enum (thinking, hungry, eating) state = thinking;

partial action acquire ::
hungry ∧ d ≤ N ∧ ¬needs[d] → d := d+ 1

| hungry ∧ d ≤ N ∧ needs[d]; r[d].P → d := d+ 1

partial action eat ::
hungry ∧ d > N → state := eating; use resources

partial action release ::
thinking ∧ d > N →

while d �= 0 do
d := d− 1; if needs[d] then r[d].V endif

enddo
end {useri}
————————————

In chapter 6 we show how to avoid proofs by contradiction, as given
above for progress properties.

4.10.2 A starvation-free solution
The next solution is starvation-free. We employ

box r[0..N ]: StrongSemaphore

and everything else remains the same, except that the process-id has to
be passed as an argument to r[d].P . The proof is along the same lines
as the one for the weak semaphore case. Suppose some process j remains
permanently blocked for semaphore dj . Then semaphore dj is never released
beyond some point in the computation; if it is infinitely often released, j
will acquire it according to the properties of strong semaphore. Let the
permanent holder of dj be process k, and according to the invariant k is
hungry, dj < dk, and k is blocked for dk. We derive an impossibility as
before. A formal proof of absence of starvation is given in section 12.6.

4.10.3 A deadlock-free solution using snoopy semaphores
The next solution employs an array of snoopy semaphores. A semaphore
is not released until there is demand for it. We introduce another boolean
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array holds for each process: holds[i] is true iff this process holds semaphore
i. Variable d is set to 0 along with the transition from eating to thinking.

————————————
box r[0..N ]: SnoopySemaphore

box useri

array[0..N ](boolean) needs = false;
array[0..N ](boolean) holds = false;
enum (0..N + 1) d = 0;
enum (thinking, hungry, eating) state = thinking;

partial action acquire ::
hungry ∧ d ≤ N ∧ (¬needs[d] ∨ holds[d]) → d := d+ 1
| hungry ∧ d ≤ N ∧ needs[d] ∧ ¬holds[d]; r[d].P →

holds[d] := true; d := d+ 1

partial action eat ::
hungry ∧ d > N → state := eating; use resources

〈[]j : 0 ≤ j ≤ N :
partial action release.j ::
holds[j] ∧ (¬needs[j] ∨ j ≥ d); r[j].S →
r[j].V ; holds[j] := false

〉
end {useri}
————————————

We sketch a proof of absence of deadlock. Consider a system state where
a group of processes are permanently hungry, the rest are permanently
thinking, and none of the processes can execute any action effectively. We
derive a contradiction. Let process u be permanently hungry, waiting for
resource du. Then the pre-condition of the first alternative of acquire in
the box for u is false; since hungryu holds permanently, d ≤ N holds too;
hence it can be asserted that needsu[du] ∧ ¬holdsu[du] is true. Therefore,
the pre-condition of the second alternative of acquire is true, so r[du].P is
called. Since u remains permanently hungry, this call to r[du].P is rejected.
So some process v holds du. Process v attempts the release action for du

eventually and the action is ineffective (otherwise, du would be released and
some process would acquire the resource, breaking the deadlock). Since
r[du].P was rejected, the call on r[du].S accepts. Therefore, the release
action for du is ineffective because

holdsv[du] ∧ (¬needsv[du] ∨ du ≥ dv)

does not hold. Given holdsv[du], deduce that needsv[du] ∧ (du < dv) holds;
also needsv[du] ⇒ hungryv. Thus, we have shown that for a hungry
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process u waiting for resource du there is a hungry process v waiting for
dv, where du < dv. Applying this argument repeatedly we find a hungry
process w for which dw > N— a contradiction, since w can then transit to
eating.

4.11 Concluding Remarks

We have considered a large number of examples in this chapter to illustrate
that the few programming constructs of Seuss are adequate. The examples
come from a variety of areas. Most of our solutions are considerably more
succinct than the published solutions for these problems. We expect that
the solutions for problems from other application domains will be equally
succinct.
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5
Safety Properties

5.1 Introduction

The most fundamental attribute of any program is “correctness”. Cor-
rectness has many interpretations, ranging from the narrow technical ones
—the kind advocated in this book— to esoteric science-fiction notions that
require a machine to mimic human behavior. In this book, we develop the
theory for two major classes of program properties: safety and progress. We
study safety properties in this chapter, and progress in the next chapter,
for the programming model of chapter 2. A new class of properties, called
maximality, is introduced in chapter 7. Logics for program composition are
developed in chapters 8 and 9. In chapter 12, we extend the logic for the
full programming model of chapter 3. In each chapter, we develop the the-
ory —which is typically quite small— and apply the theory to a variety of
examples to show its effectiveness.
Lamport [113] gives the following informal meaning for safety: “Some-

thing will not happen”. Roughly, a safety property constrains the permitted
actions —and therefore the permitted state changes— of a program. For
instance, requiring that an integer x be nondecreasing in a program pre-
vents any action of the program from decreasing x. Clearly, an action that
causes no state change —skip— implements any safety property. Of partic-
ular interest are special kinds of safety properties, such as invariant (that
a predicate remains true at all times during a program’s execution), stable
(that a predicate remains true once it becomes true), and constant (that
an expression never changes value).
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The primary operator for expressing safety properties is co (for con-
strains). This operator facilitates reasoning by induction on the number of
computation steps. Most safety properties that arise in practice are suc-
cinctly expressed using co. Additionally, co has simple manipulation rules
that permit easy deduction of new properties from the given ones.

Overview of the chapter

Operator co for a program is defined in terms of the actions of the pro-
gram. Several special cases of co —invariant , stable, and constant— arise
frequently in practice; they are described in section 5.3. The derived rules
for co—the main ones being conjunctivity and disjunctivity— are given in
section 5.4. There we describe the substitution axiom and the elimination
theorem, which are essential devices for constructions of succinct proofs.
The major part of this chapter, section 5.5, illustrates applications of

the theory. Safety properties for a number of programs are stated and
manipulated. The examples are chosen from diverse application areas to
demonstrate the usefulness of the proposed operator. Section 5.6 contains
a few theoretical results. Concluding remarks are in section 5.7.

5.2 The Meaning of co

Consider action systems introduced in chapter 2. The results of this chapter
apply to any action system with an arbitrary —finite or infinite— number
of actions. The only restriction we impose is that there be a skip action in
the program; execution of skip does not change the program state.
We write p co q to denote that whenever p holds before execution of any

action, q holds after the execution. Formally,

p co q ≡ 〈∀t :: {p} t {q}〉
where t is an action of the system (and the quantification is over all ac-
tions).1

Given p co q, it follows that p⇒ q, because execution of skip in a state
that satisfies p results in a state that is same as the previous state, and
this state satisfies q only if p⇒ q. All safety properties hold in a program
in which skip is the only action.
If t is of the form g → s, then {p} t {q} is established by proving

{p ∧ g} s {q}. Ineffective executions of actions can be ignored in estab-
lishing safety properties because such executions are equivalent to skip; see
appendix A.4.1 for details.
Given that p co q is a property of the program, once p holds, predicate q

continues to hold up to (and including) the point where p ceases to hold (if

1See appendix A.4.1 for an explanation of the notation {p} t {q}.
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p ever ceases to hold). That is, once p holds, it continues to hold until ¬p∧q
holds. In particular, p co pmeans that p holds forever once it becomes true.
An equivalent formulation of co using Dijkstra’s wp-calculus [61] is

p co q ≡ 〈∀t :: p ⇒ wlp.t.q〉.
This formulation allows us to establish the derived rules for co in section 5.3
by exploiting the properties of wlp.

Note on the binding powers of operators Operator co has lower
binding power than all arithmetic and predicate calculus operators. Thus,

p ∧ q co r ∧ s is to be interpreted as
(p ∧ q) co (r ∧ s). ✷

Mathematical modeling often consists of converting imprecise or am-
biguous informal descriptions to formal descriptions. Such is the case with
safety properties which are informally stated using “. . . may remain true
as long as . . .”, “. . . can be changed only if . . .”, or “. . . it is never the
case that . . .”. The corresponding formal descriptions using co are usually
easy to construct. Experience helps; therefore, this chapter includes a large
number of examples and exercises of varying difficulties. Below, we show
some typical informal descriptions and their formal counterparts.

Examples
In the following examples, x and y are integer-valued variables.

1. Once x is zero it remains zero until it becomes positive. Other ways
of stating this fact:

x can become nonzero only by becoming positive
x cannot be decreased if it is zero.

We observe that for any action if x = 0 is a pre-condition, then either
x remains zero or x becomes positive following the action, i.e.,

x = 0 co x ≥ 0 .

2. x remains positive as long as y is. This statement is ambiguous; each
of the following formal descriptions represents a reasonable interpre-
tation.

x > 0 ∧ y > 0 co y > 0 ⇒ x > 0
x > 0 co y > 0 ⇒ x > 0
x > 0 ∧ y > 0 co x > 0
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The first property says that if both x and y are positive, they will
remain so if y remains positive (we cannot tell anything about x if y
turns negative). The second property says that if x is positive, it will
remain so until y is nonpositive. The third property says that if both
x and y are positive, the first one to turn nonpositive —if it ever does
so— is y.

3. x never decreases. One way to formalize this is to start with the
equivalent: if x has a certain value m, it continues to have that value
until it exceeds m. This is identical to example (1), except that 0 is
now replaced by m. That is, for any m

x = m co x ≥ m .

Here, m is a free variable; the property is universally quantified over
all integers m. Therefore, this property actually represents a set of
properties, one property corresponding to each value of m. Another
way to express that x never decreases is

x ≥ m co x ≥ m .

The formal correspondence between the two properties shown here is
the subject of exercise (7a). The second property is in a particularly
important form that will be studied in section 5.3.

4. x may only be incremented (i.e., increased by 1). This means that in
any step, either x retains its old value, say m, or acquires the new
value m+ 1. Using free variable m,

x = m co x = m ∨ x = m+ 1 .

5. A line in a delay-insensitive circuit is held at its current value until it
has been read. Let x be the variable that denotes the line value and
let y be the variable into which x’s value is read. Using a free variable
m

x = m ∧ y �= m co x = m ∨ y = m .

How does this differ from the following?

x = m co x = m ∨ y = m
x = m ∧ y �= m co x = m

6. A philosopher may transit from the thinking state only to the hungry
state. Using predicates t and h to represent that a (particular) philoso-
pher is in the thinking or hungry state, respectively, the above says
that whenever t is falsified, h is established. However,
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t co h

is incorrect, because t does not imply h. In such cases, we put the
predicate in the left-hand side (lhs) as a disjunct in the right-hand
side (rhs) to form

t co t ∨ h

This property says that whenever t is falsified (t ∨ h) holds; therefore,
¬t ∧ (t ∨ h) holds in such a state, which implies that h holds whenever
t is falsified.

7. A message is received only if it has been sent. Such a statement
is best treated by considering its contrapositive: Any message that
is unsent remains unreceived. (Hint: apply contrapositive if you see
“only”, “only if” or “provided that” in a description.) There are two
possible interpretations —using sent and received to denote that a
specific message has been sent and received, respectively—

¬sent ∧ ¬received co ¬received
¬sent ∧ ¬received co received ⇒ sent

The second property permits received and sent to be made true simul-
taneously, i.e., in one action —a rendezvous-style communication—
whereas the first property prohibits simultaneous transmission and
delivery.

8. Variables x and y are never changed simultaneously. This is an im-
portant property that holds in every asynchronous system where x
and y are variables that are changed by different processes. Using free
variables m and n,

x, y = m,n co x = m ∨ y = n

That is, at least one of the variables is unchanged by action execution.

9. An integer can be added to a set S of integers provided that it exceeds
all elements of S. Taking the contrapositive, any integer outside the
set that does not exceed all elements stays outside the set. Using free
variable m that ranges over integers,

m �∈ S ∧ m ≤ S .max co m �∈ S

Here, S .max is the largest element of S; it is −∞ if S is empty. The
stated property allows several integers to be added to S in a single
action. How should it be changed to say that at most one integer can
be added by an action?
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10. Sequence q is changed only by appending an item to it or removing
its front item. This states a fact about how queues are manipulated.
Let free variable Q range over possible values of q, and u be a free
variable of the type that can be appended to q. We use ++ to append
an item at the front or back of a queue.

q = Q co q = Q ∨ 〈∃u :: q = Q ++ u〉 ∨ 〈∃u :: Q = u ++ q〉

Note that simultaneous removal and appending operations are pro-
hibited by this property.

Relationship of co to other kinds of safety operators
Standard safety properties are simply expressed using co. We show some
below; others appear in examples and exercises in this chapter.
In [32] we defined p unless q, for arbitrary predicates p and q, to mean

that once p holds, it continues to hold as long as q does not; if p and q hold
simultaneously, nothing can be asserted about the next state. Formally,
p unless q is defined as follows.

〈∀t :: {p ∧ ¬q} t {p ∨ q}〉
Then we have

p unless q ≡ p ∧ ¬q co p ∨ q
Conversely, if p ⇒ q, then

p co q ≡ p unless ¬p ∧ q
To say that p can be falsified only if q holds as a pre-condition, we write

〈∀t :: {p ∧ ¬q} t {p}〉, i.e.,
p ∧ ¬q co p

To express that once p holds it continues to hold until (¬p ∧ q) holds, we
write

〈∀t :: {p} t {p ∨ (¬p ∧ q)}〉, i.e.,
p co p ∨ q

Note We had adopted unless in [32] as the primary operator for express-
ing safety properties. Later experience (see, particularly, Staskauskas [165])
suggested that simplicity of formal manipulations is at least as important
as the expressive power of an operator. Theoretically, unless and co are
equally expressive, while the latter has more pleasing derived rules that
allow simpler manipulations. ✷
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5.3 Special Cases of co

5.3.1 Stable, invariant, constant
Several special cases of co appear frequently in practice, so we have special
names for these cases. For predicate p and expression e,

stable p ≡ p co p
invariant p ≡ initially p and stable p
constant e ≡ 〈∀k :: stable e = k〉,

where k is a free variable of the same type as e.

From the above, stable p means that once p is true, it remains true forever
because p co p is

〈∀s :: {p} s {p}〉
which means that no action falsifies p. Predicates false and true are stable
in any program. Stable predicates are ubiquitous, as in: “The system is
deadlocked”, or “The number of messages sent along a channel exceeds
10”. We will see many instances of stable predicates in section 5.5.
A predicate is invariant if it holds initially and it is stable. Therefore,

an invariant is always true during a program execution. Predicate true
is an invariant except in the pathological case where false holds initially.
The notion of invariant is a fundamental concept in program design. Note
that we associate an invariant with a program, not with any point in the
program text.
There is a subtle difference between a predicate being invariant and a

predicate being always true. The difference is analogous to the distinction
between “provability” and “truth” in logic. The following example is in-
structive.

————————————
program distinction
integer x, y = 0, 0;

x, y := 0, x
end {distinction}
————————————

Now, x = 0 ∧ y = 0 is an invariant because it holds initially and

{x = 0 ∧ y = 0} x, y := 0, x {x = 0 ∧ y = 0}
Since (x = 0 ∧ y = 0) ⇒ (y = 0), we assert that y = 0 is always
true during program execution. However, y = 0 cannot be shown to be
invariant, because y = 0 cannot be shown to be stable according to our
definition:

{y = 0} x, y := 0, x {y = 0}
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does not hold. In section 5.4.3, we show that a predicate that is always true
is also an invariant, using an extended notion of invariant that employs the
substitution axiom.
An expression e is constant if its value never changes during a program

execution. Our definition says that once e has value k, it will continue to
have that value. The reader should verify that the familiar constants —true,
3, ‘HELLO’— are constants according to our definition (see exercise 1g).
Note that any expression built out of constants is a constant.
As is the case for invariants, there are expressions whose values never

change but that cannot be proved constant according to our definition. For
example, y cannot be shown to be constant in program distinction, given
above, though its value is always zero. We use the substitution axiom,
described in section 5.4.3, to prove that such an expression is constant.

5.3.2 Fixed point
For a given program, the fixed point predicate FP holds on “termination”;
that is, for a state in which FP holds, further execution of the program
will not change state, and for a state in which FP does not hold, some
execution of the program causes it to change state.
A rule for computing the FP of a set of actions is given in section 2.3.2.

Let action i be of the form gi → Ci and predicate bi hold in exactly those
states where the execution of Ci has no effect. Then

FP ≡ 〈∀i :: gi ⇒ bi〉
Observe that FP holds in any state where all gis are false.
The rule for computing bi is elaborated next. Assume that the action

bodies contain only assignments and conditionals; there is no effective pro-
cedure to compute the FP of a loop. For an assignment statement x := e,
the FP is x = e. Thus, the FP for x := y+1 is x = y+1 and for x := x+1
it is false. Similarly, for a multiple assignment statement, say, x, y := e, f ,
the FP is x, y = e, f .
The FP of a conditional statement if b then R else S endif , is

(b⇒ FR) ∧ (¬b⇒ FS)

where FR, FS are the FPs of R and S, respectively. As an example, we
compute the FP of if b then x := x+ 1 else x := −x endif .

(b ⇒ x = x+ 1) ∧ (¬b ⇒ x = −x)
≡ {arithmetic}

(b ⇒ false ) ∧ (¬b ⇒ x = 0)
≡ {predicate calculus}

¬b ∧ (¬b ⇒ x = 0)
≡ {predicate calculus}

¬b ∧ x = 0
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Sequential composition poses a problem in computing FP . The FP of
R;S is not FR ∧ FS . Though execution of R;S starting in a state that
satisfies FR ∧ FS has no effect, there may be other states (that do not
satisfy FR ∧ FS) in which the execution has no effect either. For instance,
the FP of

x := x+ 1; x := x− 1
is true whereas the conjunctions of the FPs of the two assignment state-
ments yields false. We outline a procedure for computing the FP of R;S.
The strategy is to transform R;S to an equivalent program that has no
sequential composition.
Suppose the first component of a sequential composition is a conditional.

Then, the code is of the form

if b then R else S endif ; T which is equivalent to
if b then R;T else S;T endif

A similar transformation can be applied when the second component is
a conditional (if both components are conditionals, then either of the two
possible transformations may be applied). Repeated applications transform
the program to a form where sequential composition is applied to assign-
ment statements only; we leave it to the reader to prove this result, using
induction on the program structure.
Now we show how to eliminate sequential composition applied to assign-

ment statements. Note that

x := e; x := f is equivalent to
x := f [x := e]

where f [x := e] is the expression obtained from f by replacing every free
occurrence of x by e. For distinct variables,2 say x and y,

x := e; y := f is equivalent to
x, y := e, f [x := e]

In general, x := e; Y := F , where the second statement assigns to a list of
variables, is equivalent to (1) if x is in Y , then Y := F [x := e], and (2) if
x is not in Y , then x, Y := e, F [x := e].
For a set of actions of the form

〈[] i :: gi → Ci〉
FP is

〈∀i :: gi ⇒ bi〉
where bi is the FP of Ci. Thus, for

2It is not always easy to decide if two variables are distinct, for instance when the
variables are the elements A[i], A[j] of an array A.
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〈[] i : 0 ≤ i < N : m := max(m,A[i])〉
FP is calculated as follows.

FP
≡ {the definition of FP}

〈∀i : 0 ≤ i < N : m = max(m,A[i])〉
≡ {arithmetic}

〈∀i : 0 ≤ i < N : m ≥ A[i]〉
≡ {arithmetic}

m ≥ 〈max i : 0 ≤ i < N : A[i]〉
The notion of program termination can be couched in terms of FP : a

program is guaranteed to terminate iff it eventually reaches a state that
satisfies FP ; this is a progress property that is discussed in chapter 6.
The well-known phrase “The program is deadlock-free” means that ¬FP
is always true; then, it is always possible to change the program state.
We give the following formal characterization of FP in section 5.6.3: it is

the weakest predicate p such that p ∧ b is stable for any b. We show that
there is a unique weakest predicate of this form. The following result is a
direct consequence of this characterization.

• (Stability at fixed point) For any predicate b, stable (FP ∧ b).

5.4 Derived Rules

5.4.1 Basic rules
All these rules follow directly from facts about the predicate transformer
wlp; see appendix A.4.2. Here, p, q, p′, q′, and r are arbitrary predicates.

• false co p

• p co true

• (conjunction, disjunction)
p co q , p′ co q′

p ∧ p′ co q ∧ q′

p ∨ p′ co q ∨ q′

The conjunction and disjunction rules follow from the junctivity and
monotonicity properties of wlp [61] and of logical implication. These rules
generalize in the obvious manner to any set —finite or infinite— of co-
properties, because wlp and logical implication are universally conjunctive
and universally disjunctive. As corollaries of conjunction and disjunction
—taking the conjunction of r co true and p co q, and the disjunction of
false co r and p co q, respectively— we obtain
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• (lhs strengthening) p co q
p ∧ r co q

• (rhs weakening) p co q
p co q ∨ r

Also, co is transitive:

• (transitivity) p co q , q co r
p co r

This is because q ⇒ r from q co r, so the rhs of p co q can be weakened
to p co r. However, transitivity seems to be of little value because any ap-
plication of transitivity can be replaced by lhs strengthening —strengthen
q to p in q co r— or rhs weakening —weaken q to r in p co q.
Operator co is a form of temporal implication. It shares many of the

properties of logical implication, such as the ones shown above. However,
it is not reflexive (i.e., p co p does not always hold) nor are we allowed to
deduce a contrapositive (¬q co ¬p cannot be deduced from p co q).
Since the lhs of a co-property can be strengthened and its rhs can be

weakened, we write a proof of p co s, say, in the following format; see
appendix A.3 for an explanation of this proof format.

p
⇒ {why p⇒ q}

q
co {why q co r}

r
⇒ {why r ⇒ s}

s

5.4.2 Rules for the special cases
The following rules follow from the conjunction and disjunction rules given
above.

• (stable conjunction, stable disjunction)
p co q , stable r
p ∧ r co q ∧ r
p ∨ r co q ∨ r

A special case of the above is

• stable p , stable q
stable p ∧ q
stable p ∨ q

• invariant p , invariant q
invariant p ∧ q

• (constant formation) Any expression built out of constants and free
variables is a constant.
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5.4.3 Substitution axiom
An invariant may be replaced by true and vice versa in any property of a
program.
The substitution axiom allows us to deduce properties that we can-

not deduce directly from the definition. For example, given p co q and
invariant J , we conclude that

p ∧ J co q , p ∧ J co q ∧ J , p ∨ ¬J co q ∧ J .
In particular, given that invariant p and p ⇒ q, we show invariant q,

as follows.

invariant p , given
invariant p ∧ q , p ≡ p ∧ q, since p⇒ q
invariant q , replace p by true using the substitution axiom

For program distinction of section 5.3.1, we showed that y = 0 is always
true though we could not show it to be invariant. However, we could show
that x = 0 ∧ y = 0 is invariant. Using the argument given above, since
(x = 0 ∧ y = 0) ⇒ (y = 0), we now claim that y = 0 is invariant. Thus,
the substitution axiom allows us to remove the distinction between always
true and invariant.
Another consequence of the substitution axiom is that a theorem and an

invariant have the same status; an invariant can be treated as a theorem,
and a theorem, of course, is an invariant. Therefore, we often write simply
“J”, rather than “invariant J”.

Note For compositions of programs, a generalization of the substitution
axiom is given in section 8.4. ✷

Rationale for the substitution axiom
In the definition of p co q, we interpreted {p} t {q} to mean that if action
t is started in any state that satisfies p, q holds in the resulting state on
completion of t. What is “any state”? We restrict the state space to the
reachable states: a reachable state is a state (i.e., an assignment of values
to variables) that may arise during a computation; i.e., either it satisfies
the initial condition or it is a state that may result by applying an action
to a reachable state. It follows that every reachable state satisfies every
invariant. In fact, the set of reachable states is the set of states that satisfy
the strongest invariant (we show the existence of the strongest invariant in
section 5.6.2).
For action t in a program, we take {p} t {q} to mean that if t is started in

any reachable state that satisfies p, the resulting (reachable) state satisfies
q. We prove {p} t {q} by showing, for some invariant J ,

p ∧ J ⇒ wlp.t.q .
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This is because the set of states that satisfy p ∧ J includes all reachable
states that satisfy p (since a reachable state satisfies any invariant). In
particular, we can use the types of variables, or even true, as the invariant J .
Even though the notion of invariant is defined using co, and the definition of
co seems to require the notion of invariant, there is no circularity if we start
with a known invariant, such as true. We can then deduce other invariants
that can be applied in deducing further co-properties and invariants.

5.4.4 Elimination theorem
Free variables are essential to our theory. Free variables can be introduced
in the lhs by strengthening and in the rhs by weakening, e.g., from p co q
we deduce for program variable x and free variable m

p ∧ x = m co q
p co q ∨ x �= m

Free variables can be eliminated by taking conjunctions or disjunctions. We
give a useful theorem below for eliminations of free variables by employing
disjunction.
Let p be a predicate, x a program variable, and m a free variable (of the

same type as x). Let p[x := m] be the predicate obtained by replacing
all free occurrences of x by m in p. If p names3 no program variable other
than x, then p[x := m] has no program variable, so it is a constant. In
particular, p[x := m] is then stable. Observe that

p ≡ 〈∃m :: p[x := m] ∧ x = m〉

Elimination Theorem

x = m co q , where m is free
p names neither m nor any program variable other than x

p co 〈∃m :: p[x := m] ∧ q〉
Proof:

x = m co q , premise
p[x := m] ∧ x = m co p[x := m] ∧ q

, stable conjunction with p[x := m]
〈∃m :: p[x := m] ∧ x = m〉 co 〈∃m :: p[x := m] ∧ q〉

, disjunction over all m
p ≡ 〈∃m :: p[x := m] ∧ x = m〉

, see discussion above
p co 〈∃m :: p[x := m] ∧ q〉 , from above two ✷

3“p names no program variable other than x” means that no program variable other
than x occurs free in p.
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Note The consequent of the elimination theorem can be written as

p co 〈∃m : p[x := m] : q〉. ✷

The elimination theorem can be applied where x is a list of variables and
m is a list of free variables. In the following example, we apply the theorem
with x = (u, v).

Example Given

u, v = m,n co u, v = m,n ∨ (m > n ∧ u, v = m− 1, n)
we show that stable u ≥ v. Using p ≡ u ≥ v in the elimination theorem
we have

u ≥ v
co {elimination theorem}

〈∃m,n :: (m ≥ n)
∧ (〈u, v = m,n〉 ∨ 〈m > n ∧ u, v = m− 1, n〉)〉

⇒ {weaken rhs}
〈∃m,n :: u ≥ v ∨ u ≥ v〉

⇒ {simplify}
u ≥ v ✷

5.4.5 Distinction between properties and predicates
Given that p and q are predicates, p co q is a property. Though it is tempt-
ing to view a property also as a predicate, we do not do so. Therefore, it is
syntactically incorrect to write, for instance,

p ∨ (q co r)

for predicates p, q, and r. However, we use the logical symbols ∧, ⇒, ≡ in
combining properties with the following interpretation.
For properties α and β, α ∧ β holds in a program provided that both α

and β are properties of the program. Property α ⇒ β holds in a program
P if by taking α as an additional premise β can be inferred as a property of
P . Equivalently, if Π is the set of all properties of P , then β can be deduced
from Π ∪ {α}. And α ≡ β holds whenever α ⇒ β and β ⇒ α.
As a small example, consider a program over integer variables x and

y whose actions are shown below. (There is no fairness in this program
execution.)

x, y := x+ 1, y + 1
[] x, y := x− 1, y − 1

It is possible to show for this program that x ascending ⇒ y ascending,
or, more formally,
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〈∀ m :: stable x ≥ m〉 ⇒ 〈∀ n :: stable y ≥ n〉
Similarly,

〈∀ m :: stable x ≤ m〉 ⇒ 〈∀ n :: stable y ≤ n〉
We sketch a proof of the latter property. For arbitrary integers n and r

stable x− y = r , from the program text
stable x ≤ n+ r , from 〈∀ m :: stable x ≤ m〉
stable (x− y = r ∧ y ≤ n) , conjunction of above two, simplify
stable y ≤ n , disjunction of above over all r ✷

5.5 Applications

We apply our theory to several small problems. In each case, we convert
an informal description to a set of co-properties, apply some of the manip-
ulation rules given in section 5.4, and interpret the derived results.

5.5.1 Non-operational descriptions of algorithms
It is often preferable to describe an algorithm not by program text but by
its properties; the properties constitute the specification of the algorithm.
There are several advantages to this approach: (1) we can express a family
of algorithms by one set of properties, because many implementation de-
tails can be ignored while writing the properties; (2) it is usually easier to
prove facts about an algorithm from its properties than from its code; and
(3) it is often easier to understand an algorithm from its properties than
from its code. We choose a very simple problem from sequential program-
ming —computing the maximum of a set of numbers— to illustrate these
aspects. Section 5.5.2 contains another small exercise of this nature and in
section 5.5.3 a small concurrent programming example is treated using this
approach.
The typical algorithm to compute the maximum value v of a nonempty

finite set S of integers is to (1) initially assign a small value, −∞, say, to v
and (2) then scan the elements of S in some order, updating v whenever the
scanned element has a larger value. Instead of expressing this algorithm in
the notation of a programming language, we describe it by its properties,
by focusing on the allowable changes to v. Using a free variable m that
ranges over integers and −∞,

initially v = −∞
v = m co v = m ∨ (v ∈ S ∧ v > m)

The initial condition is as described above. The co-property says that v is
changed only to a higher value that is also in S. This description ignores
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the order in which the elements of S are scanned, leaving open a number
of possibilities for implementation (one of which we discuss below). Now
we can deduce several properties.

1. v is nondecreasing; i.e., for any n

stable v ≥ n

2. v never exceeds the maximum of S, i.e.,

invariant v ≤M , where M = 〈max x : x ∈ S : x〉

3. Once v is in S, it remains in S, i.e., stable v ∈ S.

The proofs of all these properties appeal to the elimination theorem; we
show one below.

• Proof of invariant v ≤M :
initially v = −∞; hence, initially v ≤M . We show stable v ≤M .

v ≤M
co {elimination theorem: v = m co v = m ∨ (v ∈ S ∧ v > m)}
〈∃ m :: (m ≤M ∧ v = m) ∨ (m ≤M ∧ v ∈ S ∧ v > m)〉

⇒ {weaken each disjunct}
〈∃m :: v ≤M ∨ v ∈ S〉

⇒ {simplify}
v ≤M ∨ v ∈ S

⇒ {v ∈ S ⇒ v ≤M , from the definition of M}
v ≤M ✷

We cannot yet prove that v will eventually equal M ; we have to wait
until we develop the theory of progress in chapter 6.
A refinement of this algorithm is the following. Set S is represented by

an array A, and the elements of A are scanned in the order A[0], A[1] . . ..
We again describe this algorithm by its properties, i.e., by the way its
variables are manipulated. Let A[0..s− 1] be the segment of the array that
has already been scanned. Then

initially v, s = −∞, 0
v, s = m, k co v, s = m, k ∨ v, s = max(m,A[k]), k + 1

where m ranges over integers and −∞, and k ranges over the indices of A.
We prove that v is the maximum over the scanned segment, i.e.,

invariant v = 〈max i : 0 ≤ i < s : A[i]〉
Initially, this property holds since

−∞ = 〈max i : 0 ≤ i < 0 : A[i]〉
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Next we prove

• Proof of stable v = 〈max i : 0 ≤ i < s : A[i]〉:
v = 〈max i : 0 ≤ i < s : A[i]〉

co {elimination theorem}
〈∃m, k ::
(m = 〈max i : 0 ≤ i < k : A[i]〉 ∧ v, s = m, k) ∨
(m = 〈max i : 0 ≤ i < k : A[i]〉 ∧ v, s = max(m,A[k]), k + 1)

〉
⇒ {arithmetic}
v = 〈max i : 0 ≤ i < s : A[i]〉 ✷

5.5.2 Common meeting time
This problem is discussed in Chandy and Misra [32, section 1.4]; a more
general version was discussed in section 1.2. The purpose of this example,
much like the one in section 5.5.1, is to explore a family of design alterna-
tives by considering the safety properties common to all members of the
family.
It is required to find the earliest meeting time acceptable to every member

in a group. Time is non-negative and real-valued. To simplify notation,
assume that there are only two persons, F and G, in the group. Associated
with F and G are functions, f and g, respectively, where each function
maps non-negative reals to non-negative reals (i.e., times to times). For
any real t, f(t) is the earliest time at or after t when F can meet; g(t) is
similarly defined. Time t is acceptable to F iff f(t) = t. Time t is a common
meeting time iff it is acceptable to both F and G, i.e., f(t) = t ∧ g(t) = t.
The goal is to design an algorithm that computes the earliest (i.e., smallest
non-negative) common meeting time, provided that one exists.
Several algorithms and their implementations on various architectures

are described in [32]. Here, we define the essential safety properties that
are common to all these algorithms.
First, we have to make certain assumptions about f and g so that the

earliest meeting time can be computed effectively. Our verbal description
suggests that t ≤ f(t), but we won’t require this property for the following
derivation; it is needed for the implementation (see the discussion at the
end of this section). We postulate that f and g be monotonic, i.e., for all
non-negative real m and n:

m ≤ n ⇒ f(m) ≤ f(n) (CMT1)
m ≤ n ⇒ g(m) ≤ g(n) .

We adopt the following strategy in computing the earliest meeting time:
define a variable t, non-negative and real, whose value never exceeds the
earliest common meeting time, and that is increased eventually if it is not a
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common meeting time. The progress property is discussed in section 6.5.2.
Here, we consider the safety aspect of the problem, given by the first re-
quirement on t. A strategy for implementing this requirement is to initially
set t to 0, and modify t by: if t’s value is m before an action, it does not
exceed both f(m) and g(m) after the action. It is not obvious that this
strategy prevents t from exceeding the earliest common meeting time; we
prove this fact below.
The formal description of the strategy is as follows.

initially t = 0 (CMT2)
t = m co t ≤ max(f(m), g(m)) (CMT3)

Let com(n) denote that n is a common meeting time, i.e.,

com(n) ≡ 〈f(n) = n ∧ g(n) = n〉
We prove from (CMT1–CMT3) that t exceeds no common meeting time;
i.e., for any n,

com(n) ⇒ t ≤ n (CMT4)

The initial condition for the invariance of (CMT4) follows from (CMT2).
The remaining proof obligation is, rewriting (CMT4),

stable (¬com(n) ∨ t ≤ n) . (CMT5)

We prove (CMT5) next. Its proof requires a subproof that is given fol-
lowing the main proof.

• Proof of stable (¬com(n) ∨ t ≤ n):

¬com(n) ∨ t ≤ n
co {elimination theorem on (CMT3),

where p is ¬com(n) ∨ t ≤ n}
〈∃ m :: (¬ com(n) ∨ m ≤ n) ∧ t ≤ max(f(m), g(m))〉

≡ {rewrite the first term as ¬ com(n) ∨ (com(n) ∧m ≤ n)}
〈∃ m :: (¬ com(n) ∨ (com(n) ∧m ≤ n))

∧ t ≤ max(f(m), g(m))〉
≡ {rewrite in disjunctive form}

〈∃ m :: (¬ com(n) ∧ t ≤ max(f(m), g(m)))
∨ (com(n) ∧ m ≤ n ∧ t ≤ max(f(m), g(m)))〉

⇒ {the first disjunct implies ¬com(n),
the second disjunct implies (see below) t ≤ n}
〈∃ m :: ¬ com(n) ∨ t ≤ n〉

⇒ {predicate calculus}
¬ com(n) ∨ t ≤ n ✷

This establishes (CMT5). Now we prove the result claimed in the above
proof.
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• Proof of 〈com(n) ∧ m ≤ n ∧ t ≤ max(f(m), g(m))〉 ⇒ 〈t ≤ n〉:
t

≤ {from the antecedent, t ≤ max(f(m), g(m))}
max(f(m), g(m))

≤ {m ≤ n from the antecedent,
(m ≤ n) ⇒ 〈f(m) ≤ f(n) ∧ g(m) ≤ g(n)〉 from (CMT1),
max is monotonic in its arguments}
max(f(n), g(n))

= {from com(n) in the antecedent, f(n) = n and g(n) = n}
max(n, n)

= {arithmetic}
n ✷

The strategy given by (CMT3) is quite general. It subsumes the following
strategies.

t = m co t = m
t = m co t = m ∨ t = max(f(m), g(m))
t = m co t = m ∨ t = f(m) ∨ t = g(m)

In each of these properties, the rhs is stronger than that of (CMT3); hence,
(CMT3) —and, consequently, (CMT5)— can be derived from each of them.
A weak safety property like (CMT3) is preferable for initial design explo-
rations because it constrains the allowable actions only minimally. Each of
the following programs, P0–P2, (in which the initial condition, t = 0, is
not shown) implements (CMT3). Also, (P3) implements (CMT3) provided
that f and g map naturals to naturals.

P0 :: t := t {does nothing useful}
P1 :: t := f(t) [] t := g(t)
P2 :: t := max(f(t), g(t))
P3 :: t < max(f(t), g(t)) → t := t+ 1

A useful strengthening of (CMT3) is to require that t be nondecreasing;
i.e.,

t = m co m ≤ t ≤ max(f(m), g(m)). (CMT3′)

This property is easily implemented (by programs P1 and P2, for in-
stance) if we know that functions f and g are ascending:

n ≤ f(n) ∧ n ≤ g(n). (CMT0)

The reader can prove (by applying elimination theorem to CMT3′) that

stable 〈t = n ∧ com(n)〉
i.e., t does not change once its value equals a common meeting time. In-
terestingly, neither (CMT0) nor (CMT3′) is required in deriving (CMT4).
Another fact about f (and g) suggested by the verbal description is that
f(f(n)) = f(n), which has not been used in our derivations.
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5.5.3 A small concurrent program: token ring
The method advocated in sections 5.5.1 and 5.5.2 —describing an algorithm
by its properties— is most profitably applied to concurrent algorithms.
Here, we consider a message transmission problem over a ring network.
A set of processes are connected in a ring where the message transmis-

sions take place over the edges of the ring; thus, a process may communicate
only with its left or right neighbor. At most one process may transmit at
any time. A technique to meet this requirement is to have a single to-
ken circulate in the ring and allow only the token holder to transmit. The
following is an abstraction of this solution.
A process is in one of three states: waiting to transmit (also called

hungry), transmitting (also called eating), or neither of the above (also
called thinking). The terms hungry, eating, thinking are taken from the
dining philosophers problem, which is a standard abstraction in resource
allocation. An eating process can transit only to thinking (see TR1, be-
low); a thinking process can transit only to hungry (see TR2); a hungry
process can transit only to eating (TR3); a hungry process remains hungry
as long as it does not hold the token (TR4); and the process holding the
token relinquishes it only if it becomes non-eating (TR5). We would like
to prove that there is at most one eating process —i.e., at most one trans-
mitting process— in the system. An intuitive proof is obvious: there is
at most one token in the system, and an eating process holds the token.
Unfortunately, this proof leaves out a number of details. For instance, the
rule for relinquishing the token, as stated above, is vague; it is not clear if
a hungry process can relinquish a token. Further, in the initial state, the
eating process, if any, has to hold the token (TR0). Such minor details,
which are often ignored in informal descriptions, cause major problems.

Notation We write ti to denote that process i is thinking; similarly
hi and ei stand for hungry and eating. These predicates are mutually
exclusive, and hi ∨ ti ∨ ei holds. The position of the token is in variable
p, i.e., p = i (as in TR5) denotes that process i holds the token. In the
following, i ranges over all processes. ✷

initially ei ⇒ p = i (TR0)
ei co ei ∨ ti (TR1)
ti co ti ∨ hi (TR2)
hi co hi ∨ ei (TR3)
hi ∧ p �= i co hi (TR4)
p = i co p = i ∨ ¬ei (TR5)

Properties (TR0–TR5) specify only the safety aspects of the system.
In particular, the protocol for transmitting the token (which is sent to
the neighbor in a specific direction on the ring) is completely ignored in
this specification. The complete protocol is specified in section 6.5.3. Here,
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we show that the partial specification is sufficient for establishing mutual
exclusion, i.e., that there is at most one eating process.
The assertion that there is at most one eating process can be expressed

by the invariant

〈∀i, j :: ei ∧ ej ⇒ i = j〉
This result is shown by proving that an eating process holds the token;
i.e., for any i, invariant ei ⇒ p = i. Then

ei ∧ ej , given
p = i ∧ p = j , from ei ⇒ p = i and ej ⇒ p = j
i = j , predicate calculus

Next, we prove invariant ei ⇒ p = i, for any i. The result follows for
the initial state from (TR0). The remaining proof obligation is as follows:

• Proof of stable (ei ⇒ p = i), for any i:

ti ∨ hi ∨ p = i co ti ∨ hi ∨ p = i ∨ ¬ei

, disjunction of (TR2, TR4, TR5)
stable ei ⇒ p = i , replace ti ∨ hi by ¬ei and rewrite ✷

Observe that (TR1, TR3) are unnecessary for the proof of mutual ex-
clusion. This proof is concise, partly because it does not mimic the usual
common-sense reasoning.

5.5.4 From program texts to properties
It is sometimes useful to specify how a variable, or a group of variables,
is changed in a program. Specifying changes for all variables amounts to
describing all safety properties of a program. We show how such a property
can be derived from the program text.
Consider an integer variable x that is changed only by the following two

actions in a program.

x := x+ 1 [] x := x− 1
We then assert, where m is a free variable,

x = m co (x = m) ∨ (x = m+ 1) ∨ (x = m− 1)
This observation can be generalized as follows. For action s and predicate
q, we write sp.s.q to denote the strongest post-condition resulting from
execution of s in a state that satisfies q. The strongest post-condition can
be computed by the formula given below, when the action is given by an
assignment statement and the pre-condition specifies the exact values of all
variables. Let X be the set of all variables accessed (read or written) in a
program and M be a list of free variables.
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sp.(X := E).(X =M) ≡ (X = E[X :=M ])

where E[X := M ] is obtained from E by replacing all free occurrences of
X by M . If P is a conditional statement, if b then R else S endif ,
then

sp.P.(X =M) ≡
〈b[x :=M ] ∧ sp.R.(X =M)〉 ∨ 〈¬b[x :=M ] ∧ sp.S.(X =M)〉

As shown in section 5.3.2, a conditional statement can be transformed in
such a way that R and S are assignment statements.
Let Ai denote action i of the program. Then the program has the follow-

ing safety property.

X =M co 〈x =M〉 ∨ 〈∃i :: sp.Ai.(X =M)〉
As an example, consider a program that has two integer variables x and

y and the following actions.

x := x+ 1
[] if x > y then y := y + 1 endif

The first assignment is equivalent to x, y := x + 1, y and the second to
x, y := x, y + 1. The derived property is

x, y = m,n co (x, y = m,n)
∨ (x, y = m+ 1, n)
∨ (m > n ∧ x, y = m,n+ 1)
∨ (m ≤ n ∧ x, y = m,n)

A property that is derived in this manner encodes all safety properties of
a program. If only the safety properties are of interest, the program text can
be discarded in favor of the single derived property. Further, the derived
property is in a form to which the elimination theorem can be applied,
to deduce how any group of variables is modified in the program. For the
example above, it follows from the derived property that

x, y = m,n co x = m ∨ x = m+ 1 , weaken rhs
x = m co x = m ∨ x = m+ 1 , disjunction over all n

That is, x can be incremented only by the actions of the program. Similarly,
we may deduce the following property, by weakening the rhs of the derived
property, to describe the possible changes in y.

x, y = m,n co (y = n) ∨ (m > n ∧ y = n+ 1)

To prove a safety property for this action system —say, stable x ≥ y—
we can start either with the program text (and show that each action
preserves the property) or with the safety property of the system derived as
above and then deduce the result. Whenever we have a mixture of program
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fragments and properties, the latter strategy is preferable since we can then
work using a single notation.
Next, we consider an example from Habermann [82]. The central theorem

of that paper follows quite simply by converting the program text to a
safety property and applying the elimination theorem. (The theorem can
be derived equally easily by showing that a certain predicate is invariant.)
The following is a rewriting of a program from [82].

————————————
box Habermann
nat np, nw = 0, 0;
nat c = C {C is some specific initial value};

wait :: if nw < c then np := np+ 1 endif ; nw := nw + 1
[] signal :: if nw > c then np := np+ 1 endif ; c := c+ 1

end {Habermann}
————————————

Here, wait encodes a P operation on a semaphore and signal is a V .
Variable np is the number of successful calls on wait , and nw is the total
number of calls on wait (where each unsuccessful caller is queued). Value
of c is C plus the total number of calls to signal . The main result proved
in [82] is that np = min(nw, c).
Rewrite wait as

if nw < c
then np, nw, c := np+ 1, nw + 1, c
else np, nw, c := np, nw + 1, c

endif

With the pre-condition np, nw, c = m,n, r, the post-condition of wait is

(n < r ∧ np, nw, c = m+ 1, n+ 1, r) ∨
(n ≥ r ∧ np, nw, c = m,n+ 1, r)

Similarly, the corresponding post-condition for signal is

(n > r ∧ np, nw, c = m+ 1, n, r + 1) ∨
(n ≤ r ∧ np, nw, c = m,n, r + 1)

The derived safety property of the program is

np, nw, c = m,n, r co (np, nw, c = m,n, r)
∨ (n < r ∧ np, nw, c = m+ 1, n+ 1, r)
∨ (n ≥ r ∧ np, nw, c = m,n+ 1, r)
∨ (n > r ∧ np, nw, c = m+ 1, n, r + 1)
∨ (n ≤ r ∧ np, nw, c = m,n, r + 1)
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call

rejidle

connring

Figure 5.1: A state transition diagram for a telephone

From the initial condition, np = min(nw, c) holds initially, regardless of
the value of C. Applying the elimination theorem, it can be shown that
np = min(nw, c) is stable. Therefore np = min(nw, c) is invariant.

5.5.5 Finite state systems
Finite state descriptions are often used for specifications of communica-
tion protocols and discrete control systems. Here, we show how the state
transitions can be described in our theory. As an example of a finite state
system, we consider an extremely simplified version of a telephone system;
see Staskauskas [165] for a more realistic version.
We focus attention on a single telephone. We postulate it to have the

following states:

idle: the handset is on-hook and not ringing

ring: the handset is on-hook and ringing

call: the handset is off-hook and a number is being dialed

conn: the telephone is engaged in a call

rej: the telephone is receiving a busy signal or the other party has discon-
nected

Our model is so simple that we cannot even distinguish in state conn if this
telephone initiated or received a call.
A possible state transition diagram is shown in Fig. 5.1. Most of the

transitions are self-explanatory; for instance, the transition from conn to
idle is taken when the user hangs up, and the transition from call to rej is
effected by the telephone switch giving a busy signal to the caller.
The safety properties of a finite state system can be obtained automat-

ically as follows. There is one safety property for each state. For a state x
that has possible transitions to states y and z, the corresponding property
is

state = x co state = x ∨ state = y ∨ state = z
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which expresses the fact that from the current state, x, an action can
effect a state change only to y or z. The safety properties obtained from
the diagram in Fig. 5.1 are as follows (in these properties we write, for
instance, idle to denote that the state is idle).

idle co idle ∨ ring ∨ call
call co call ∨ idle ∨ conn ∨ rej
conn co conn ∨ idle ∨ rej
rej co rej ∨ idle
ring co ring ∨ conn

The transitions in Fig. 5.1 are of two types —those made by the user and
those made by the telephone switch. For instance, the transition from idle to
ring is made by the telephone switch (the user can never make a telephone
ring) whereas all transitions to idle are made by the user. Fig. 5.2 depicts
the transition diagrams for the user and the switch separately. Clearly,
properties can be written down for each of these figures, as shown above.
In these diagrams, we have not shown the conditions under which a

transition takes place. For instance, the switch causes a transition from
call to conn only if a connection has been made to the dialed number, and
the transition from conn to idle by the user is made as a result of the user’s
hanging up. Sometimes the condition cannot be expressed as a finite state
property. To see this, let num be a variable in which the number dialed
by the user is stored (in this extremely trivial description we ignore the
fact that digits are stored one by one into num; instead, we assume that
the entire number is stored into num in a single atomic action). Variable
num can also take on a special value φ, which denotes that it contains no
number.
A pre-condition for the transition of user u from call to conn is that

its num differs from φ
its called number v is in ring state

A post-condition of this action is that u and v are both in conn states or
that u hangs up. This fact can be expressed by (where we prefix states by
the user identity to avoid confusion): for all users u and v, where u �= φ
and v �= φ,

u.call ∧ u.num = v ∧ v.ring
co

(u.call ∧ u.num = v ∧ v.ring)
∨ u.idle ∨ (u.conn ∧ v.conn).

However, this is a very coarse property; we cannot even state that a user is
connected to exactly one party in state conn. By suitably introducing other
variables (for instance, u.party to denote the party to which u is connected
in state conn; then u.conn ∧ u.num �= φ ⇒ u.party = u.num) we can
obtain a more refined specification.
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Transitions made by the user

Transitions made by the switch

idle

ring

rej

conn

call

call

rej

idle

connring

Figure 5.2: Partitioning the transitions of Fig. 5.1 between the user and
the switch
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It becomes clear as we add more and more details to a specification that
the finite state diagram provides a gross description of the flow of control.
It is sometimes appealing to work with a diagram because a visual check
may suffice to deduce a property. However, many of these systems have
aspects that cannot be captured by any reasonable finite number of states.

5.5.6 Auxiliary variables
In stating and verifying properties of programs, it is sometimes necessary
to introduce auxiliary variables, variables whose values at any point in the
computation depend on only the history of the program variable values.
For example, for variable u define an auxiliary variable v whose value is the
number of times u’s value has changed during the course of a computation.
Now, v can be introduced into the program by defining its initial value to
be zero, and incrementing it whenever u is changed. The problem with this
approach is that the relationship between u and v as stated above is lost; it
has to be gleaned from the program text. Since we have a logical operator
to relate values of various variables over the course of a computation, we
can define v directly, as follows.

initially v = 0
u, v = m,n co u, v = m,n ∨ (u �= m ∧ v = n+ 1)

This property asserts that (1) every change in u is accompanied by an
incrementation of the value of v, and (2) as long as u does not change, v
does not change either. It is now a simple matter to prove various facts
about v, e.g., that v is nondecreasing.
A useful auxiliary variable is the sequence of distinct values written into

a given variable; for a variable x let x̂ be this sequence. Then, for m and n
of the appropriate type

initially x̂ = 〈x〉 {〈x〉 is the sequence consisting of the value of x}
x, x̂ = m,n co x, x̂ = m,n ∨ (x �= m ∧ x̂ = n ++ x)

Consider a semaphore s, weak or strong, from section 4.9. Let auxiliary
variables np and nv be the numbers of successful P and V operations.
Initially, np and nv are both 0; define them by

s, np, nv = m,n, r
co

(s, np, nv = m,n, r)
∨ (s, np, nv = m− 1, n+ 1, r) ∨ (s, np, nv = m+ 1, n, r + 1)

By applying the elimination theorem, it follows that s− nv + np is con-
stant. Since np and nv are zero initially, the initial value of s− nv + np is
the initial value of s, and this value is retained by s− nv + np all through
the computation.
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5.5.7 Deadlock
A deadlock arises in a ring of processes when each process waits for its
left neighbor. It is intuitively obvious that this system state persists for-
ever. However, a formal proof or even a rigorous argument based on this
verbal description is messy. Most such proofs are by contradiction: if this
system state does not persist forever, there is a process that stops waiting;
let x be the first process to stop waiting; x can stop waiting only if the
process for which it has been waiting is not waiting; therefore, there is a
process that stopped waiting earlier than x, contradicting our choice of x
as the first process to stop waiting. Such informal arguments, though in-
tuitively appealing, are neither precise about the assumptions they make
—for instance, given that x is waiting for y, can x and y stop waiting
simultaneously— nor concise.
“Process x waits for y” means that whenever both x and y are waiting,

both continue to wait until y stops waiting. This informal description is
quite ambiguous; it admits at least two interpretations, as shown below.
Denote by wx that process x is waiting (and similarly, wy for y); then, x
waits for y means

wx ∧ wy co wx (strong-wait) (D1)
wx ∧ wy co wy ⇒ wx (weak-wait) (D2)

In strong-wait, both processes cannot stop waiting simultaneously; in weak-
wait they can. By weakening the rhs of (D1) we get (D2). Therefore, strong-
wait is indeed stronger than weak-wait.
First, we show that two processes x and y that are waiting strongly

for each other are deadlocked. That is, stable wx ∧ wy. The proof avoids
explicit arguments about time and arguments based on contradiction. The
essence of the proof is induction on the number of computation steps, which
is captured in the co-properties.

wx ∧ wy co wx , x strong-waits for y
wy ∧ wx co wy , y strong-waits for x
wx ∧ wy co wx ∧ wy , conjunction of above two

Next, we prove a stronger result for any finite ring of processes: if one
process in a ring strong-waits and the remaining processes weak-wait, there
is deadlock.
Let the processes be indexed 0 through N , 0 < N , and wi denote that

process i is waiting. Suppose process 0 strong-waits for process N , and
process (i+ 1) weak-waits for process i, 0 ≤ i < N .

w0 ∧ wN co w0 , use (D1) for strong-wait (D3)
〈∀i : 0 ≤ i < N : wi+1 ∧ wi co wi ⇒ wi+1〉

, use (D2) for weak-wait (D4)

This completes the mathematical modeling of the problem.
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• Proof of stable 〈∀i : 0 ≤ i ≤ N : wi〉:
〈∀i : 0 ≤ i < N : wi+1 ∧ wi〉 co 〈∀i : 0 ≤ i < N : wi ⇒ wi+1〉

, take conjunction of (D4), over all i, 0 ≤ i < N
〈∀i : 0 ≤ i ≤ N : wi〉 co w0 ∧ 〈∀i : 0 ≤ i < N : wi ⇒ wi+1〉

, take conjunction of the above and (D3); simplify the lhs
stable 〈∀i : 0 ≤ i ≤ N : wi〉

, use the principle of mathematical induction in rhs ✷

Contrast this argument with a typical informal argument of the following
kind. Consider the state of the system where all processes are waiting. If
any process (i+ 1), i ≥ 0, stops waiting subsequently, process i must have
stopped waiting then or before (i + 1). Apply the same argument to i,
i− 1, etc., to conclude that process 0 stops waiting at or before any other
process stops waiting. However, process N has to stop waiting strictly prior
to process 0. Apply the same kind of argument from process N down to
(i+1), to conclude that (i+1) stops waiting before the time we postulated
for it to stop waiting.
Our experience suggests that a temporal argument, particularly if it em-

ploys contradiction, can be replaced by a succinct formal proof using co-
properties.

Waiting for any one resource
A more involved example of mutual waiting arises when a process can wait
for any one of a set of processes. This is the typical situation where processes
hold resources and a waiting process can proceed after receiving any of the
resources for which it is waiting. Fig. 5.3 shows an example in which four
processes, x, y, z and u, are deadlocked. The arrows from x (to y and z)
denote that x is waiting for one of y and z. The waiting condition for x —
using wx, wy, and wz to denote that x, y, and z are waiting, respectively—
is

wx ∧ wy ∧ wz co wx

Unlike the previous case, the existence of a cycle in the graph does not
guarantee deadlock. A nonempty set S of nodes in a directed graph forms
a knot if every outgoing edge from a node in S is to a node in S. Fig. 5.3
has the knots {x, y, z, u} and {z, u}. We show that when all processes in
a knot S are waiting in this sense, they are deadlocked. Let i be indexed
over processes in S. As before, wi denotes that i is waiting. Let process i
have outgoing edges to nodes in Si, Si ⊆ S.

wi ∧ 〈∀j : j ∈ Si : wj〉 co wi , waiting condition for process i
〈∀i : i ∈ S : wi ∧ 〈∀j : j ∈ Si : wj〉 〉 co 〈∀i : i ∈ S : wi〉

, conjunction over all i in S
stable 〈∀i : i ∈ S : wi〉 , simplify lhs using Si ⊆ S
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u

x

zy

Figure 5.3: A knot of waiting processes

Observe that the type of waiting is captured by the co-property for each
i, and the structure of the knot is exploited in simplifying the conjunction.
An informal proof, we suspect, would be much longer.

5.5.8 Axiomatization of a communication network
In this example, we develop axioms to describe a message communicating
network. To keep matters simple, suppose that we have two processes A and
B that communicate via two one-way channels. The number of messages
sent by a process is at least as large as the number received by the other,
and both quantities are non-negative. Further, the number of messages sent
and received along each channel is nondecreasing. A channel is empty if
the number of messages sent equals the number of messages received along
that channel. The state of a process is either idle or active. An idle process
remains idle until it receives a message. Only active processes can send
messages.
Our main interest is in formally specifying the properties of the system.

We also show that when both processes are idle and both channels are
empty, the system is terminated, in the sense that no further message is
sent or received, nor will any of the processes become active.
In describing a system, we first have to decide on the variables whose

values determine the state of the system. The choice is not always clear.
In this case, for instance, we do not explicitly introduce a channel state.
Instead, we introduce sA and sB to denote the number of messages sent
by A and B and rA and rB for the number of messages received by A and
B, respectively. The channel from A to B is empty if sA = rB. That the
number of messages sent by a process is at least as large as the number
received by the other and both quantities are non-negative is given by

invariant sA ≥ rB ≥ 0
invariant sB ≥ rA ≥ 0 (CN1)
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The number of messages sent and received are nondecreasing. Using free
variables m and n (of type natural)

stable sA ≥ m, stable sB ≥ m
stable rA ≥ n, stable rB ≥ n (CN2)

For the state of a process, boolean variable qA denotes that A is idle;
similarly, qB. The following property says that each process remains idle
as long as it receives no message.

qA ∧ rA = m co rA = m ⇒ qA
qB ∧ rB = m co rB = m ⇒ qB (CN3)

Note that it is not specified if an idle process becomes active upon receiving
a message; the specification allows the process to be in either state. That
only active processes may send messages is best understood by “an idle
process does not send messages”, i.e.,

qA ∧ sA = n co sA = n
qB ∧ sB = n co sB = n (CN4)

A digression There is a subtle point in the formulation of CN4. We
prohibit an idle process from receiving a message, becoming active, and
then sending a message, all in one step. To allow this possibility, we could
write (CN4) analogously to (CN3):

qA ∧ sA = n co sA = n ⇒ qA
qB ∧ sB = n co sB = n ⇒ qB

Observe that with this specification, we can no longer prove termination:
the specification does not say that an idle process has to receive a message
strictly prior to becoming active and sending a message. Therefore, in a
state where both processes are idle and both channels are empty, a next
state is possible where both processes are idle, both channels are empty,
and one extra message has been sent and received along every channel. ✷

This completes the axiomatization. The axioms capture only some as-
pects of the system behavior. In particular, we have no guarantee that all
messages are eventually delivered (a progress property) or that messages
are delivered in the same order in which they are sent (a safety property).
It should be clear how to encode the fact that a channel is first-in–first-
out. Exercise 15 asks for axioms analogous to (CN1–CN4) for arbitrary
networks.
The state in which both processes are idle and both channels are empty

is given by

qA ∧ qB ∧ sA, sB = rB, rA

We can show this predicate to be stable. But that is not enough; it leaves
open the possibility, for instance, that the values of sA and rB could change
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while preserving this predicate. Therefore, we prove that once this predicate
holds, none of the variable values will change. Since sA, sB = rB, rA from
the predicate, it is sufficient to show that rA and rB do not change value;
i.e., for free variables m and n we show:

• stable qA ∧ qB ∧ rA, rB = sB, sA ∧ rA, rB = m,n: (CN5)

qA ∧ rA = m co rA = m ⇒ qA
, repeating (CN3)

qA ∧ sA = n co sA = n
, repeating (CN4)

qA ∧ rA, sA = m,n co (rA = m ⇒ qA) ∧ sA = n
, conjunction of above two

qB ∧ rB, sB = n,m co (rB = n ⇒ qB) ∧ sB = m
, as above; for B use n,m in place of m,n

(qA ∧ qB) ∧ rA, sA = m,n ∧ rB, sB = n,m
co

(rA = m ⇒ qA) ∧ (rB = n ⇒ qB) ∧ sA, sB = n,m
, conjunction of above two

stable rA ≥ m ∧ rB ≥ n
, from CN2

(qA ∧ qB) ∧ rA, rB = sB, sA ∧ rA, rB = m,n
co

(rA, rB = m,n ⇒ qA ∧ qB) ∧ sA, sB = n,m ∧ rA ≥ m ∧ rB ≥ n
, conjoin above two, simplify

(qA ∧ qB) ∧ rA, rB = sB, sA ∧ rA, rB = m,n
co

(qA ∧ qB) ∧ rA, rB = sB, sA ∧ rA, rB = m,n
, from (CN1), sA ≥ rB, sB ≥ rA; simplify rhs

stable (qA ∧ qB) ∧ rA, rB = sB, sA ∧ rA, rB = m,n
, from above ✷

5.5.9 Coordinated attack
The following vicious version of a synchronization problem has received
considerable attention in the literature. We show how it can be dealt with,
relatively simply, using our theory. The following description of the problem
is from Gray [77].
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Two divisions of an army are camped on two hilltops overlook-
ing a common valley. In the valley awaits the enemy. It is clear
that if both divisions attack the enemy simultaneously they will
win the battle, whereas if only one division attacks it will be
defeated. The divisions do not initially have plans for launch-
ing an attack on the enemy, and the commanding general of
the first division wishes to coordinate a simultaneous attack (at
some time the next day). Neither general will decide to attack
unless he is sure that the other will attack with him. The gener-
als can only communicate by means of a messenger. Normally,
it takes the messenger one hour to get from one encampment
to the other. However, it is possible that he will get lost in the
dark or, worse yet, be captured by the enemy. Fortunately, on
this particular night, everything goes smoothly. How long will
it take them to coordinate an attack?

The original arguments to show that there is no protocol to achieve
coordinated attack were long and cumbersome. Halpern and Moses [83]
gave the first convincing proof of this fact based on notions of knowledge
and common knowledge. We give a very brief outline of that theory as it
pertains to this problem.
For process x and predicate p, predicate x k p stands for “x knows p”;

value of this predicate is a function of the state of x. Hence, x k p does not
change as long as the state of x does not change. For predicate p, predicate
cp denotes that p is common knowledge (for some group of processes). We
have, for any process x in the group,

cp ≡ x k (cp)

That is, p is common knowledge iff all processes know it to be common
knowledge.
The coordinated attack problem requires us to establish common knowl-

edge of the attack time. Halpern and Moses [83] showed that if no atomic
action affects the state of more than one process, as is customarily the case
in asynchronous message-communicating systems, then common knowledge
cannot be gained. Later, Chandy and Misra [30] showed that under the
same assumptions, common knowledge can be neither gained nor lost; that
is, a previously unplanned attack cannot be coordinated, nor can a planned
coordinated attack be called off. This result holds under the much weaker
assumption that no action affects the states of all processes (though any
proper subset of processes can be affected). We prove this more general
result below.
Since an atomic action does not affect the states —hence the knowledge

predicates— of all processes simultaneously, in a group with more than one
process, knowledge (or ignorance) of at least one process is unchanged by
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any action. We write this assertion —where xi is process i, i is quantified
over all processes in the group, and qi is any predicate—

〈∀i :: xi k qi〉 co 〈∃i :: xi k qi〉 (CA1)
〈∀i :: ¬(xi k qi)〉 co 〈∃i :: ¬(xi k qi)〉 (CA2)

Theorem (common knowledge) In a group with more than one pro-
cess where no atomic action affects the states of all processes, common
knowledge can be neither gained nor lost; that is, for any predicate p,

constant cp

Proof: In (CA1, CA2), given above, instantiate every qi by cp. Then,
(xi k qi) = (xi k (cp)). From the definition of cp, (xi k (cp)) = cp. Hence,

〈∀i :: cp〉 co 〈∃i :: cp〉
, from CA1

cp co cp , from above (i ranges over a nonempty set)
¬cp co ¬cp , similarly, from CA2
constant cp , from above two, using the definition of constant ✷

5.5.10 Dynamic graphs
This example illustrates how we express and deduce facts about dynamic
data structures. The data structure here is a finite directed graph that can
be changed by the following operation: all edges incident on a node may
be directed toward that node in one (atomic) step.
A node that has no outgoing edge is called a bottom node. We are required

to show that no path is ever created to a non-bottom node; i.e., if there is
no path initially from node u to node v, u �= v, there is no path from u to
v at any point in the computation unless v is a bottom node at that point.
Let us first give a typical proof that draws on the well-known theorems

and terminology of graph theory. Suppose that there is no path from u to v
before a step. Call all the edges of the graph “old” at this time. Following
the step that redirects all incident edges toward a node w, call the newly
redirected edges to w “new”. Suppose that there is a path from u to v
following the step and v is non-bottom. Not all edges on this path are
“old” because then there would have been a path before the step. Since
some new edge is on this path, node w is on this path. We show that node
w is not on the path, thus leading to a contradiction. Node w is different
from v because v is assumed to be a non-bottom node, and w is a bottom
node after the step. Node w is not an intermediate node on the path nor
is w = u because w has no outgoing edge.
Our formal proof avoids the temporal argument and proof by contradic-

tion. However, the proof has to make explicit the notion of a path. In the
following proof, u, v and w range over the nodes of the graph. Let
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u Rk v, k ≥ 1 : there is a path of length k from u to v
u R v : there is a path from u to v
u. ⊥ : u is a bottom node

We define these predicates as follows:

u R1 v ≡ there is an edge from u to v (GR0)
u Rk+1 v ≡ 〈∃w :: u R1 w ∧ w Rk v〉, for k ≥ 1 (GR1)
u R v ≡ 〈∃j : j ≥ 1 : u Rj v〉 (GR2)
u. ⊥ ≡ 〈∀v : ¬u R v〉 (GR3)

The operation that changes the graph is described by the following co-
property. It states that no edge from u to v is created as long as v remains
non-bottom. For all nodes u and v:

¬u R1 v co ¬u R1 v ∨ v. ⊥ (GR4)

We prove that no path from u to v is created as long as v remains a non-
bottom node. Note the resemblance between the statement of the theorem
and (GR4).

Theorem ¬u R v co ¬u R v ∨ v. ⊥
Proof: We show that for all k, k ≥ 1, and all u and v,

¬u Rk v co ¬u Rk v ∨ v. ⊥ (GR5)

Taking the conjunction of (GR5) over all k, k ≥ 1, concludes the proof of
the theorem. The proof of (GR5) is by induction on k.

Case k = 1: The result follows from (GR4).

Case k+1: We show ¬u Rk+1 v co ¬u Rk+1 v ∨ v. ⊥, assuming that
¬u Rk v co ¬u Rk v ∨ v. ⊥ holds for all u and v.

¬u R1 w co ¬u R1 w ∨ w. ⊥
, from (GR4), using w for v

¬w Rk v co ¬w Rk v ∨ v. ⊥
, use induction hypothesis (GR5) with w in place of u

¬u R1 w ∨ ¬w Rk v co ¬u R1 w ∨ ¬w Rk v ∨ w. ⊥ ∨ v. ⊥
, disjunction of the above two

¬u R1 w ∨ ¬w Rk v co ¬u R1 w ∨ ¬w Rk v ∨ ¬w R v ∨ v. ⊥
, use (GR3) to replace w. ⊥ by ¬w R v in the rhs

¬u R1 w ∨ ¬w Rk v co ¬u R1 w ∨ ¬w Rk v ∨ ¬w Rk v ∨ v. ⊥
, use (GR2) to replace ¬w R v by ¬w Rk v in the rhs

〈∀w :: ¬u R1 w ∨ ¬w Rk v〉 co
〈∀w :: ¬u R1 w ∨ ¬w Rk v〉 ∨ v. ⊥
, take conjunction of the above property over all w

¬u Rk+1 v co ¬u Rk+1 v ∨ v. ⊥
, simplify both sides using (GR1) ✷
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We note, as a corollary, that once node u is outside any cycle —then
¬u R u holds— u remains outside all cycles. In particular, if the graph is
initially acyclic, it stays acyclic.

Corollary stable ¬u R u .
Proof:

¬u R v co ¬u R v ∨ v. ⊥ , theorem
¬u R u co ¬u R u ∨ u. ⊥ , replace v by u in the above
u. ⊥ ⇒ ¬u R u , from (GR3)
¬u R u co ¬u R u ∨ ¬u R u , from above two
stable ¬u R u , predicate calculus ✷

5.5.11 A treatment of real time
This section contains a brief description of real-time properties of action
systems and how they may be expressed using co. In section 5.5.12 we
consider a mutual exclusion algorithm that exploits real time; we construct
its proof using the concepts introduced in this section.
We adopt the following idea from Abadi and Lamport [3]: the program

has a variable now that represents the current time. This variable is real
valued (it need not be positive). Its initial value is immaterial. Programmers
have no control over how this variable is modified. All we may assume is
that now is nondecreasing (see RT1), and now increases eventually beyond
any specific real number (see RT2). RT2 is a progress property; progress
properties are discussed in chapter 6. For completeness we include this
property here though we do not use it any further. For any real r,

stable now ≥ r (RT1)
true �→ now > r (RT2)

Note that the value of now may be different before and after an action
execution, to model that the execution consumes some real time.
A real-time program makes use of one or more clocks that may proceed at

different rates. Our treatment models a single clock; additional clocks may
be introduced by having variables analogous to now, one for each clock.
For instance, the fact that drift rate between a pair of clocks is bounded
can be expressed as an invariant relating the corresponding variables, now1
and now2.
A program may utilize real time to delay certain actions, or a scheduler

may schedule certain actions with specified frequency. Such requirements
may be specified as safety properties using now and certain auxiliary vari-
ables that we describe next.
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Punch of predicates
For predicate p let p be the last point in time p became true; call p the punch
variable of p, for the time p punched the clock.4 The following properties
state how p is altered; here p is any predicate that does not include now or
any punch variable.

initially p ≤ now (RT3)
initially p ⇒ (¬p ≤ p) (RT4)
p ∧ p = r co p = r (RT5)
¬p ∧ p = r co (¬p ∧ p = r) ∨ (p ∧ p = now) (RT6)

Properties (RT3, RT4) encode the initial conditions. (RT5) says that p
is unaltered by the execution of an action if p holds before the execution,
and (RT6) says that if p becomes true following an action execution —i.e.,
¬p holds before and p after the action execution— then p is assigned the
value of now following the execution.

Note Rajeev Joshi has observed that (RT6) may be weakened to

¬p ∧ p = r co (¬p ∧ p = r) ∨ (p ∧ r ≤ p ≤ now)

that is, p is assigned a value between its old value and the current value
of now if p becomes true. This definition allows more flexibility without
affecting any of the results of this section. ✷

Variables p and ¬pmay have the same value if, for instance, now does not
change during an interval in which p is set to false and then to true. To avoid
such possibilities we may require a strong monotonicity property: execution
of any action that changes some variable value consumes some real time.
Property (RT7), below, states this fact: if any predicate p is falsified by the
execution of an action —i.e., some variable value has changed— then now
strictly increases. We do not use strong monotonicity in our examples.

p ∧ now = r co p ∨ now > r (RT7)

The punch variables can be used to state real-time analogs of safety and
progress properties. The requirement that once p becomes true it continues
to remain true for at least δ time units —analogous to safety— is expressed
by

invariant (now ≤ p+ δ ⇒ p) (RT8)

That is, if no more than δ time units have elapsed since p last became true,
then p is still true. Note that this condition is consistent with the initial
condition, (RT4), in the sense that initial values can be assigned to all

4The notation chosen for punch becomes problematic when dealing with long for-
mulae; in this book the notation does not cause a problem because predicates to which
punch is applied are short in length.
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punch variables that satisfy both (RT4) and (RT8). The requirement that
once p becomes true it should be falsified within ε time units —analogous
to progress— is expressed by

invariant (now > p+ ε ⇒ ¬p) (RT9)

That is, if more than ε units have elapsed since p last became true, then p
is false.
To state that execution of action α takes at most ε units to complete, in-

troduce an auxiliary boolean variable q and augment α with the assignment
q := ¬q. Then the following property expresses the timing constraint:

q = Q ∧ now = r co q = Q ∨ now ≤ r + ε

where Q is a free variable. That is, any action that alters q —the only such
action is α— increases now by no more than ε. A similar property can
express a lower bound on the execution time of α.

Derived properties
We derive a few properties from (RT1–RT6), some of which are used in
the proof of the real-time mutual exclusion algorithm of section 5.5.12.
Henceforth, p is any predicate that does not mention now or any punch
variable, and r is any real number.

• (RT10) invariant p ≤ now:
Proof: This proposition holds initially, from (RT3). We show next that
p ≤ now is stable.

p = r co (p = r) ∨ (p ∧ p = now) , disjunction (RT5, RT6)
stable now ≥ r , (RT1)
p = r ∧ now ≥ r co (p = r ∧ now ≥ r) ∨ (p = now)

, conjunction, weaken rhs
p = r ∧ p ≤ now co p ≤ now , rewrite lhs, weaken rhs
stable p ≤ now , disjunction over all r ✷

• (RT11) stable p ≥ r: Proof left to the reader. ✷

• (RT12) invariant p ⇒ (¬p ≤ p):
Proof: From (RT4), p ⇒ (¬p ≤ p) holds initially. We show it is stable.

p ∧ ¬p = s co (p ∧ ¬p = s) ∨ (¬p ∧ ¬p = now)
, (RT6) with ¬p for p and s for r

p ∧ ¬p = s co ¬p = s ∨ ¬p , weaken rhs
p ∧ p = r co p = r , (RT5)
p ∧ p,¬p = r, s co (p,¬p = r, s) ∨ ¬p

, conjoin and weaken rhs
p ∧ ¬p ≤ p co (¬p ≤ p) ∨ ¬p , disjunction over s ≤ r (1)
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¬p ∧ p = r co ¬p ∨ p = now , weaken rhs of (RT6)
¬p co ¬p ∨ p = now , disjunction over r
¬p co ¬p ∨ ¬p ≤ p , (RT10): p = now ⇒ ¬p ≤ p
¬p ∨ ¬p ≤ p co ¬p ∨ ¬p ≤ p , disjunction of (1) and above
stable p ⇒ (¬p ≤ p) , rewrite ✷

We leave it for the reader to prove the stronger result

stable p ⇒ (¬p < p)

from the strong monotonicity property, (RT7).

• (RT13) (invariant p) ⇒ (constant p) ∧ (constant ¬p):
Proof:

p ∧ p = r co p = r , (RT5)
p = r co p = r , substitution axiom: invariant p
constant p , definition of constant

Similarly,

p ∧ ¬p = r co (p ∧ ¬p = r) ∨ (¬p ∧ ¬p = now)
, (RT6) with ¬p for p

¬p = r co ¬p = r , substitution axiom: invariant p
constant ¬p , definition of constant ✷

• (RT14) 〈stable p〉 ⇒ 〈stable (p ∧ p = r)〉:
Proof:

p ∧ p = r co p = r , (RT5)
stable p , hypothesis
p ∧ p = r co p ∧ p = r , conjunction ✷

5.5.12 A real-time mutual exclusion algorithm
Fischer [70] has proposed a mutual exclusion algorithm that ingeniously
exploits real time. We prove the correctness of this algorithm using only
the fact that time is nondecreasing (RT1 of section 5.5.11). Other important
facts about time —that eventually time increases beyond any bound (RT2
of section 5.5.11)— are unnecessary for this proof. The proof establishes a
suitable invariant that implies mutual exclusion.

Informal description of the algorithm
There are N processes, numbered 1 through N , and a global variable x
that assumes an integer value between 0 and N . Fig. 5.4 shows the state
transitions of process i, 1 ≤ i ≤ N . A process transits from e to a to wait for
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Figure 5.4: The state transitions of process i, 1 ≤ i ≤ N

entry to its critical section. The edges of the other transitions are labeled
with either an assignment, x := i or x := 0, or a test, x = 0? or x = i?. An
assignment on an edge denotes that the state transition is accompanied by
the assignment of the corresponding value to x. A test on an edge denotes
that the transition takes place only if the test succeeds. Process state is d
when it is in the critical section. Assume that all tests and assignments are
atomic. Initially, all processes are in states e and x = 0.
It is easy to construct a scenario where two processes are in their critical

sections simultaneously, given only the state transitions shown in Fig. 5.4.
Timing constraints, given below, guarantee that this possibility is avoided.

(T1) Transition from b to c is completed within a unit of time.

(T2) Transition from c to d takes more than one unit of time.

Condition (T2) may be implemented by process i waiting for more than a
unit of time before testing x = i?. In particular, the transition from c to d
may never be completed.

Remark There is no fairness requirement (see section 6.2) on action ex-
ecutions. In particular, since there is no requirement that a process transit
out of its d state, it may stay forever within its critical section, preventing
other processes from entering their critical sections. ✷

Formal description of the algorithm
Let si denote the state of process i; si takes values from {a, b, c, d, e}. The
initial state of the system is given by

initially 〈∀i :: si = e〉 ∧ x = 0 .

The actions of process i are given below.
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————————————
Process i

αi :: si = e → si := a
[] βi :: si = a ∧ x = 0 → si := b
[] γi :: si = b → si, x := c, i
[] δi :: si = c ∧ x = i → si := d
[] εi :: si = d → si, x := e, 0

end {Process i}
————————————

We use the following abbreviations: ai for si = a, bi for si = b . . . , ei for
si = e. Observe that these predicates are disjoint, i.e., ai ∧ bi ≡ false,
etc. We use three punch variables, bi, ci, and di, in our proof.

Timing constraints
We can now state (T1,T2) formally. For all i, 1 ≤ i ≤ N ,

ci ⇒ ci ≤ 1 + bi (T1)
di ⇒ 1 + ci < di (T2)

Proof of mutual exclusion
We establish that predicate D, below, is an invariant.

D :: 〈∀i :: di ⇒ x = i〉
Mutual exclusion is then immediate:

(di ∧ dj) ⇒ (x = i ∧ x = j)
(x = i ∧ x = j) ⇒ (i = j)

Predicate D holds initially. In the rest of this subsection we establish (see
FM2) that D is stable in the given program augmented with (T1, T2).
Henceforth, i and j range over 1 through N , and let

B = 〈max i :: bi〉
The structure of the proof is as follows. Property (FM2) establishes the

main result, that D is stable. This proof relies on (FM1) —which is derived
solely from the program text— and (FM3) —which is derived solely from
the timing constraints (T1, T2). The crux of the proof of (FM2) is that if
dj ∧D holds in a state for some j, all actions except γi, i �= j, preserve D.
(FM3) shows that γi cannot be executed effectively in the given state.

• (FM1) invariant (x = j ⇒ B ≤ cj):
Proof: This proposition holds initially since x �= j, for all j, initially. Next,
we show that (x = j ⇒ B ≤ cj) is stable.
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bi ≤ cj co bi ≤ cj ∨ x = 0 , program text; see below
〈∀i :: bi ≤ cj〉 co 〈∀i :: bi ≤ cj〉 ∨ x = 0

, conjunction over all i
B ≤ cj co B ≤ cj ∨ x = 0 , rewrite
x �= j co x �= j ∨ cj = now , program text; see below
x �= j ∨ B ≤ cj co x �= j ∨ cj = now ∨ B ≤ cj ∨ x = 0

, disjunction of above two
cj = now ⇒ B ≤ cj and x = 0 ⇒ x �= j

, (RT10) from page 128; arithmetic
stable (x = j ⇒ B ≤ cj) , from above two, simplify rhs

The following property, which is used in the proof of (FM1),

bi ≤ cj co bi ≤ cj ∨ x = 0

can be derived from the program text; we need consider only those actions
that may change bi or cj . Variable bi is changed only by the effective exe-
cution of βi, which has x = 0 as a post-condition. Whenever cj is changed
it is set to now, thus preserving bi ≤ cj .
The following property, which is used in the proof of (FM1),

x �= j co x �= j ∨ cj = now

follows from the program text, because the only action that can falsify
x �= j is γj , which sets cj to true, so cj to now. ✷

• (FM2) stable D:
Proof:

dj ∧ B ≤ cj ∧ D co
D ∨ (dj ∧ B ≤ cj ∧ 〈∃i : i �= j : ci ∧ ci = now〉)

, program text; see below
dj ∧ B ≤ cj ∧ D co D , apply corollary of FM3 on rhs
dj ∧ D co D , (dj ∧D)⇒ (x = j)⇒ {FM1} (B ≤ cj)
〈∃j :: dj〉 ∧ D co D , disjunction over all j (1)
¬dj co (dj ⇒ x = j) , program text; see below
〈∀j :: ¬dj〉 co 〈∀j :: dj ⇒ x = j〉 , conjunction over all j
¬〈∃j :: dj〉 co D , rewrite lhs, rhs
¬〈∃j :: dj〉 ∧ D co D , strengthen lhs
stable D , disjunction of above and (1)

The following property, which is used in the proof of (FM2),

dj ∧ B ≤ cj ∧ D co D ∨ (dj ∧ B ≤ cj ∧ 〈∃i : i �= j : ci ∧ ci = now〉)

follows from the program text. Consider the actions of the program in two
groups: actions of process j and the remaining actions. In the first group,
the only action that may be executed effectively given that dj holds is εj ,
and its execution preserves D. Next, consider the actions of process i, i �= j.
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Action αi preserves D. Neither βi nor δi is executed effectively in a state
where dj ∧D holds, because (dj ∧D)⇒ (x = j) and the pre-conditions for
effective executions of βi and δi are x = 0 and x = i, respectively. Action
εi is not executed effectively either because

(dj ∧D)
⇒ {from D}

x = j
⇒ {arithmetic}

〈∀k : k �= j : x �= k〉
⇒ {from D}

〈∀k : k �= j : ¬dk〉

Hence, the pre-condition di for the effective execution of εi does not hold.
Therefore, the only action that may be executed effectively is γi, for some
i, i �= j, which preserves dj ∧ B ≤ cj (because it does not change either
dj , any bi or cj) and establishes ci ∧ ci = now as a post-condition.
The following property, which is used in the proof of (FM2),

¬dj co (dj ⇒ x = j)

follows from the program text: the only action that falsifies ¬dj , i.e., es-
tablishes dj , is δj , and it preserves its pre-condition x = j. ✷

• (FM3) (dj ∧ B ≤ cj ∧ ci ∧ ci = now) ≡ false, for all i and j:
Proof: We derive a contradiction, dj < dj , from the predicate in the lhs
and (T1, T2).

dj

≤ {invariant (RT10) from page 128}
now

= {ci = now, from the lhs predicate}
ci

≤ {ci from the lhs predicate and T1: ci ⇒ ci ≤ 1 + bi}
1 + bi

≤ {B = 〈max i :: bi〉}
1 +B

≤ {B ≤ cj , from the lhs predicate}
1 + cj

< {dj from the lhs predicate and T2: dj ⇒ 1 + cj < dj}
dj ✷

By taking disjunction of (FM3) over all i, i �= j,

Corollary (dj ∧ B ≤ cj ∧ 〈∃i : i �= j : ci ∧ ci = now〉) ≡ false
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5.6 Theoretical Results

In this section, we define the notions of weakest pre-condition, strongest
post-condition, and strongest invariant. We show that predicate FP can be
defined as the weakest solution of an equation.

5.6.1 Strongest rhs; weakest lhs
In a given program, for any predicate p there is a strongest q such that
p co q; similarly, for any q there is a weakest p such that p co q. We prove
only the first result; the proof of the second one is similar.

Theorem (strongest rhs) For any p there exists a q such that

p co q and
〈∀r : p co r : q ⇒ r〉

Proof: Predicate q is the conjunction of the rhs of all co-properties in which
p appears in the lhs:

q ≡ 〈∧ b : p co b : b〉
Since co is universally conjunctive, we have p co q. Any r for which p co r
holds, we get q ⇒ r from the definition. ✷

5.6.2 Strongest invariant
Every program has a (unique) strongest invariant. This is proved by defin-
ing the strongest invariant to be the conjunction of all invariants. We give
a longer alternative proof that provides a “constructive” procedure for ob-
taining the strongest invariant. The essence of the procedure is to start
with the initial condition —call it p0— and obtain a sequence of pis where
pi co pi+1 and pi+1 is the strongest rhs for pi. The disjunction of all the
pis is the strongest invariant.

Lemma Let p0, . . . , pi, . . . be an infinite sequence where, for all i, i ≥ 0,
pi co pi+1

Then, stable 〈∃i :: pi〉.
Proof: Taking the disjunction over all the co-properties, pi co pi+1, we get

〈∃i : i ≥ 0 : pi〉 co 〈∃i : i ≥ 0 : pi+1〉
Weakening the rhs by p0 as a disjunct yields the result. ✷

Theorem (strongest invariant) Let p0 be the initial condition. For
all i, i ≥ 0, let pi co pi+1, where pi+1 is the strongest rhs for pi. Then,
〈∃i :: pi〉 is the strongest invariant.
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Proof: Let P = 〈∃i :: pi〉. From the previous lemma, P is stable. Further,
since p0 ⇒ P , initially P holds. Therefore, P is an invariant.
To show that P is the strongest invariant, we show that for any invariant

J , P ⇒ J , i.e. 〈∃i :: pi〉 ⇒ J , or equivalently 〈∀i :: pi ⇒ J〉.
• Proof of 〈∀i :: pi ⇒ J〉: The proof is by induction on i.

p0 ⇒ J : Since p0 is the initial condition, p0 ⇒ J .

Assume pi ⇒ J and show pi+1 ⇒ J :
pi co pi+1 , given
pi ∧ J co pi+1 ∧ J , stable conjunction with J
pi co pi+1 ∧ J , pi ∧ J ≡ pi since pi ⇒ J
pi+1 ⇒ pi+1 ∧ J , pi+1 is the strongest rhs in any

co-property whose lhs is pi

pi+1 ⇒ J , predicate calculus ✷

The strongest invariant includes the initial condition, p0, as a disjunct.
Therefore, if p0 is not identically false, then neither is the strongest invari-
ant. Conversely, if p0 is false, so is p1 —because false is stable— so the
strongest invariant is false. We have often used the term “reachable states”
informally in this chapter. Formally, a state is reachable iff it satisfies the
strongest invariant.

5.6.3 Fixed point
Predicate FP characterizes the set of states that do not change as a result
of program execution. We define FP using co. Observe that any subset of
states that satisfy FP is stable, i.e., for any predicate b

stable (FP ∧ b)

However, this does not identify a unique FP . In fact, false ∧ b is stable
for any b. We define FP to be the weakest predicate p such that p ∧ b is
stable for all b. It can be shown that FP has the following closed form (see
exercise 17).

FP ≡ 〈∃p : (∀b :: stable p ∧ b) : p〉

As is the case for the strongest invariant, it is difficult to compute FP
using the above formulation; we have shown in section 5.3.2 how to obtain
FP by syntactic manipulations of the program text.
A program is “deadlock-free” iff FP is always false, i.e., ¬FP is always

true. Using the substitution axiom, ¬FP is then invariant.
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5.7 Concluding Remarks

This section contains an assessment of the strengths and weaknesses of co.
Earlier, we had gained considerable experience in writing and manipulating
unless properties [32, 165], a predecessor of co. There is ample reason to
believe that co would be at least as powerful for expressing the safety prop-
erties. The manipulation rules for co are simple and effective. The examples
in section 5.5 —particularly common meeting time (section 5.5.2), dead-
lock (section 5.5.7), and coordinated attack (section 5.5.9)— were handled
by concise proofs.
The proposed theory has several limitations. The first concerns express-

ibility. Some safety properties cannot be expressed using co or can be ex-
pressed only with some difficulty. A property that cannot be expressed is as
follows: for each value n between 0 and 9 there exists a finite execution of
the program so that x has value n at the end of the execution. This kind of
property is succinctly expressed using branching time temporal logic. Our
theory, based on linear temporal logic, is inadequate in such cases.5 This
limitation, though, is deliberate; we have tried to avoid elaborate theories,
and branching time logics would require such theories.
Temporal logic is an elegant extension of classical logic that includes the

temporal operators ✷ and ✸ (read always and eventually). The primary
operator for expressing the safety properties is ✷; for example, the temporal
formula p ⇒ ✷p denotes that once p is true it is always true; i.e., p is
stable. Temporal logic has a well-developed theory, and it has been applied
to a variety of problems in computer science; for a treatment of the theory
see Manna and Pnueli [127, 128]. Some properties are easily expressible
in linear temporal logic but are difficult to express using co. Consider the
property: once x exceeds 5, it remains positive. In temporal logic, this is
simply

x > 5 ⇒ ✷(x > 0)

Such a property cannot be written directly using co because whether x > 0
holds in some state depends not just on the preceding state but if x has
exceeded 5 in the past. Introducing an auxiliary boolean variable b that is
true iff x has ever exceeded 5, we can specify the desired behavior by

initially b ≡ x > 5
x > 5 ⇒ b
stable (b ∧ x > 0)

5However, see chapter 7; a program that generates each value between 0 and 9 in
some execution is a maximal program for the specification that some value between 0
and 9 is generated.
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Though the specification in temporal logic is succinct, for a given program
the proof of x > 5 ⇒ ✷(x > 0) would require the introduction of a
predicate analogous to b.
Event predicates, see Hehner [85] and Hehner and Hoare [86], and TLA,

see Lamport [118], have proved useful for describing safety properties. An
example of an event predicate is x′ ≥ x, which says that the value of x after
any action —this value is denoted by x′— is at least the value of x before
the action —the value before the action is denoted by x. This formalism is
attractive because the inference rules are simply those of predicate calcu-
lus. Lamport combines event predicates, temporal operators and quantifi-
cation (over variables and actions) to obtain a powerful logic, called TLA.
He advocates using the same logic for representing both a system and its
properties, thus simplifying the proofs of implementations.
A disadvantage of our theory (compared to event predicates and TLA)

is that we often have to introduce free variables in stating the properties.
For instance, “x is nondecreasing” is written as

stable x ≥ m

with a free variable m, whereas

x′ ≥ x

is an event predicate that expresses the same fact. We have found free
variables to be particularly useful in the treatment of progress properties
and in constructing proofs by induction on the values of free variables.
Our choice of logical operators was influenced by the desire to employ in-

duction as the basis of our proofs. Hence, we rejected the primary temporal-
logic operators ✷ (always) and ✸ (eventually), in favor of co, ensures,
and �→ (leads-to) of chapter 6. A stable property is justified by induction
on the number of program steps where each step preserves the predicate,
ensures provides a mechanism to capture (a weak form of) fairness, and
leads-to is proved by induction on the number of “ensures steps”.

5.8 Bibliographic Notes

The notions of pre- and post-conditions are from Floyd [71] and Hoare [89].
The wp-calculus, a treatment of predicate transformers, and their appli-
cations in program semantics are in Dijkstra and Scholten [61]; see ap-
pendix A.4.2 for a brief treatment. See Apt and Olderog [12] or Francez [73]
for applications of these ideas in program verifications. Portions of this
chapter appeared earlier in Misra [139]; they are reprinted here with per-
mission from Elsevier Science.
Lamport [113] was the first to coin the terms safety and liveness in the

sense used here (we use progress instead of liveness), and he gave the first
formal definition of safety [115]; the formal definition of progress appears
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in Alpern and Schneider [7]. There are a number of papers on the sub-
stitution axiom, in particular Sanders [158], Knapp [108], and Misra [134,
note 14]; the rationale given in page 102 is from Knapp. A clear example
of the distinction between invariant and always true is in van Gasteren and
Tel [168].
State diagrams have been used very effectively in Harel and Politi [84]

for descriptions and designs of reactive systems. The treatment of auxiliary
variables in section 5.5.6 follows Misra [134, note 15]. See Fagin et al. [68]
for a detailed knowledge-based treatment of the coordinated attack prob-
lem. The treatment of dynamic graphs is based on Chandy and Misra [32,
chapter 12] and Misra [134, note 2].
See Lamport [117] and Sanders [158], for the notion of the strongest

invariant. For completeness of UNITY logic see Jutla, Knapp, and Rao [103]
and Cohen [42].
The axioms for ring network in section 5.5.8 are from Misra [135, sec-

tion 6.1]. A more general case, based on Chandy and Misra [33], is treated
in exercise 15. The idea of encoding real time in variable now, as described
in section 5.5.11, is from Abadi and Lamport [3]. The formalization using
co and the notion of punch variables are due to Carruth [27]. The real-
time mutual exclusion algorithm of section 5.5.12 is due to Fischer [70],
who never published it; the algorithm is described in Lamport [116, sec-
tion 2] and a simplified version of it appears in Abadi and Lamport [3,
section 3.4]. The proof of Fischer’s algorithm given here closely follows
Carruth and Misra [28]; Shankar [162] has constructed a mechanical proof
of this algorithm using the theorem prover PVS [147]. Schneider, Bloom,
and Marzullo [160] contains ideas similar to punch variables and also one
of the earliest proofs of this algorithm. Emerson et al. [66] describes the use
of RTCTL (Real-Time Computation Tree Logic) for model checking hard
real-time systems.
Rutger Dijkstra [63] has developed an algebraic theory, called computa-

tion calculus, with which he has axiomatized the UNITY logic; the work is
a promising new direction for combining state-based and action-based rea-
soning. Hoare and He [93] have proposed an ambitious approach to unify a
large number of theories for specifications and designs of programs, ranging
from purely declarative to sequential and distributed programs.
Probabilistic safety properties have been studied in Morgan, McIver, and

Seidel [143] and Rao [155]; the former proposes predicate transformers with
arithmetic operators, whereas the latter introduces logical operators in the
style of work presented in this chapter.
Bisimulation —see Milner [132]— represents an entirely different ap-

proach to correctness that is particularly effective in verifying that two
action systems are equivalent.
There have been several successful efforts at mechanizing the UNITY

logic; notable are Andersen, Petersen, and Pettersson [9, 10], Heyd and
Crégut [88], and Paulson [150]. Goldschlag [76] has implemented a ver-
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sion of this logic on top of the Boyer-Moore theorem prover [21, 22].
Kaltenbach [104] has developed a model checker for finite state UNITY
programs that computes the strongest invariant automatically.

5.9 Exercises

1. (Formal manipulation) Prove the following.

(a) p ∧ q co p, stable ¬q
p co p ∨ ¬q

(b) p co q, ¬p co ¬q
constant p

(c) (cancellation) p co q ∨ r, q co b
p co b ∨ r

(d) p ∧ ¬FP co p
stable p (FP is the fixed point of the program)

(e) invariant I, I co p
stable p

Hint: Use the substitution axiom.

(f) constant 3

(g) constant x+ y, constant y
constant x

2. (Manipulation of sets) Prove the following where g is any set, G and
x are free variables and p and q are predicates that do not contain
free occurrences of x.

(a) p ∧ x ∈ g co x ∈ g ∨ q
p ∧ g ⊇ G co g ⊇ G ∨ q

(b) p ∧ x �∈ g co x �∈ g ∨ q
p ∧ g ⊆ G co g ⊆ G ∨ q

Hint: Note that g ⊆ G ≡ 〈∀x :: x ∈ g ⇒ x ∈ G〉.
3. (Proving by parts) Let p(x, y) and q(x, y) be predicates that name
only program variables x and y. To prove

p(x, y) co q(x, y)

the following strategy is suggested: for free variables m and n, prove

p(x, n) co q(x, n)
p(m, y) co q(m, y)

Show that this is not a valid strategy. Next, show that the strategy
is valid if x and y are never changed simultaneously.
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4. (Substitution axiom) Show that constant y holds in program dis-
tinction of section 5.3.1.

5. (Substitution axiom) Given that invariant x = y holds in a pro-
gram, show that x can be replaced by y in any co-property.

6. (Deriving properties from program text) For the following program,
Alternate, show that

(a) x remains unchanged as long as it differs from y, i.e., for any m,

x = m ∧ x �= y co x = m

(b) invariant 0 ≤ x− y ≤ 1
(c) The program is deadlock-free.

————————————
program Alternate
nat x = 1;
nat y = 0;

x = y → x := x+ 1
[] x �= y → y := y + 1
end {Alternate}
————————————

7. (Elimination theorem) Prove, for integer program variables x and
y, and free variables m and n:

(a) (x = m co x ≥ m) ≡ (stable x ≥ n)

(b) x, y = m,n co x, y = m,n ∨ (m > n ∧ x, y = m− 1, n)
stable x ≥ y

(c) x, y = m,n co x, y = m,n ∨ x, y = m+ 1, n− 1
constant x+ y

(d) If x is nondecreasing and y is nonincreasing, then x ≥ y is
stable.

(e) If a set is nongrowing, its size is nonincreasing.

(f)

x = m co p
p names neither m nor any variable other than x

stable p

8. (Elimination theorem) Let f be a function that does not name m
or any program variable other than x. Show, for any m and n, and a
binary relation ∼ that
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(a)

x = m co f.x ∼ f.m
∼ transitive

stable f.x ∼ n

(b) x = m co f.x = f.m
constant f.x

(c) Function f preserves relation ∼ iff x ∼ y ⇒ f.x ∼ f.y .
Show:

x = m co x ∼ m
f preserves ∼

f names neither m nor program variables other than x
f.x = n co f.x ∼ n

9. (A generalization of the elimination theorem) Consider a set of co-
properties whose lhs, collectively, we call L and its rhs R. We write
L co R to denote these properties. It is given that L′ co R′ can be
deduced from L co R. Suppose that each property in the lhs L is
strengthened by conjoining predicate p and in R weakened by having
disjunction with q; call the new set of properties L∧p co R∨q. Show
that L′ ∧ p co R′ ∨ q can be deduced from L ∧ p co R ∨ q.
Apply this result to prove the following generalization of the elimi-
nation theorem.

r ∧ x = m co q ∨ r′ , where m is free
r and r′ do not name m

p names neither m nor program variables other than x
r ∧ p co 〈∃m :: p[x := m] ∧ q〉 ∨ r′

10. (From prose to formula) Convert the following verbal descriptions
into formal properties and then establish the conclusions wherever
suggested. Note that, like most verbal descriptions, each of the fol-
lowing admits several possible interpretations.

(a) Predicates p and q change synchronously.
Hint: There is a neat way to write this.

(b) For an integer variable x, let sx be an auxiliary variable that
is increased by the new value of x whenever x is changed; sx is
not changed otherwise. Show that if x is always non-negative,
sx ≥ x is stable.

(c) Let x and y be integer variables. Let c be an auxiliary variable
that counts the number of assignments to x or y that causes x
to exceed y. Show that if x ≤ y is invariant, c = r is stable for
any r.

(d) Formalize: Once integer x exceeds 5, it never decreases.
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(e) A vertex (in a directed graph) remains black as long as it has
only black neighbors. Show that the state where all vertices are
black persists.

11. (More prose to formula) An impermeable vessel consists of chambers
numbered 0 throughN . The particles inside the vessel move according
to the following law: a particle may stay in its current chamber or
move to a higher-numbered chamber. Particles cannot leave the vessel
or enter it. Show that

(a) The set of particles in the chambers at or above j, 0 ≤ j ≤ N ,
is nonshrinking.

(b) The set of particles in the chambers at or below j, 0 ≤ j ≤ N ,
is nongrowing.

12. (Another safety operator) For a variable or a group of variables x
write

x : p → q

to denote that (in a given program) x can change only if p is a pre-
condition and every change in x guarantees q as a post-condition.
Express this property using co. Show that

(a) x : p → q
x : p ∨ p′ → q ∨ q′

(b) x : p → q , x : p′ → q′

x : p ∧ p′ → q ∧ q′

13. (Fixed point) Show programs whose FPs are as follows. Variable x
has type integer.

(a) true
(b) x �= 0
(c) x ≤ 0
(d) 〈∃n :: xn = 64〉. Here n is a positive integer.

14. (Finite state descriptions) There are two communicating processes, P
and Q; any message sent by P is acknowledged by Q. In this exercise,
we consider the transfer of a single message and the corresponding
acknowledgment. The state of the system is given by two boolean
variables, p and q. Initially, both variables are false. Variable p is set
to true by P when it sends a message and set to false when it receives
an acknowledgment. Variable q is set to true when Q receives the
message; it remains true thereafter.

Draw a state transition diagram. Construct the co-properties. Find
an equivalent set of properties where a single literal (p, q,¬p, or ¬q)
appears in the lhs.
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15. (Axiomatizing communication networks) Consider a ring network
consisting of at least two processes. Develop a formalization of its
properties along the same lines as in section 5.5.8. Then provide a
similar formalization for an arbitrary network.

Suggested notation: For a ring network, let i′ denote the process to
which process i sends messages. For channel c in an arbitrary network,
let s.c and r.c denote the number of messages sent and received along
c. For sets of processes x and y use xy to denote the set of channels
from a process in x to a process in y. Use the following abbreviations:

(s = r).xy ≡ 〈∀c : c ∈ xy : s.c = r.c〉
(s ≥ r).xy ≡ 〈∀c : c ∈ xy : s.c ≥ r.c〉

Similarly, (s = L).xy or (r = L).xy for free L are defined. In both
cases, prove results analogous to (CN5). The problem for the general
network has been treated in [33].

16. Show that for any predicate p there exists (in a given program) a
strongest stable predicate weaker than p. Denote this predicate by
ss.p and show that

(a) ss is monotonic: (p ⇒ q) ⇒ (ss.p ⇒ ss.q)

(b) stable p ≡ (ss.p ≡ p)

(c) ss is idempotent: ss.(ss.p) ≡ ss.p

(d) ss is universally disjunctive: ss.〈∃ i :: pi〉 ≡ 〈∃ i :: ss.pi〉
For the weakest stable predicate stronger than p, similar facts may
be deduced.

17. (Closed form for fixed point) In this exercise, x, b, p, and FP are
predicates. Define FP by

FP ≡ 〈∃p : 〈∀b :: stable (p ∧ b)〉 : p〉

Show that FP is the weakest solution (in x) to

〈∀b :: stable (x ∧ b)〉

5.10 Solutions to Exercises

1. (a) p ∧ q co p , given
stable ¬q , given
p ∨ ¬q co p ∨ ¬q , disjunction of above two
p co p ∨ ¬q , strengthen lhs of above
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(b) p ⇒ q , from p co q
¬p ⇒ ¬q , from ¬p co ¬q
p ≡ q , from above two
p co p , from p co q and p ≡ q
¬p co ¬p , from ¬p co ¬q and p ≡ q
constant p , above two; definition of constant

(c) q ⇒ b , from q co b
p co q ∨ r , given
p co b ∨ r , weaken rhs using q ⇒ b

(d) p ∧ ¬FP co p , given
stable p ∧ FP , stability at fixed point
p co p , disjunction of above two
stable p , rewrite the above

(e) I co p , given
I ∧ p co p , strengthen lhs
p co p , substitution axiom: replace I by

true in the lhs

(f) We have to show for all m, stable 3 = m .
Now,

〈∀m : m �= 3 : stable 3 = m〉
, 3 = m is false for m �= 3; false is stable

〈∀m : m = 3 : stable 3 = m〉
, 3 = m is true for m = 3; true is stable

〈∀m :: stable 3 = m〉
, disjunction of the above two

(g) constant y , given
constant x+ y , given
constant (x+ y)− y , constant formation rule

applied to the above two
constant x , from the above

2. (a) p ∧ x ∈ g co x ∈ g ∨ q
, given

〈∀x : x ∈ G : p ∧ x ∈ g〉 co 〈∀x : x ∈ G : x ∈ g ∨ q〉
, conjunction over all x, x ∈ G

p ∧ g ⊇ G co g ⊇ G ∨ q
, simplify (p and q do not name x)
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(b) p ∧ x �∈ g co x �∈ g ∨ q
, given

〈∀x : x �∈ G : p ∧ x �∈ g〉 co 〈∀x : x �∈ G : x �∈ g ∨ q)
, conjunction over all x, x �∈ G

p ∧ g ⊆ G co g ⊆ G ∨ q
, simplify

3. Consider a program that consists of integer variables x and y and a
single action

x, y := x+ 1, y − 1

Let p(x, y) and q(x, y) be x = y and x = y ∨ x = y+1, respectively.
For any m and n, the following properties hold in the program:

p(x, n) co q(x, n), i.e., x = n co x = n ∨ x = n+ 1
p(m, y) co q(m, y), i.e., m = y co m = y ∨ m = y + 1

However, p(x, y) co q(x, y) does not hold in this program. Now, we
prove that the strategy is valid assuming additionally that x and y
are not changed simultaneously. That is,

p(x, n) co q(x, n)
p(m, y) co q(m, y)

x, y = m,n co x = m ∨ y = m

p(x, y) co q(x, y)

The proof is as follows.

p(x, n) ∧ p(m, y) ∧ x, y = m,n co
q(x, n) ∧ q(m, y) ∧ (x = m ∨ y = n)

, conjunction of the premises
p(x, y) ∧ x, y = m,n co q(x, y) , rewrite lhs and weaken rhs
p(x, y) co q(x, y) , disjunction over all m and n

4. The goal is to prove that for all m, stable y = m .

〈∀m : m �= 0 : stable x = 0 ∧ y = 0 ∧ y = m〉
, false is stable

stable x = 0 ∧ y = 0 ∧ y = 0 , invariant x = 0 ∧ y = 0
〈∀m :: stable x = 0 ∧ y = 0 ∧ y = m〉

, from the above two
〈∀m :: stable y = m〉 , use substitution axiom:

invariant x = 0 ∧ y = 0

5. Let p(x) co q(x) denote a co-property in which p(x) and q(x) possibly
mention x. Given that x = y is invariant, we show p(y) co q(y).
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p(x) co q(x) , given
p(x) ∧ x = y co q(x) ∧ x = y

, stable conjunction with x = y
p(y) ∧ x = y co q(y) ∧ x = y

, 〈p(x) ∧ x = y〉 ≡ 〈p(y) ∧ x = y〉;
similarly, 〈q(x) ∧ x = y〉 ≡ 〈q(y) ∧ x = y〉

p(y) co q(y) , x = y is true using substitution axiom

6. (a) We show

{x = m ∧ x �= y} x = y → x := x+ 1 {x = m}
{x = m ∧ x �= y} x �= y → y := y + 1 {x = m}

Apply the axiom of assignment (see appendix A.4.1), and show
from the program text:

x = m ∧ x �= y ∧ x = y ⇒ x+ 1 = m
x = m ∧ x �= y ∧ x �= y ⇒ x = m

(b) Prove this from the program text in a manner similar to exer-
cise (6a).

(c) FP ≡ (x = y ⇒ x = x+ 1) ∧ (x �= y ⇒ y = y + 1)
≡ x �= y ∧ x = y
≡ false

Hence, the program is deadlock-free.

7. (a) x = m co x ≥ m , given
x ≥ n co 〈∃m :: m ≥ n ∧ x ≥ m〉

, elimination theorem
x ≥ n co x ≥ n , simplify

Conversely,
x ≥ n co x ≥ n , given
x = m co x ≥ m , rename n by m; strengthen lhs

(b) x ≥ y co 〈∃m,n :: m ≥ n ∧
(x, y = m,n ∨ (m > n ∧ x, y = m− 1, n))〉

, elimination theorem on premise
x ≥ y co 〈∃m,n :: x ≥ y ∨ x ≥ y〉

, simplify and weaken rhs
stable x ≥ y , simplify rhs

(c) x+ y = k co 〈∃m,n :: m+ n = k ∧
(x, y = m,n ∨ x, y = m+ 1, n− 1)〉

, elimination theorem on premise
x+ y = k co 〈∃m,n :: x+ y = k〉

, weaken rhs
x+ y = k co x+ y = k

, simplify rhs
constant x+ y , definition of constant
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(d) x = m co x ≥ m , x is nondecreasing
y = n co y ≤ n , y is nonincreasing
x, y = m,n co x ≥ m ∧ y ≤ n , conjunction of above two
x ≥ y co 〈∃m,n :: m ≥ n ∧ x ≥ m ∧ y ≤ n〉

, elimination theorem
x ≥ y co x ≥ y , simplify rhs

(e) For free variable S of the same type as s we are given

stable s ⊆ S
s = S co s ⊆ S , strengthen lhs

Let m be a free integer variable and |s| denote the size of s.
|s| ≤ m co 〈∃S :: |S| ≤ m ∧ s ⊆ S〉

, elimination theorem
stable |s| ≤ m , simplify

(f) x = m co p , given
p co 〈∃m :: p[x := m] ∧ p〉 , elimination theorem
p co 〈∃m :: p〉 , weaken rhs
p co p , p does not name m

8. (a) f.x ∼ n
co {elimination theorem}
〈∃m :: f.m ∼ n ∧ f.x ∼ f.m〉

⇒ {∼ is transitive}
〈∃m :: f.x ∼ n〉

⇒ {simplify}
f.x ∼ n

(b) Use the result of exercise (8a) with “=” in the place of “∼”; note
that “=” is transitive. Therefore, we conclude, for any n,

stable f.x = n or
constant f.x .

(c) f.x = n
co {elimination theorem}
〈∃m :: f.m = n ∧ x ∼ m〉

⇒ {f preserves ∼}
〈∃m :: f.m = n ∧ f.x ∼ f.m〉

⇒ {weaken}
〈∃m :: f.x ∼ n〉

≡ {simplify}
f.x ∼ n

9. Consider the steps in the original proof of L′ co R′ from L co R. Each
proof step asserts a property of the form u co v in one of the following
ways: (1) u co v is a premise (a part of L co R), (2) u co v is either
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false co v or u co true, or (3) u co v is deduced from two previous
properties by either the conjunction or disjunction rule. Show that in
each case lhs strengthening of the antecedent and consequent by the
same predicate p is valid; similarly for rhs weakening by q.

This result can be used to generalize the elimination theorem. From
x = m co q, where m is free, and the appropriate restrictions on p,
use the elimination theorem to deduce

p co 〈∃m :: p[x := m] ∧ q〉.
Then strengthen all lhs with r and weaken rhs with r′.

10. (a) constant (p ≡ q)
(b) The following property describes the change in sx. For all inte-

gers m and n

x, sx = m,n co x, sx = m,n ∨ (x �= m ∧ sx = n+ x)

Weaken the rhs of the above to get

x, sx = m,n co x, sx = m,n ∨ sx = n+ x

Now we show
• stable sx ≥ x:

sx ≥ x
≡ {substitution axiom with invariant x ≥ 0}

sx ≥ x ∧ x ≥ 0
co {elimination theorem on the last co-property}

〈∃m,n ::
n ≥ m ∧ m ≥ 0 ∧ (x, sx = m,n ∨ sx = n+ x)〉

⇒ {weaken}
sx ≥ x

(c) Let m,n, and r be free integer variables. Define integer variable
c as follows.

x, y, c = m,n, r co x, y, c = m,n, r ∨
〈¬(x, y = m,n) ∧ 〈(x > y ∧ c = r + 1) ∨ (x ≤ y ∧ c = r)〉〉

Assuming that x ≤ y is invariant, we show that c = r is stable,
for any r.

• Proof of stable c = r:

x, y, c = m,n, r co x, y, c = m,n, r ∨ x > y ∨ c = r
, weaken rhs of the premise

x, y, c = m,n, r co x > y ∨ c = r
, simplify rhs

x, y, c = m,n, r co c = r , use invariant x ≤ y in rhs
c = r co c = r , disjunction over all m and n
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(d) Using a free variable m,

x > 5 ∧ x = m co x ≥ m

A better formulation is

stable x > 5 ∧ x ≥ m

(e) For vertex i, let Si be the set of its neighbors. Let wi denote that
vertex i is black. Then the formalization is the same as in the
case of mutual waiting in a knot (section 5.5.7) and the same
proof applies.

11. Let ci denote the set of particles in chamber i, 0 ≤ i ≤ N . Let aj , bj
be the sets of particles in the chambers at or above j and at or below
j, respectively. That is, for any j, 0 ≤ j ≤ N ,

aj = 〈∪ i : j ≤ i ≤ N : ci〉
bj = 〈∪ i : 0 ≤ i ≤ j : ci〉

The law of particle movement within the vessel is given by, for any
particle x and i, 0 ≤ i ≤ N ,

x ∈ ci co x ∈ ai and
x /∈ bi co x /∈ ci .

We have to show, for all x and j, 0 ≤ j ≤ N ,

stable x ∈ aj (1)
stable x �∈ bj . (2)

• Proof of (1), stable x ∈ aj :

x ∈ ci co x ∈ ai , the law of particle movement
〈∃i : j ≤ i ≤ N : x ∈ ci〉 co 〈∃i : j ≤ i ≤ N : x ∈ ai〉

, disjunction over all i, j ≤ i ≤ N
x ∈ 〈∪ i : j ≤ i ≤ N : ci〉 co x ∈ 〈∪ i : j ≤ i ≤ N : ai〉

, rewrite
x ∈ aj co x ∈ aj , use the definition of aj

• Proof of (2), stable x �∈ bj :

x �∈ bi co x �∈ ci , the law of particle movement
〈∀i : 0 ≤ i ≤ j : x �∈ bi〉 co 〈∀i : 0 ≤ i ≤ j : x �∈ ci〉

, conjunction over all i, 0 ≤ i ≤ j
x �∈ 〈∪ i : 0 ≤ i ≤ j : bi〉 co x �∈ 〈∪ i : 0 ≤ i ≤ j : ci〉

, rewrite
x �∈ bj co x �∈ bj , use the definition of bj
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12. First, express that p is a pre-condition for any change in x, using free
variable m.

x = m ∧ ¬p co x = m

Next express that q is established as a post-condition whenever x is
changed.

x = m co x = m ∨ q

(a) Given x : p → q we have

x = m ∧ ¬p co x = m
x = m co x = m ∨ q

Strengthen the lhs of the first property by ¬p′ and weaken the
rhs of the second property by q′ to obtain

x = m ∧ ¬p ∧ ¬p′ co x = m
x = m co x = m ∨ q ∨ q′, i.e.,
x : p ∨ p′ → q ∨ q′

(b) We have

x = m ∧ ¬p co x = m (1)
x = m co x = m ∨ q (2)
x = m ∧ ¬p′ co x = m (3)
x = m co x = m ∨ q′ (4)

x = m ∧ (¬p ∨ ¬p′) co x = m , disjunction of (1,3)
x = m co x = m ∨ (q ∧ q′) , conjunction of (2,4)
x : p ∧ p′ → q ∧ q′ , definition

13. Only the actions of the programs are shown.

(a) x := x {this is also known as the skip action}
(b) x = 0 → x := x+ 1

(c) x > 0 → x := x+ 1

(d) x �∈ {2, 4, 8, 64,−2,−8} → x := x+ 1.
This is because x is a root of 64 iff x = 2, 4, 8, 64,−2, or −8.

14. The state transition diagram is shown in Fig. 5.5. The co-properties
are obtained directly from the diagram.

¬p ∧ ¬q co ¬q {(¬p ∧ ¬q) ∨ (p ∧ ¬q) ≡ ¬q}
p ∧ ¬q co p
p ∧ q co q
stable ¬p ∧ q
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••

••

p ∧ ¬q p ∧ q

¬p ∧ q¬p ∧ ¬q

Figure 5.5: State transition diagram for exercise 15

By taking suitable disjunctions, we obtain
p co p ∨ q
¬p co ¬p ∨ ¬q
q co q
¬q co p ∨ ¬q

To see that the second group of properties is equivalent to the first,
take suitable conjunctions of the properties in the second group to
obtain the first group.

15. For a ring network, we use the following notation. For any process i,

i′ = the identity of the process to which i sends messages
q.i = i is idle
s.i = the number of messages sent by i
r.i = the number of messages received by i

Analogous to (CN1–CN4), we have for all i, and free variables m,n
s.i ≥ r.i′ ≥ 0 (CN′1)
stable s.i ≥ m, stable r.i ≥ n (CN′2)
q.i ∧ r.i = m co r.i = m ⇒ q.i (CN′3)
q.i ∧ s.i = n co s.i = n (CN′4)

The property analogous to (CN5) can be written using a set of free
variables, m.i, one for each process i:

stable 〈∀i :: q.i ∧ r.i′ = s.i〉 ∧ 〈∀i :: r.i = m.i〉 (CN′5)

• Proof of (CN′5): The proof is similar to the proof of (CN5).
Conjoin (CN′3, CN′4)
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q.i ∧ r.i, s.i = m,n co (r.i = m ⇒ q.i) ∧ s.i = n
Replace m by m.i and n by m.i′

q.i ∧ r.i, s.i = m.i,m.i′ co (r.i = m.i ⇒ q.i) ∧ s.i = m.i′

Take conjunction over all i
〈∀i :: q.i ∧ r.i, s.i = m.i,m.i′〉 co
〈∀i :: (r.i = m.i ⇒ q.i) ∧ s.i = m.i′〉

Since r.i ≥ m.i is stable —from (CN′2)— its conjunction over all i is
stable. Conjoin 〈∀i :: r.i ≥ m.i〉 to both sides

〈∀i :: q.i ∧ r.i, s.i = m.i,m.i′〉 co
〈∀i :: (r.i = m.i ⇒ q.i) ∧ s.i = m.i′〉 ∧ 〈∀i :: r.i ≥ m.i〉

In the rhs using s.i = m.i′, r.i′ ≥ m.i′ and s.i ≥ r.i′ (from CN′1) we
get r.i′ = m.i′. That is, 〈∀i :: r.i = m.i〉. Simplify the rhs. ✷

A similar treatment, with a more general notation, is used for general
networks. Let z be the set of all nodes, iz the set of outgoing channels
from i, zi the set of incoming channels to i, and zz the set of all
channels. Let m and n be free variables, L and N be set of free
variables, c a channel, and i a process. We are given

s.c ≥ r.c ≥ 0 (CN′′1)
stable s.c ≥ m, stable r.c ≥ n (CN′′2)
q.i ∧ (r = L).zi co (r = L).zi ⇒ q.i (CN′′3)
q.i ∧ (s = N).iz co (s = N).iz (CN′′4)

Given q.z ≡ 〈∀i :: q.i〉, we have to show

stable q.z ∧ (s = r).zz ∧ (r = L).zz (CN′′5)

The proof is similar to the one for ring network. Note that (s = r).xy
and (s ≥ r).xy are both true if x or y is empty. Also,

〈(s = r).(x ∪ x′)(y ∪ y′)〉
≡ 〈(s = r).xy ∧ (s = r).xy′ ∧ (s = r).x′y ∧ (s = r).x′y′〉

Similarly, expand (s ≥ r).(x ∪ x′)(y ∪ y′).

16. We give a construction for ss similar to that for the strongest invariant
(section 5.6.2). Consider the infinite sequence of properties, where
q0 ≡ p and qi+1 is the strongest rhs for qi.

qi co qi+1, for i ≥ 0.
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Let ss.p ≡ 〈∃ i :: qi〉. Then, p ⇒ ss.p, because q0 ⇒ 〈∃ i :: qi〉.
Also, ss.p is stable, according to the lemma in section 5.6.2.

Finally, the proof that ss.p is the strongest stable predicate weaker
than p is along the same lines as for the proof of the strongest in-
variant. (In fact, ss.p is the strongest invariant when p is the initial
condition.)

(a) (p ⇒ q) ⇒ (ss.p ⇒ ss.q)

(a1) p ⇒ ss.p ∧ ss.q:
p ⇒ q , antecedent
q ⇒ ss.q , ss.q is weaker than q
p ⇒ ss.q , above two
p ⇒ ss.p , ss.p is weaker than p
p ⇒ ss.p ∧ ss.q , above two

(a2) stable ss.p ∧ ss.q :
stable ss.p , property of ss
stable ss.q , similarly
stable ss.p ∧ ss.q , conjunction of stable predicates

From (a1) and (a2), ss.p∧ ss.q is a stable predicate, and p implies
this predicate. Since ss.p is the strongest stable predicate that p
implies

ss.p ⇒ (ss.p ∧ ss.q), i.e.,
ss.p ⇒ ss.q

(b) stable p ≡ (ss.p ≡ p):
First, we show stable p⇒ (ss.p ≡ p).

p⇒ p , predicate calculus
stable p , premise
ss.p ⇒ p , above two and definition of ss.p
p ⇒ ss.p , ss.p is weaker than p
p ≡ ss.p , above two

Next, we show (ss.p ≡ p) ⇒ (stable p) .

ss.p ≡ p , assume
stable ss.p , definition of ss.p
stable p , from above two

(c) ss.(ss.p) ≡ ss.p

stable ss.p , fact about ss.p
ss.(ss.p) ≡ ss.p , substitute ss.p for p in (16b)

(d) ss.〈∃ i :: pi〉 ≡ 〈∃ i :: ss.pi〉:
First, we prove ss.〈∃ i :: pi〉 ⇒ 〈∃ i :: ss.pi〉.
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〈∀ i :: pi ⇒ ss.pi〉 , definition of ss
〈∃ i :: pi〉 ⇒ 〈∃ i :: ss.pi〉

, predicate calculus (1)
〈∀i :: stable ss.pi〉 , definition of ss
stable 〈∃ i :: ss.pi〉 , disjunction on above
ss.〈∃ i :: pi〉 ⇒ 〈∃ i :: ss.pi〉

, from (1), above, definition of ss

Next, we show 〈∃ i :: ss.pi〉 ⇒ ss.〈∃ i :: pi〉 .
pi ⇒ 〈∃ j :: pj〉 , predicate calculus
ss.pi ⇒ ss.〈∃ j :: pj〉 , monotonicity of ss
〈∃ i :: ss.pi〉 ⇒ ss.〈∃ i :: pi〉

, disjunction over all i

17. First we show that FP is a solution to the given equation. For arbi-
trary b

〈∀ p :
〈∀q :: stable p ∧ q〉 : stable p ∧ b
〉 , tautology
stable 〈∃p : 〈∀q :: stable p ∧ q〉 : p ∧ b〉

, disjunction of stables
stable (〈∃p : 〈∀q :: stable p ∧ q〉 : p〉 ∧ b)

, rewrite
stable (FP ∧ b) , use the definition of FP
〈∀b :: stable (FP ∧ b)〉 , bind the free variable b

FP is the weakest solution to 〈∀b :: stable (x ∧ b)〉, because any
solution to this equation implies FP .



6
Progress Properties

6.1 Introduction

Safety properties, discussed in chapter 5, allow us to state that “the pro-
gram does no harm”. A trivial program that causes no state change —a
program that consists only of a skip action, for instance— satisfies all the
safety properties. Thus, safety properties alone are insufficient as a basis of
program design. Several formal aspects of program design and refinement
are seriously affected by the absence of a requirement that the program
must guarantee some desirable state changes.
In this chapter, we study a class of properties known as progress, or

liveness. According to Lamport [113], “A liveness property is one which
states that something must happen”. For instance, “I press the switch and
then the light is on” is a progress property. A safety property for this system
might be “the light never comes on unless the switch is pressed”. This
safety property is conveniently implemented by smashing the light bulb.
Conversely, the given progress property might be implemented by having
a light that is permanently on. It is the interplay between the safety and
progress properties that determines a nontrivial design.
A progress property may be regarded as a performance guarantee. Per-

formance guarantees typically include numerical time bounds: the light
comes on within 10 ms of pressing the switch or a car traveling at 90 kmph
stops within 40 meters after the brakes are jammed. Numerical perfor-
mance guarantees, though desirable, are hard to implement, because such
guarantees depend on the speed of the underlying machine or the network,
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the scheduling strategy, or even the load on the system —factors that are
outside our control during program design. A useful abstraction employed
in complexity theory is to specify the rate of growth of the computation
time as a function of the input size. This abstraction ignores speed-ups
by constant factors. An even coarser abstraction is to classify the rate of
growth as being polynomial or nonpolynomial. Unfortunately, we don’t yet
have a theory to provide such performance guarantees for the asynchronous
systems that we consider here. So we abstract further by eliminating the
notion of absolute time. We state and prove properties of the following
form: once predicate p holds, eventually q will hold in the system. For the
lighting problem, p might be “the switch has been pressed” and q might
be “the light is on”. The time duration between the occurrences of p and q
is left unspecified. We develop a logic to state and verify such properties.
Even though the logic cannot specify numerical performance measures, it
constitutes a useful first step; once we have proved such a property, we
may attempt to deduce the performance measures empirically or by using
analytic modeling.

Overview of the chapter

In section 6.2, we describe several notions of fairness that are essential for
studying progress properties in asynchronous systems. In section 6.3, we
introduce transient predicates; a transient predicate is guaranteed to be fal-
sified eventually under the given fairness assumption. The primary progress
operator, leads-to, is introduced in section 6.4. Most progress specifications
and deductions are done with leads-to. So we give a variety of manipu-
lation rules and show several examples of leads-to in section 6.5. Certain
theoretical issues are taken up in section 6.6.

Note on the binding powers of operators We introduce logical
operators transient, ensures (abbreviated to en), and �→ (pronounce
leads-to) in this chapter. Each of these operators has lower binding power
than all arithmetic and predicate calculus operators. Thus,

p ∧ q en r ∧ s is to be interpreted as
(p ∧ q) en (r ∧ s)

A property includes one of these operators or co; hence, there is no need
to specify priorities among these operators. ✷

6.2 Fairness

The need for fairness and various flavors of it can be explained by consid-
ering the program shown next. The program is a single box that has three
actions. Variables x, y, and z are integers.
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————————————
box Fairness

α :: x := x+ 1
[] β :: y := y + 1
[] γ :: x �= y → z := z + 1

end {Fairness}
————————————

A fairness condition constrains the order in which the actions, α, β, and
γ, are executed. We study the following kinds of fairness: minimal progress,
weak fairness, and strong fairness.

6.2.1 Minimal progress
Under minimal progress, the following step is repeated until all guards are
false : an arbitrary non-skip action whose guard is true in the current state
is executed.
We assert for box Fairness that x+ y + z will increase eventually under

minimal progress (so it will increase without bound). This is because all
guards are never false—α and β have true as their guards— and execution
of any action increases x+y+z. However, neither x, y, nor z is guaranteed
to increase because, for instance, β might be executed indefinitely, thus
preserving the values of x and z. Similarly, no guarantee can be made that
x+ y will increase (γ might be executed forever once x �= y); there is also
no guarantee about eventual increase of x+ z or y + z.

6.2.2 Weak fairness
Under weak fairness, each action is executed infinitely often in any execu-
tion. (Executing an action in a state where its guard is false causes no state
change.)
This fairness condition guarantees that different processes in a multipro-

cess program will be individually allowed to proceed. The actions repre-
senting the various processes constitute the program under consideration.
For example, α might belong to one process, and β and γ to another. If
α is chosen forever for execution (as in minimal progress), we have effec-
tively blocked the second process permanently; weak fairness prevents such
executions.
For the example program, Fairness, we assert that x (and y) will increase

without bound because each execution of α (or β) will cause x (or y) to
increase. We cannot assert that z will increase. For instance, consider the
following execution starting in state x, y = 0, 0 : execute α, β, and γ in this
order and repeat the sequence forever. Whenever γ is executed x = y, so z
is never increased.
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Weak fairness is sometimes expressed as follows: if the guard of an action
remains continuously true, then the action is eventually executed effectively
(i.e., in a state where the guard is true). This formulation is identical to
the given formulation.

6.2.3 Strong fairness
Execution of an action is strongly fair in an execution if the guard of the
action is true infinitely often, then the action is executed (in a state where
the guard is true) infinitely often. Execution of an action is strongly fair if
it is strongly fair in all executions.
For program Fairness, if all three actions are executed in a strongly fair

manner, x, y, and z all increase indefinitely. It is easy to see this result for
x and y; for z, note that x �= y is true infinitely often since x and y are
incremented asynchronously (see exercise 13); therefore, z is incremented
infinitely often.

6.2.4 Which is the fairest one?
A traditional sequential program permits no choice in action executions.
Therefore, the only pertinent notion of fairness in this case is minimal
progress. The significant progress property is termination; it can be stated
as “starting in any state that satisfies the initial condition, eventually a
state is reached that satisfies FP” (FP is the fixed point predicate; a state
that satisfies FP is a terminal state). Termination can be proved by dis-
playing a function whose value decreases eventually as a result of program
execution; if there is a lower bound on the function value (specifically, if the
function assumes values from a well-founded set), its value cannot decrease
forever, so termination is guaranteed. Minimal progress is also useful in
concurrent programs for proving “absence of deadlock”; a typical example
is if there is a hungry philosopher (in a dining philosophers problem), some
philosopher will eat.
Minimal progress is not sufficient to guarantee “absence of individual

starvation”. Even though some philosopher may eat, and eating is per-
formed infinitely often, a particular philosopher may stay hungry forever
(and starve). In program Fairness studied in this section, the system as a
whole makes progress by increasing x + y + z, but no guarantees can be
made about the individual variables.
Weak fairness meets most of the criteria for a useful notion of fairness.

It is powerful enough so that starvation-free solutions can be designed, and
it is simple enough that a reasonably effective theory for reasoning about
it can be developed. Additionally, it has nice compositional properties; see
section 8.2.3.
A typical example of the application of strong fairness is in implementing

a strong semaphore. It is required that if the semaphore value exceeds zero



6.3 Transient Predicate 159

infinitely often, every process that is waiting for the semaphore will be
granted the semaphore. Under the weak fairness requirement, a waiting
process may never be granted the semaphore (because its guard —that
the semaphore value exceeds zero— is not continuously true, but it is true
infinitely often.) We take up this example in section 6.5.6.
We may mix different kinds of fairness for the same program; we may

group the actions and require different forms of fairness for each group. For
instance, if we require minimal progress for {α, β} and strong fairness for
{γ} in program Fairness, then x+y and z increase indefinitely, but neither
x nor y can be guaranteed to increase. If {α, β} have the weak fairness
restriction and {γ} the strong fairness, then all three —x, y, and z— will
grow indefinitely.
We can introduce a variety of fairness requirements by attaching different

fairness conditions to subgroups within a group. Though these possibilities
are theoretically interesting, we do not pursue them in this book. In fact,
we develop the theory only for minimal progress and weak fairness and
partially for strong fairness.

6.3 Transient Predicate

A predicate is transient if it is guaranteed to be falsified by execution of
a single action. The formal definition depends on the form of fairness as-
sumed for program execution. This is the only point in our theory where the
definition of an operator depends on the form of fairness. Other progress op-
erators are defined using transient predicates; their definitions and derived
rules are independent of the underlying fairness. Thus, the progress proofs
are largely shielded from having to argue about specific fairness properties
of programs.
Recall the following two properties of action systems:

1. Action skip is included in every program; hence, each program has at
least one action. (We do not show skip explicitly in the programs.)

2. Execution of each action terminates. It is easy to check termina-
tions for simple actions, such as the ones represented by assignment
statements. For more intricate actions, which include conditional and
looping constructs, we have to use the methods of sequential program
verification to prove termination; see Gries [79, chapter 12].

For a terminating action s, we have the law of the excluded miracle [61]

{p} s {false}
¬p

i.e., the post-condition of an action is false only if the pre-condition is
false. Using the substitution axiom, this law can be interpreted as “the
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resulting state of an action is unreachable only if the action is started in
an unreachable state”.

6.3.1 Minimal progress
Consider a program in which action i is of the form gi → si. Predicate p
is transient if both of the following conditions hold:

1. Whenever p holds, some action has a true guard:
p ⇒ 〈∃ i :: gi〉.

2. Executing any non-skip action that has a true guard in a state where
p holds falsifies p: (below, i is quantified over non-skip actions)

〈∀ i :: {p ∧ gi} si {¬p}〉.
Thus, a transient predicate is falsified by execution of any non-skip ac-
tion. This definition may seem overly restrictive; can we not require that
a predicate be falsified only after execution of a finite sequence of actions?
Operator leads-to is used to express such facts. Requirement (2), that ev-
ery non-skip action with a true guard falsify p, is essential; without such
a requirement, a possible execution may consist only of actions that never
falsify p.

Example:

We consider the running example from section 6.2, which we reproduce
below.

————————————
box Fairness

α :: x := x+ 1
[] β :: y := y + 1
[] γ :: x �= y → z := z + 1

end {Fairness}
————————————

First, we establish that for any integer k,

transient x+ y + z = k

Following are the proof obligations, and they are easily proved. For any
integer k,

1. x+ y + z = k ⇒ true

2. {x+ y + z = k} x := x+ 1 {x+ y + z �= k}
{x+ y + z = k} y := y + 1 {x+ y + z �= k}
{x+ y + z = k ∧ x �= y} z := z + 1 {x+ y + z �= k}
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We can also show that x = y is transient. The proof obligations are
similarly obtained. Corresponding to action γ, we have to show

{x = y ∧ x �= y} z := z + 1 {x �= y}
which follows from {false} s {q} for any action s and predicate q.
Next, we attempt to prove that for any k, transient x = k. We know

from operational arguments that this property does not hold. The proof
obligations are

1. x = k ⇒ true

2. {x = k} x := x+ 1 {x �= k}
{x = k} y := y + 1 {x �= k}
{x = k ∧ x �= y} z := z + 1 {x �= k}

The last two assertions cannot be established.
Finally, we leave it to the reader to show that neither x + y = k nor

x+ z = k can be shown transient.

Remark To prove that x + y + z increases eventually, it is sufficient
to show: (1) x + y + z is nondecreasing (a safety property that can be
established from the program text), and (2) x+ y + z = k is transient, for
any k. ✷

6.3.2 Weak fairness
A transient predicate is falsified by every “enabled” action under minimal
progress. However, under weak fairness it is sufficient to have a single action
falsify the predicate. Define

transient p ≡ 〈∃ t :: {p} t {¬p}〉
where t is over all actions in the system. If t is of the form g → s, then
{p} t {¬p} is shown by1

p ⇒ g and {p} s {¬p}
The following operational argument shows that eventually ¬p holds given

that p is transient. Let t be an action that falsifies p. From the weak fairness
condition, t is executed eventually. If ¬p holds immediately prior to the
execution of t, the desired result has been shown. Otherwise, p holds prior
to the execution of t, and from {p} t {¬p}, ¬p holds following the execution
of t. (Note that the execution of t terminates.)

1See appendix A.4.1.
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Example:

We consider box Fairness of section 6.2. The following predicates can be
shown to be transient under weak fairness. For any integer k,

x = k , y = k , x+ y = k , y + z = k , x+ z = k , x+ y + z = k

Predicate z = k cannot be shown transient, because we cannot display
an action t such that {z = k} t {z �= k} holds. The only action that
modifies z is

γ :: x �= y → z := z + 1

and this action does not satisfy {z = k} γ {z �= k}.
We leave it to the reader to show that x ≤ k cannot be proved to be

transient.

6.3.3 Strong fairness
Transient predicates for strong fairness can be defined recursively using
leads-to; see [102] for details. We do not plan to consider strong fairness
in any detail in this book. However, we show in section 6.5.7 that progress
properties under strong fairness can be proved using only the concepts de-
veloped for weak fairness. The idea is to show that auxiliary variables can
encode the eventual operator of temporal logic, and we specify strong fair-
ness requirement by adding axioms that employ these auxiliary variables.

6.3.4 Comparing minimal progress and weak fairness
It is not hard to show that any predicate that is transient under weak
fairness is transient under strong fairness. A similar result does not hold
for minimal progress and weak fairness. To see this, consider a program
that consists of the following actions; here, b and t are booleans, and their
initial values are immaterial.

————————————
α :: b → t := false

[] β :: ¬b → t := false
————————————

Under minimal progress t is transient. However, it cannot be shown that
t is transient under weak fairness (because there is no action γ such that
{t} γ {¬t} holds).
We leave it to the reader to show that a predicate may be transient under

weak fairness but not under minimal progress.
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6.3.5 Derived rules
We show two derived rules about transient predicates that hold under ei-
ther minimal progress or weak fairness. These rules are used primarily in
proving the derived rules for leads-to, not for establishing properties of pro-
grams.

• The only predicate that is both stable and transient is false.
(stable p ∧ transient p) ≡ ¬p

• (strengthening) transient p
transient (p ∧ q)

Now we prove the first rule for both forms of fairness. It is easy to see
from the definition of transient predicate that false is transient, and it is
known that false is stable. The remaining proof obligation for the first rule
is:

(stable p ∧ transient p) ⇒ ¬p .

• Proof of (stable p ∧ transient p) ⇒ ¬p (under minimal progress)

For any action gi → si:

{p ∧ gi} si {p} , stable p
{p ∧ gi} si {¬p} , transient p
{p ∧ gi} si {false} , conjunction of the above two
¬(p ∧ gi) , from law of the excluded miracle
p ⇒ ¬gi , simplify the above
p ⇒ 〈∀ i :: ¬gi〉 , conjoin over all i
p ⇒ 〈∃ i :: gi〉 , definition of transient p
¬p , conjoin the above two ✷

• Proof of (stable p ∧ transient p) ⇒ ¬p (under weak fairness)

From the definition of transient p, there is an action t such that

{p} t {¬p} , transient p
{p} t {p} , stable p
{p} t {false} , conjunction of the above two
¬p , law of the excluded miracle ✷

• Proof of the strengthening rule (under minimal progress)

p ⇒ 〈∃ i :: gi〉 , transient p
p ∧ q ⇒ 〈∃ i :: gi〉 , predicate calculus
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Also, for an action with guard gi and body si

{p ∧ gi} si {¬p} , transient p
{p ∧ q ∧ gi} si {¬p ∨ ¬q} , strengthen lhs, weaken rhs

Hence, transient (p ∧ q). ✷

• Proof of the strengthening rule (under weak fairness)

There is an action t such that

{p} t {¬p} , transient p
{p ∧ q} t {¬p ∨ ¬q} , strengthen lhs, weaken rhs
transient (p ∧ q) , definition of transient ✷

6.3.6 Discussion
The notion of stability (and its generalization in co) is fundamental for
developing the theory of safety; a stable predicate is guaranteed never to
be falsified. The notion of transient, fundamental to a theory of progress,
is almost the opposite of stability; a transient predicate is guaranteed to be
falsified. A predicate can be established stable by proving facts about all
actions in a program. Under weak fairness, a predicate can be established
transient by proving a fact about some action.
It is an interesting research question to identify problem areas where sta-

bility and transience are the only useful logical notions. For such problems,
special purpose theories may be efficient for deriving system properties.

6.4 ensures, leads-to

Our primary progress operator is leads-to. It is defined in terms of another
operator, ensures, which is abbreviated en. It is possible to eliminate en
from the theory, replacing it by co-properties and transient predicates.
However, to maintain continuity with [32], we introduce en though its role
is now considerably diminished.

6.4.1 ensures
The definition of p en q is

p en q ≡ (p ∧ ¬q co p ∨ q) ∧ transient (p ∧ ¬q)
It follows from the co-property in the above definition that once p holds,

it continues to hold as long as q does not. Now we justify in operational
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terms that once p holds, q holds eventually (“eventually” includes the
present moment). Consider a state in which p holds and q does not. Since
p ∧ ¬q is transient, it is eventually falsified. From the co-property, when-
ever p ∧ ¬q is falsified, p ∨ q holds. Hence, whenever p ∧ ¬q is falsified,
¬(p ∧ ¬q) ∧ (p ∨ q), i.e., q, holds.

6.4.2 leads-to
The informal meaning of p �→ q (read: p leads-to q) is “if p holds at any
point in the computation, q will hold eventually” (here “will” applies to
the current point as well as the future). There is no guarantee, unlike for
en, that p remains true until q holds. The definition of p �→ q is given by
a set of inference rules.

• (basis) p en q
p �→ q

• (transitivity) p �→ q , q �→ r
p �→ r

• (disjunction) 〈∀p : p ∈ S : p �→ q〉
〈∃p : p ∈ S : p〉 �→ q

, for any set of predicates S

For the basis, we deduce p �→ q from p en q. The transitivity rule
is justified as follows. From p �→ q, once p holds, q will hold, and from
q �→ r, once q holds, r will hold. Therefore, once p holds, r will hold. For
the disjunction rule, note that a state that satisfies 〈∃p : p ∈ S : p〉 also
satisfies some predicate p in S, so starting from this state, q will eventually
be established from p �→ q.
The definition of leads-to —using inference rules— differs from the way

we defined co, transient, and en. The current definition is recursive, and
leads-to can be understood as an extreme solution (a least fixpoint) of
an equation, a topic that we explore in section 6.6.2. The inference rules
provide important guidelines for structuring progress proofs: either a proof
follows directly from the program text (in the basis case) or it has to be
structured as a transitive or disjunctive proof. These rules can also be
used to establish derived rules for �→ using structural induction over its
definition (see sections 6.4.5 and 6.6.1).
In section 6.6.3, we show that the disjunction rule over a finite set can

be deduced from the basis and transitivity rules. Therefore, the real power
of the disjunction rule lies in its application to an infinite set of predicates.
The only mention of en is in the basis rule. If we replace p en q by its

definition, i.e., (p ∧ ¬q co p ∨ q) ∧ (transient p ∧ ¬q), we can eliminate
en from the theory. The only reason for retaining en is for continuity
with UNITY-logic [32]. An alternative definition of leads-to that eliminates
en appears in exercise 6. Exercise 22 shows that the transitivity and the
disjunction rules may be combined into a single rule.
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Note The substitution axiom can be applied, as usual, to the progress
properties. That is, an invariant can be replaced by true and vice versa in
any progress property. ✷

6.4.3 Examples of specifications with leads-to
In the following, variables x and y are integers and S and T are finite sets
of integers.

1. A hungry philosopher eats. Let h and e denote, respectively, that a
particular philosopher is hungry or eating.

h �→ e

2. Variable x changes eventually. For every integer m,

x = m �→ x �= m

This can be written equivalently as (see exercise 9d)

true �→ x �= m

3. Variable x grows without bound. For every integer m,

true �→ x > m

This property is an abbreviation for

〈∀ m :: true �→ x > m〉

It should not be confused with

true �→ 〈∀ m :: x > m〉

which happens to be nonsense; its rhs is false.

4. Every integer is eventually added to S. For every integer m,

true �→ m ∈ S

We cannot conclude that S grows eventually, because items may be
removed from S. If items cannot be removed, i.e., for any set U ,

stable S ⊇ U

then we can show that S grows without bound.
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5. If values of x and y are different in any state, at least one of these
variable values will change eventually.

x, y = m,n ∧ m �= n �→ ¬(x, y = m,n), for all m and n, or
〈∀ m,n : m �= n : x, y = m,n �→ ¬(x, y = m,n)〉

There is no guarantee that x and y will ever become equal.

6. Every element common to S and T is eventually removed from both
sets.

m ∈ (S ∩ T ) �→ m /∈ (S ∪ T )

It cannot be deduced from above that S and T will eventually become
disjoint, because items may be added to both S and T .

7. Predicate p holds infinitely often.

true �→ p or, equivalently (see exercise 9d)
¬p �→ p

8. If from some point in the execution p remains true forever, q holds
eventually (at or beyond that point). Another way of expressing this
property is to say that eventually either p is false or q is true.

true �→ ¬p ∨ q

9. If p holds infinitely often (in all executions), then so does q.

(true �→ p) ⇒ (true �→ q)

This property does not say, “In any execution, if p holds infinitely
often, so does q”. This latter property is stronger than our formula-
tion. This is because if in some execution p holds infinitely often and
in some other execution p holds finitely often, the first formulation
makes no guarantees about q in any execution; the second formulation
requires q to hold infinitely often whenever p does.

10. A given program “terminates”; i.e., starting in any state that satisfies
the initial condition, eventually a state is reached that satisfies the
fixed point predicate FP .

initial-condition �→ FP
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6.4.4 Derived rules
Effective applications of the following derived rules can shorten progress
proofs substantially. The rules are divided into two classes, lightweight and
heavyweight. The former includes rules whose validity are easily established;
the latter rules are not entirely obvious. Each application of a heavyweight
rule goes a long way toward completing a progress proof.

Lightweight rules

• (implication) p ⇒ q
p �→ q

• (lhs strengthening, rhs weakening) p �→ q
p′ ∧ p �→ q
p �→ q ∨ q′

• (disjunction) 〈∀ i :: pi �→ qi〉
〈∃ i :: pi〉 �→ 〈∃ i :: qi〉

where i is quantified over an arbitrary set, and pi, qi are predicates.

• (cancellation) p �→ q ∨ r , r �→ s
p �→ q ∨ s

We deduce from the implication rule that for any predicate p,

p �→ p and false �→ p

The lhs strengthening and the rhs weakening rules —also valid for co-
properties— are used extensively in proofs. The disjunction rule given pre-
viously is slightly more general than the one given here for one special case,
an empty set of predicates: the previous rule yields false �→ q for any q,
and the current rule yields false �→ false. We do not distinguish the two
rules by name; it should be obvious in any application which rule is being
considered. The cancellation rule played a minimal role in manipulating
the co-properties; however, it is used heavily in progress proofs. This rule
reduces to transitivity when q is false. Note that there is no conjunction
rule for �→ analogous to the one for co (see exercise 15c).

Heavyweight rules

• (impossibility) p �→ false
¬p

• (PSP)
p �→ q ,
r co s

p ∧ s �→ (q ∧ r) ∨ (¬r ∧ s)
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• (induction) Let M be a total function from program states to set
W . Let (W,<) be well-founded. Variable m in the following premise
ranges over W . Predicates p and q do not contain free occurrences of
variable m.

〈∀ m :: p ∧ M = m �→ (p ∧ M < m) ∨ q〉
p �→ q

• (completion) Let pi and qi be predicates where i ranges over a finite
set.

〈∀ i ::
pi �→ qi ∨ b
qi co qi ∨ b

〉
〈∀ i :: pi〉 �→ 〈∀ i :: qi〉 ∨ b

The impossibility rule says that a state in which false holds is reach-
able only from an unreachable state (read the consequent of the rule as
“invariant ¬p”).
The PSP rule (for Progress-Safety-Progress) is perhaps the most widely

used rule in progress proofs. It allows us to structure a progress proof as
a safety proof —establishing r co s— and a progress proof —establishing
p �→ q— which are then combined. This rule is so important that it should
be memorized before attempting serious progress proofs.
FunctionM in the induction rule is called a variant function or a metric.

The premise of the induction rule says that from any state in which p holds,
eventually a state is reached where p still holds and the metric has a lower
value, or q is established. Since M takes values from a well-founded set, its
value cannot decrease indefinitely. Therefore, q is eventually established. (It
is sufficient to require thatM ’s value be inW only when p∧¬q holds.) Some
common examples of well-founded relations are < (less-than relation) over
positive integers or natural numbers, lexicographic order over tuples (where
the tuple entries are well-founded), proper prefix or proper subsequence
relation over finite sequences, and proper subset relation over finite sets.
The completion rule is a way to take conjunctions of progress properties.

As we remarked earlier, there is no conjunction rule for �→ analogous
to the rule for co-properties (exercise 15c). Under additional assumptions
about the predicates in the rhs of the leads-to’s, such a conjunction rule
is valid; the additional assumptions are given by the co-properties. Exer-
cise 20 asks you to show that the rule is not valid for an infinite pair of
predicates, pi and qi; certain generalizations of this rule appear in exer-
cise 21.
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6.4.5 Proofs of the derived rules
The lightweight rules can be proved directly from the inference rules for
�→ . Many of the heavyweight rules require induction on the structure of
the progress proofs in the premises.

Proofs of the lightweight rules

• (implication) p ⇒ q
p �→ q

Proof:
p ∧ ¬q ≡ false , from the premise, p ⇒ q
p ∧ ¬q co p ∨ q , false co r, for any r
transient p ∧ ¬q , false is transient
p en q , from above two, definition of en
p �→ q , from basis inference rule for �→

• (lhs strengthening, rhs weakening) p �→ q
p′ ∧ p �→ q ,
p �→ q ∨ q′

Proof:
p′ ∧ p �→ p , implication rule (see above)
p �→ q , premise
p′ ∧ p �→ q , transitivity on above two

Similarly, p �→ q ∨ q′ from p �→ q and q �→ q ∨ q′.

• (disjunction) 〈∀ i :: pi �→ qi〉
〈∃ i :: pi〉 �→ 〈∃ i :: qi〉

Proof:
If the range of quantification for i is empty, the conclusion, false �→ false,
follows from the implication rule. Assume, therefore, that the range of i is
nonempty.

〈∀ i :: pi �→ qi〉 , premise
〈∀ i :: pi �→ 〈∃ i :: qi〉 〉 , weaken rhs

Applying the disjunction inference rule, the result follows.

• (cancellation) p �→ q ∨ r , r �→ s
p �→ q ∨ s

Proof:
r �→ s , premise
q �→ q , implication
q ∨ r �→ q ∨ s , disjunction
p �→ q ∨ r , premise
p �→ q ∨ s , transitivity on above two
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Proofs of the heavyweight rules
In establishing these rules, we often employ structural induction on the
proofs of the progress properties in the premise. Suppose, for instance, that
p �→ q appears in the premise. This property could have been established
by either (1) p en q, (2) p �→ r and r �→ q for some r, or (3) a set of
properties r �→ q, for each r in a set S, where p ≡ 〈∃ r : r ∈ S : r〉.
We have to prove the consequent in each of these three cases. For the first
case, we draw on the derived rules of co and transient (using which en
is defined); for the remaining two cases, using the induction hypothesis,
assume that the rule holds for each of the “smaller” progress properties
and include these as premises.

• (impossibility) p �→ false
¬p

basis:
p en false , premise
stable p and transient p , definition of p en false
¬p , derived rule (see section 6.3.5)

transitivity:
There is a predicate r such that p �→ r and r �→ false. Hence,

¬r , induction hypothesis on r �→ false
p �→ false , from p �→ r and ¬r
¬p , induction hypothesis

disjunction:
There is a set S of predicates such that r �→ false for every r, r ∈ S, and
p ≡ 〈∃ r : r ∈ S : r〉. Hence, for every r in S,

r �→ false , premise
¬r , induction hypothesis
¬p , from p ≡ 〈∃ r : r ∈ S : false〉 ✷

• (PSP)
p �→ q
r co s

p ∧ s �→ (q ∧ r) ∨ (¬r ∧ s)

basis:
p en q , premise
p ∧ ¬q co p ∨ q , from the definition of en
r co s , premise
p ∧ ¬q ∧ r co (p ∧ s) ∨ (q ∧ s)

, conjunction of the above two
p ∧ ¬q ∧ r co (p ∧ s) ∨ (q ∧ (r ∨ (¬r ∧ s)))

, weaken rhs
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p ∧ ¬q ∧ r co (p ∧ s) ∨ (q ∧ r) ∨ (¬r ∧ s) (1)
, weaken rhs

transient p ∧ ¬q , from the premise p en q
transient p ∧ ¬q ∧ r , strengthen above (section 6.3.5)
p ∧ s en (q ∧ r) ∨ (¬r ∧ s) , from (1) and above using the

definition of en (use r ⇒ s)
p ∧ s �→ (q ∧ r) ∨ (¬r ∧ s) , basis rule for �→

transitivity:
There is a predicate b such that p �→ b and b �→ q. Hence,

b ∧ s �→ (q ∧ r) ∨ (¬r ∧ s) , induction on b �→ q and r co s
b ∧ r �→ (q ∧ r) ∨ (¬r ∧ s) , strengthen lhs using r ⇒ s
p ∧ s �→ (b ∧ r) ∨ (¬r ∧ s) , induction on p �→ b and r co s
p ∧ s �→ (q ∧ r) ∨ (¬r ∧ s) , cancellation on above two

disjunction:
There is a set S of predicates such that b �→ q for every b in S and
p ≡ 〈∃ b : b ∈ S : b〉. Hence, for b in S,

b �→ q , premise
r co s , premise
b ∧ s �→ (q ∧ r) ∨ (¬r ∧ s) , induction hypothesis
〈∃ b : b ∈ S : b ∧ s〉 �→ (q ∧ r) ∨ (¬r ∧ s)

, disjunction
〈∃ b : b ∈ S : b〉 ∧ s �→ (q ∧ r) ∨ (¬r ∧ s)

, predicate calculus
p ∧ s �→ (q ∧ r) ∨ (¬r ∧ s) , p ≡ 〈∃ b : b ∈ S : b〉 ✷

• (induction) 〈∀ m :: p ∧ M = m �→ (p ∧ M < m) ∨ q〉
p �→ q

where M is a total function from program states to W and (W,<) is well-
founded. The premise can be written as follows: for all m in W ,

p ∧ M = m �→ 〈∃ n : n < m : p ∧ M = n〉 ∨ q

In the rest of this proof m and n are quantified over W . We use the
abbreviation A.n for (p ∧ M = n �→ q). For any m in W ,

〈∀ n : n < m : A.n〉
⇒ {expanding A.n using its definition}
〈∀ n : n < m : p ∧ M = n �→ q〉

⇒ {disjunction}
〈∃ n : n < m : p ∧ M = n〉 �→ q

⇒ {cancellation using the premise:
p ∧ M = m �→ 〈∃ n : n < m : p ∧ M = n〉 ∨ q}
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p ∧ M = m �→ q
⇒ {using the abbreviation A.m for the above}
A.m

We have thus established that for any m in W ,
〈∀ n : n < m : A.n〉 ⇒ A.m

Applying the induction principle (on well-founded sets) we conclude
〈∀ m :: A.m〉.

Now
〈∀ m :: A.m〉

⇒ {expanding A.m}
〈∀ m :: p ∧ M = m �→ q〉

⇒ {disjunction and that m does not appear in p}
p ∧ 〈∃ m :: M = m〉 �→ q

⇒ {range of total function M is W , so 〈∃ m :: M = m〉 ≡ true}
p �→ q ✷

• (completion)

〈∀ i : 0 ≤ i < N :
pi �→ qi ∨ b
qi co qi ∨ b

〉
〈∀ i : 0 ≤ i < N : pi〉 �→ 〈∀ i : 0 ≤ i < N : qi〉 ∨ b

We prove the result only for the special case b ≡ false. The proof of the
general case is left to exercise 21. We prove the following by induction on
N .

〈∀ i : 0 ≤ i < N :
pi �→ qi (1)
stable qi (2)

〉
〈∀ i : 0 ≤ i < N : pi〉 �→ 〈∀ i : 0 ≤ i < N : qi〉

Case N = 0: The consequent of the inference rule is

true �→ true, which follows from the implication rule for �→

Case N + 1: The consequent of the inference rule is

〈∀ i : 0 ≤ i < N + 1 : pi〉 �→ 〈∀ i : 0 ≤ i < N + 1 : qi〉
Writing P for 〈∀ i : 0 ≤ i < N : pi〉 and Q for 〈∀ i : 0 ≤ i < N : qi〉, we
have to show

P ∧ pN �→ Q ∧ qN
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Essential to the proof is the notion of wlt (see section 6.6.1). From con-
dition (1), pN �→ qN . So there is a predicate r (r is wlt.qN ) such that,

r �→ qN , from W3 of section 6.6.1 (3)
pN ⇒ r , from pN �→ qN and W2 of section 6.6.1 (4)
qN ⇒ r , from W4 of section 6.6.1 (5)
r ∧ ¬qN co r , from W5 of section 6.6.1 (6)

Then we have
stable qN , from (2)
stable r ∨ qN , disjunction of above and (6)
stable r , above and (5) (7)

The main proof is as follows:

P ∧ pN

⇒ {pN ⇒ r , from (4)}
P ∧ r

�→ {P �→ Q , induction hypothesis
stable r , from (7)
P ∧ r �→ Q ∧ r , PSP}

Q ∧ r
�→ {r �→ qN , from (3)

stable Q , conjunction over (2)
Q ∧ r �→ Q ∧ qN , PSP}

Q ∧ qN ✷

6.4.6 Corollaries of the derived rules
The following corollary, like its namesake for co, permits us to conjoin a
stable predicate to both sides of a leads-to property.

• (stable conjunction) p �→ q , stable r
p ∧ r �→ q ∧ r

Proof: set s to r in the PSP rule. ✷

• (corollary of PSP) Given r co s we have r ⇒ s. Therefore, strength-
ening the lhs (by replacing s with r) and/or weakening the rhs (by
replacing r with s) in the consequent of the PSP rule yield the fol-
lowing rules. For completeness, we include the original version of the
PSP. Henceforth, the hint “PSP” in a proof refers to any of these
rules.
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p �→ q
r co s

p ∧ s �→ (q ∧ r) ∨ (¬r ∧ s) , PSP
p ∧ r �→ (q ∧ r) ∨ (¬r ∧ s) , strengthen lhs
p ∧ s �→ (q ∧ s) ∨ (¬r ∧ s) , weaken rhs
p ∧ r �→ (q ∧ s) ∨ (¬r ∧ s) , both of the above

• (corollary of induction) In the following corollary, the range of m
(in the premise of the induction rule) is restricted by a predicate r.
Suppose “<” is a well-founded order over the set of values that satisfy
r.
〈∀ m : r.m :

p ∧ M = m �→ (p ∧ M < m) ∨ q
〉

p �→ (p ∧ ¬r.M) ∨ q

Proof:
p ∧ M = m ∧ r.m �→ (p ∧ M < m) ∨ q , premise
p ∧ M = m ∧ r.M �→ (p ∧ M < m) ∨ q , rewrite lhs
p ∧ M = m ∧ ¬r.M �→ p ∧ ¬r.M , implication
p ∧ M = m �→ (p ∧ M < m) ∨ (p ∧ ¬r.M) ∨ q

, disjunction
p �→ (p ∧ ¬r.M) ∨ q , induction ✷

An important special case arises when M is integer valued, r.m is
of the form m > L for some lower bound L, and < is the standard
less-than relation over integers. Then, we conclude from the above
corollary:

• (induction over integers)
〈∀ m : m > L :

p ∧ M = m �→ (p ∧ M < m) ∨ q
〉

p �→ (p ∧ M ≤ L) ∨ q

If r.m imposes no lower bound on m —for instance, r.m ≡ true—
then the conclusion holds for any L.

Using “greater than” in place of “less than”, we have the analogous

• (induction over integers)
〈∀ m : m < L :

p ∧ M = m �→ (p ∧ M > m) ∨ q
〉

p �→ (p ∧ M ≥ L) ∨ q
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A simple corollary of the induction rule, where < is a well-founded
order, is

• (simple corollary of induction)

〈∀ m ::
p ∧ M = m �→ M < m

〉
true �→ ¬p

6.5 Applications

We consider a few examples in which we employ the progress operators
for specifications and deductions of program properties. The emphasis is
on converting verbal descriptions to formal specifications and using the
derived rules for deductions. In most cases, we also supply the typical ver-
bal arguments that justify the deductions and contrast them with formal
proofs.

6.5.1 Non-operational descriptions of algorithms
We consider the algorithm for computing the maximum of a nonempty
set S of numbers, as described in section 5.5.1. The safety properties we
postulated are as follows. Here, v is the variable in which the maximum is
being computed and m is any integer.

initially v = −∞ (ND1)
v = m co v = m ∨ (v ∈ S ∧ v > m) (ND2)

We derived a number of safety properties, including

invariant v ≤M (ND3)

where M is the maximum in S, i.e., M = 〈max x : x ∈ S : x〉. Now we
postulate the following progress property. For all m,

m ∈ S �→ v ≥ m (ND4)

which says that eventually v is at least m for any m in S. We establish
that v will eventually equal M .

• Proof of true �→ v =M :

m ∈ S �→ v ≥ m , (ND4)
M ∈ S �→ v ≥M , instantiating m by M
true �→ v ≥M , substitution axiom on lhs: M ∈ S ≡ true
true �→ v =M , conjoin invariant (ND3) with rhs ✷
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The following implementation was considered in section 5.5.1. Let S be
represented by an array A and s be an index into A. We had

initially v, s = −∞, 0 and (ND5)
v = 〈max i : 0 ≤ i < s : A[i]〉 (ND6)

We show that v acquires the maximum value in A given that the index s
increases as long as the end of the array is not reached. Assume that for
all k, 0 ≤ k < N (where A has N , N ≥ 0, elements),

s = k �→ s = k + 1 (ND7)

and show,

• Proof of v, s = −∞, 0 �→ v = 〈max i : 0 ≤ i < N : A[i]〉:

s ≤ N �→ s = N , from (ND7) (see Exercise 17a)
s = 0 �→ s = N , strengthen lhs of the above; use N ≥ 0
s = 0 �→ v = 〈max i : 0 ≤ i < N : A[i]〉

, substitution axiom; conjoin (ND6) to rhs
v, s = −∞, 0 �→ v = 〈max i : 0 ≤ i < N : A[i]〉

, strengthen lhs ✷

6.5.2 Common meeting time
The common meeting time problem was discussed in section 5.5.2 where
functions f and g mapped non-negative reals to non-negative reals. Now we
tighten the requirements on f and g: they map natural numbers to natural
numbers. Rewriting the earlier properties, we have

m ≤ n ⇒ f(m) ≤ f(n) (CMT1)
m ≤ n ⇒ g(m) ≤ g(n)

A variable t —previously of type real, now of type natural number— is
postulated to satisfy

initially t = 0 (CMT2)
t = m co t ≤ max(f(m), g(m)) (CMT3)

We had established earlier, from (CMT1–CMT3), that t exceeds no com-
mon meeting time:

com(n) ⇒ t ≤ n (CMT4)

The essential safety property, (CMT3), can be implemented by program
skip, which does not change t. To guarantee that t eventually equals the
earliest common meeting time (provided that one exists), we add a progress
requirement: if t is not a common meeting time, then its value increases
eventually.
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¬com(t) ∧ t = m �→ t > m (CMT6)

We show

〈∃ n :: com(n)〉 �→ com(t). (CMT7)

That is, if there is a common meeting time, t will eventually equal a common
meeting time. From (CMT4), t can never exceed any common meeting time.
Therefore, if there is a common meeting time, t will eventually equal the
earliest common meeting time.

• Proof of (CMT7), 〈∃ n :: com(n)〉 �→ com(t):
For arbitrary natural numbers m and n:

¬com(t) ∧ t = m �→ t > m , rewrite (CMT6)
com(t) ∧ t = m �→ com(t) , implication
t = m �→ t > m ∨ com(t) , disjunction of the above two
true �→ t > n ∨ com(t) , induction over integers
com(n) �→ 〈com(n) ∧ t > n〉 ∨ 〈com(n) ∧ com(t)〉

, stable conjunction with com(n)
com(n) �→ com(n) ∧ com(t) , (CMT4): first term in rhs is false
com(n) �→ com(t) , weaken rhs
〈∃ n :: com(n)〉 �→ com(t) , disjunction over all n ✷

This proof is invalid if t is real because the induction step is then invalid.
The reader can construct a counterexample to (CMT7) by having t increase
extremely slowly, say, by 1/2i in step i.
One way to implement progress condition (CMT6) is to increment t by 1

in each step and check if com(t) holds. The monotonicity condition on f and
g —given by (CMT1)— is far too weak to permit many other strategies. If
the functions are also ascending, i.e., for all natural n

n ≤ f(n) and n ≤ g(n),

then programs (P1, P2) in section 5.5.2 satisfy

¬com(t) ∧ t = m en t > m

and hence (CMT6) as well.

6.5.3 Token ring
Safety properties of a token ring were postulated in section 5.5.3.

Notation We write ti to denote that process i is thinking; similarly hi

and ei stand for hungry and eating. These predicates are mutually exclu-
sive, and hi ∨ ti ∨ ei holds. The position of the token is in variable p, i.e.,
p = i (as in TR5) denotes that process i holds the token. In the following,
i ranges over all processes and i′ is the right neighbor of i. ✷
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initially ei ⇒ p = i (TR0)
ei co ei ∨ ti (TR1)
ti co ti ∨ hi (TR2)
hi co hi ∨ ei (TR3)
hi ∧ p �= i co hi (TR4)
p = i co p = i ∨ ¬ei (TR5)

In section 5.5.3, we deduced mutual exclusion, a safety property, from
(TR0–TR5). Now, we postulate some progress properties and establish the
absence of starvation.
First, we require that a hungry token holder transit to eating.

hi ∧ p = i �→ ei (TR6)

Next, we require that the token move from the current token holder to
its right neighbor.

p = i �→ p = i′ (TR7)

Note that (TR7) does not require the token to go directly from i to i′.
Our ultimate goal is to establish absence of starvation for process j,

0 ≤ j < N , which is written as

hj �→ ej (TR8)

To prove (TR8), consider an arbitrary j, 0 ≤ j < N . First we show that
j eventually holds the token, i.e.,

true �→ p = j (TR9)

The proof of (TR9) is by induction over (TR7). To apply the induc-
tion rule, we define a total order ≺ over the processes. Let j be the high-
est process in this ordering and the processes become successively smaller
clockwise along the ring from j. That is,

. . . i′ ≺ i . . . ≺ j′ ≺ j

Formally, i′ ≺ i for all process indices i, where i′ �= j.

• Proof of (TR9) true �→ p = j:

p = i �→ p ≺ i, for all i where i′ �= j
, from (TR7)

p = i �→ p = j, for i where i′ = j
, from (TR7)

〈∀ i :: p = i �→ p ≺ i ∨ p = j〉
, from the above two

true �→ p = j , induction (≺ is a total order on processes) ✷
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• Proof of (TR8) hj �→ ej :

hj co hj ∨ ej , from (TR3) using j for i
true �→ p = j , (TR9)
hj �→ (hj ∧ p = j) ∨ ej , PSP {use (¬hj ∧ ej) ≡ ej}
hj ∧ p = j �→ ej , from (TR6) using j for i
hj �→ ej , cancellation on above two ✷

The standard verbal argument for this problem follows the above proof
steps closely. The formalism allows us to combine a few special cases. The
role of induction —if every process relinquishes the token eventually, every
process acquires the token eventually— is made explicit in the proof. Note
that the proof is entirely independent of the kind of fairness assumed in
(TR6) and (TR7).

6.5.4 Unordered channel
We consider a directed channel along which messages are sent from one
process to another. We design a protocol by which every message sent is
eventually delivered, though the order of delivery may be different from
the order of transmission. The following scheme implements the protocol
of section 4.1.3. Every message sent along the channel is assigned a sequence
number (a natural number) and the sequence numbers are strictly increas-
ing in the order of transmission. A message that has the lowest sequence
number in the channel at any point in the computation is delivered eventu-
ally. We claim that this scheme guarantees delivery of every message sent.
However, the delivery order may not be monotonic in sequence numbers.
The proposed scheme can be described by the following properties. In

this description, s is the set of sequence numbers of the messages in the
channel (henceforth, assume that s is a finite set), and x and y are arbi-
trary sequence numbers. The lowest sequence number in s is s.min (if s
is empty s.min is ∞). Therefore, s.min does not decrease as a result of
adding a number to s, from the monotonicity of sequence numbers. Also,
removing a number from s does not decrease s.min; if s becomes empty,
s.min =∞. The safety property, (UC1), says that s.min never decreases.
The progress property, (UC2), says that the smallest element of s is even-
tually removed from s. Our goal, (UC3), is to show that every sequence
number is eventually outside s.

s.min = x co s.min ≥ x (UC1)
s.min = x �→ x /∈ s (UC2)

Show:
true �→ y /∈ s (UC3)

The proof is based on the following argument. From (UC1), s.min never
decreases. From (UC2), s.min is eventually removed, so s.min eventu-
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ally increases. Therefore, s.min increases without bound as long as s is
nonempty; so every number is eventually outside s.

• Proof of (UC3), true �→ y /∈ s:

s.min = x �→ (x /∈ s ∧ s.min = x) ∨ (s.min �= x ∧ s.min ≥ x)
, PSP on (UC1, UC2)

s.min = x �→ s.min > x
, simplify the rhs

true �→ s.min > y
, induction on integers (use y as the upper bound)

true �→ y /∈ s
, weaken the rhs using s.min > y ⇒ y /∈ s ✷

6.5.5 Shared counter
A finite nonempty set of processes share a counter ctr whose value is a
natural number. Each process has three local variables: b (boolean), old,
and new (natural). Henceforth, j denotes a process index, and for local
variables of process j, we write bj , oldj , and newj . Initially, all bj are false.
Process j has three associated actions, shown below, and the complete
program includes the actions of all processes.

————————————
αj :: bj ∧ ctr = oldj → ctr, bj := newj , false
βj :: bj ∧ ctr �= oldj → oldj , bj := ctr, false
γj :: ¬bj → newj , bj := oldj + 1, true
————————————

It is required to show that the counter value eventually increases; i.e.,
for any natural number c,

ctr = c �→ ctr > c

First, we prove an invariant:

invariant bj ⇒ (newj = oldj + 1), for all j

Let qj stand for bj ⇒ (newj = oldj + 1). Initially every qj holds since
every bj is false. An effective execution of αj or βj preserves qj because bj
is set to false. An effective execution of γj sets bj to true and establishes
newj = oldj + 1, thus preserving qj . Actions of processes other than j
preserve qj because qj names only the local variables of j. We leave the
formal proof to the reader.
To show that ctr eventually increases, we introduce two auxiliary vari-

ables: nc is the number of processes j, for which ctr �= oldj , and nb is the
number of processes for which bj is false :
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nc = 〈+ j : ctr �= oldj : 1〉
nb = 〈+ j : ¬bj : 1〉.

The main observation in the progress proof is that eventually either
ctr increases or the pair (nc, nb) decreases lexicographically. Since (nc, nb)
cannot decrease forever (lexicographic ordering over pairs of naturals is
well-founded), ctr eventually increases. We use the following two predicates,
P and Q, in the proof.

P ≡ 〈ctr = c ∧ (nc, nb) = (M,N)〉
, where M and N are free

Q ≡ 〈ctr = c ∧ (nc, nb) ≺ (M,N)〉 ∨ 〈ctr > c〉
, where ≺ is the lexicographic order

• Proof of ctr = c �→ ctr > c:
Effective execution of any (non-skip) action establishes Q as a post-

condition given P as a pre-condition, i.e., for any j,

{P ∧ bj ∧ ctr = oldj} αj {Q}
{P ∧ bj ∧ ctr �= oldj} βj {Q}
{P ∧ ¬bj} γj {Q}

We leave the formal proofs of these assertions to the reader. Informally:
αj increases ctr (since invariant bj ⇒ newj = oldj + 1 holds for this
program), βj decreases nc (though it may increase nb), and γj preserves
nc and decreases nb.
Next, we use the result of exercise 5. The disjunctions of the guards of

αj , βj , and γj , over all j, is true. So we get

P �→ Q , use exercise 5
〈ctr = c ∧ (nc, nb) = (M,N)〉

�→ 〈ctr = c ∧ (nc, nb) ≺ (M,N)〉 ∨ 〈ctr > c〉
, expand P and Q

ctr = c �→ ctr > c , induction ✷

6.5.6 Dynamic graphs
In section 5.5.10, a finite directed graph is modified by directing all incident
edges on a node toward that node. The effect of this operation is to make
that node a bottom node (a node that has no outgoing edge). We showed
that this operation does not create new paths to non-bottom nodes, i.e.,
for arbitrary nodes u and v, where u R v denotes that there is a path from
u to v and v. ⊥ that v is bottom.

¬u R v co ¬u R v ∨ v. ⊥ (G1)
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We showed that one of the consequences of (G1) is that once the graph
becomes acyclic, it remains acyclic. Henceforth, we assume that the graph
is initially acyclic; therefore, it is always acyclic, i.e., for all u

¬u R u (G2)

Now we add a progress condition. A node is top if it has no incoming
edge. Hence, a top node remains top as long as edge redirection is not
applied to it. We require that edge redirection be applied to every top
node eventually; the effect is to make the node a bottom node. Using v. 
to denote that v is a top node, we assume

v. �→ v. ⊥ (G3)

We show that every node eventually becomes a bottom node, i.e.,

true �→ u. ⊥ (G4)

The argument behind the formal proof of (G4) is as follows. For any
node u, consider the set of ancestors of u, i.e., the nodes that have paths
to u. This set does not grow as long as u is non-bottom, a safety property
that we establish from G1. Next, since the graph is acyclic, either u is top
or u has an ancestor v that is top. In the first case, from G3, u will become
bottom. In the second case, from G3, v will become bottom and therefore,
cease to be an ancestor of u; hence, the ancestor set of u decreases in size
eventually. Since the ancestor set cannot decrease forever, u will become
top and then, from G3, eventually become bottom. Next, we formalize this
argument.
In the following, u.an denotes the ancestor set of u, i.e., the set of nodes

from which there is a path to u.

v ∈ u.an ≡ v R u (G5)

We use the following facts about top and bottom. A node is top iff its
ancestor set is empty (G6) and a bottom node does not belong to any
ancestor set (G7).

u. ≡ u.an = ∅ (G6)
v. ⊥ ⇒ v /∈ u.an (G7)

Henceforth, S is any fixed set of nodes, and u and v are arbitrary nodes.
We prove that u.an does not grow as long as u remains non-bottom.

Lemma u.an = S co u.an ⊆ S ∨ u. ⊥ (G8)

Proof:
¬v R u co ¬v R u ∨ u. ⊥ , G1 with u, v interchanged
v /∈ u.an co v /∈ u.an ∨ u. ⊥ , use G5 to rewrite ¬v R u
〈∀ v : v /∈ S : v /∈ u.an〉 co 〈∀ v : v /∈ S : v /∈ u.an〉 ∨ u. ⊥

, conjunction over all v, v /∈ S
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u.an ⊆ S co u.an ⊆ S ∨ u. ⊥ , simplify the two sides
u.an = S co u.an ⊆ S ∨ u. ⊥ , strengthen the left side ✷

(G8) states the essential safety property. Next we prove an analogous
progress property: the ancestor set of u eventually shrinks as long as u
remains non-bottom. (G4) follows by combining the safety and progress
results.

Lemma (G4) true �→ u. ⊥
Proof:

v. �→ v. ⊥
, G3

u.an = S ∧ v. �→ v /∈ u.an
, strengthen lhs and weaken rhs (using G7)

u.an = S ∧ v. ∧ v ∈ S �→ v /∈ u.an ∧ v ∈ S
, conjunction with v ∈ S; v ∈ S is stable

u.an = S ∧ v. ∧ v ∈ S �→ u.an �= S
, weaken rhs

u.an = S ∧ 〈∃ v :: v. ∧ v ∈ S〉 �→ u.an �= S
, disjunction over v

u.an = S ∧ S �= ∅ �→ u.an �= S
, an acyclic graph S has a top node ≡ (S �= ∅)

u.an = S co u.an ⊆ S ∨ u. ⊥
, from lemma (G8)

u.an = S ∧ S �= ∅ �→ u.an ⊂ S ∨ u. ⊥
, PSP and weaken rhs

u.an = S ∧ S = ∅ �→ u. ⊥
, u.an = ∅ ⇒ {G6} u. �→ {G3} u. ⊥

u.an = S �→ u.an ⊂ S ∨ u. ⊥
, disjunction of the above two

true �→ u. ⊥
, induction (subset relation over finite sets is well founded) ✷

6.5.7 Treatment of strong fairness
In this section we show that progress properties under strong fairness can
be proved using only the concepts developed for weak fairness.

A naive approach
A standard example of strong fairness is a binary semaphore shared by two
processes. Let x and y be the number of times that the two processes suc-
cessfully complete their P -operations. A process that holds the semaphore
eventually releases it. In the program below, α implements the granting of
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the semaphore to the x-process, and β to the y-process; γ implements the
V operation.

————————————
α :: s → s, x := false, x+ 1

[] β :: s → s, y := false, y + 1
[] γ :: s := true
————————————

Under the weak fairness assumption, we can establish only that x + y
increases without bound; we can make no such guarantee for either x or y.
Now, we impose the following strong fairness condition for action α: if the
guard of α (i.e., s) is infinitely often true, α is effectively executed infinitely
often. We assume weak fairness for the remaining actions, β and γ. The
goal is to show that x increases without bound under this strong fairness
condition.
The strong fairness condition can be added as a property of the program;

for any integer k,

(true �→ s) ⇒ (x = k �→ x = k + 1)

So we regard the system as consisting of the program (with weak fairness
condition) plus the property given above. It is then straightforward to show
that for any integer m,

true �→ x > m

The proof is as follows:

true en s , from the program text
true �→ s , basis rule of �→
x = k �→ x = k + 1 , use the strong fairness condition
true �→ x > m , induction on integers

This treatment of strong fairness, though sound, is incomplete. To see
this, consider the following program where x and y are integers, b is boolean,
and only action α is executed under strong fairness.

————————————
α :: b → x := x+ 1

[] β :: ¬b → y := y + 1
[] γ :: x = y → b := ¬b
————————————

We show that x + y increases without bound. First, x and y never de-
crease. Next, suppose b holds infinitely often in an execution. Then α is
executed effectively an infinite number of times, increasing x + y without
bound. If b holds finitely often, ¬b holds forever beyond some point in that
execution. Every execution of β is effective from then on. Hence, y increases
without bound, and so does x+ y.
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Unfortunately, the method we have outlined cannot be used to prove this
result; adding the following strong fairness condition to the program

(true �→ b) ⇒ (x = k �→ x = k + 1)

does not help us to prove that x+y increases. To exploit the strong fairness
condition, we need to prove its antecedent:

true �→ b

We cannot prove this result because, if initially x, y, b = 0, 1, false, then
x < y ∧ ¬b persists forever. The trouble is

(true �→ b) ⇒ (x = k �→ x = k + 1)

says merely that if b holds infinitely often in all execution sequences, x
will be incremented infinitely often in all execution sequences. We need a
stronger property: in any execution sequence, if b holds infinitely often, x
is incremented infinitely often (in that sequence). We next show how to
state such properties by encoding the eventual operator, ✸, of temporal
logic [127, 128] in our theory.

Encoding the Eventual Operator
In temporal logic eventually b, written as ✸b, means that b holds now or
will hold in a future state. Henceforth, we write eb for ✸b and define it by
the following properties:

b ⇒ eb
eb �→ b
stable ¬eb

Predicate eb may be regarded as an auxiliary variable of the program.
More accurately, eb is a prophecy variable [2] whose value in any state
depends on the future execution. The value of eb in any state is completely
determined by the properties given above. Specifically, eb holds in a state
iff b holds in the current or some future state. We validate this claim by
considering two cases:

1. eb holds in a state: from eb �→ b, b holds in the current or some future
state.

2. ¬eb holds in a state: from the stability of ¬eb, ¬eb holds in the current
and all future states, and so does ¬b, from ¬eb⇒ ¬b.

Let s be the longest suffix that contains only ¬b-states. Then, from the
above observation, ¬eb holds in only and all states of s. If b holds infinitely
often, s is empty, and eb holds in all states. If b holds finitely often, s is
nonempty, eb holds throughout the finite prefix preceding s (this prefix is
empty when ¬b holds in all states), and ¬eb holds throughout s.
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We specify a strong fairness requirement by adding a set of axioms that
name prophecy variables like eb and auxiliary variables, as shown next. Let
α be an action with guard b that is executed under strong fairness, i.e., if
b holds infinitely often, α is effectively executed infinitely often. Introduce
an auxiliary boolean variable q and add the assignment statement

q := ¬q
to the code of α such that whenever α is executed effectively q is changed.
Then the strong fairness requirement for α is

true �→ q �≡ Q ∨ ¬eb (SF)

where Q is a free boolean variable. Such a requirement has to be added for
each strongly fair action.
To see the validity of (SF), consider two cases: (1) If b holds infinitely

often, eb holds in every state; hence, (SF) requires q’s value to change
eventually, i.e., infinitely often. The value of q changes only through an
effective execution of α; hence, α is effectively executed infinitely often if
b holds infinitely often. (2) Conversely, if b holds finitely often, ¬eb holds
eventually forever. Hence, (SF) is satisfied; i.e., it imposes no additional
requirement on the execution of α.
Next, we prove true �→ x + y > k for the given program (page 185).

The following properties can be proved directly from the program text; we
leave their proofs to the reader.

x, q = m,Q co x, q = m,Q ∨ (x > m ∧ q �≡ Q) (1)
stable x ≥ m (2)
stable y ≥ n (3)
¬b ∧ y ≥ n en b ∨ y > n (4)

• Proof of x = m �→ x > m ∨ ¬eb: (5)

x, q = m,Q co x, q = m,Q ∨ (x > m ∧ q �≡ Q)
, rewrite (1)

true �→ q �≡ Q ∨ ¬eb , rewrite (SF)
x, q = m,Q �→ x > m ∨ ¬eb , PSP, weaken rhs
x = m �→ x > m ∨ ¬eb , disjunction over all Q ✷

• Proof of ¬eb ∧ y ≥ n �→ y > n: (6)

¬b ∧ y ≥ n en b ∨ y > n , rewrite (4)
¬b ∧ y ≥ n �→ b ∨ y > n , basis rule of �→ on above
stable ¬eb , definition of eb
¬eb ∧ ¬b ∧ y ≥ n �→ (¬eb ∧ b) ∨ (y > n)

, PSP, weaken rhs
¬eb ∧ y ≥ n �→ y > n , definition of eb: ¬eb⇒ ¬b ✷
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• Proof of true �→ x+ y > k:

x = m �→ x > m ∨ ¬eb , from (5)
x, y = m,n �→ (x > m ∧ y ≥ n) ∨ (¬eb ∧ y ≥ n)

, PSP with (3), strengthen lhs
x, y = m,n �→ (x > m ∧ y ≥ n) ∨ (y > n)

, cancellation using (6)
x, y = m,n �→ (x > m ∧ y ≥ n) ∨ (x ≥ m ∧ y > n)

, PSP with (2)
x, y = m,n �→ x+ y > m+ n , weaken rhs
true �→ x+ y > k , induction ✷

6.6 Theoretical Issues

In section 6.6.1, we show the existence of the “weakest predicate that
leads-to” q, for any q, and we prove some of its properties. (These properties
have been used in proving the completion rule in section 6.4.5.) We give a
fixpoint characterization of this predicate in section 6.6.2. The role of the
disjunction rule is examined in section 6.6.3; we show that the validity of
disjunction over a finite set of predicates is derivable from the basis and
transitivity rules; therefore, the main use of the disjunction rule is in its
application to an infinite set of predicates.

6.6.1 wlt
For predicate q, let wlt.q be the weakest predicate that leads-to q. The
definition of wlt is

wlt.q ≡ 〈∃ p : p �→ q : p〉 (W1)

We show that wlt.q is indeed the weakest predicate leading to q, i.e.,

• (p �→ q) ≡ (p ⇒ wlt.q) (W2)

First, observe that (p �→ q) ⇒ (p ⇒ wlt.q):

p �→ q , assume
p ⇒ wlt.q , from (W1)

Conversely, we show (p ⇒ wlt.q) ⇒ (p �→ q):

〈∀ r : r �→ q : r �→ q〉 , trivially
〈∃ r : r �→ q : r〉 �→ q , disjunction
wlt.q �→ q , using (W1)
p �→ q , strengthen lhs with p ⇒ wlt.q ✷
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We can use (W2) to determine whether p �→ q for arbitrary p and q,
by computing if p ⇒ wlt.q holds. This is the preferred method when wlt.q
can be computed efficiently, as in model checking of a finite state program.
Here are some special cases of (W2). Substituting wlt.q for p and using

wlt.q ⇒ wlt.q, we have

wlt.q �→ q (W3)

Also, substituting q for p in (W2) and using q �→ q, we have

q ⇒ wlt.q (W4)

Next, we show

• wlt.q ∧ ¬q co wlt.q (W5)
Proof: Given p �→ q, we show that there is a predicate b that satisfies

p ⇒ b (B1)
b �→ q (B2)
b ∧ ¬q co b ∨ q (B3)

The proof is by induction on the structure of the proof of p �→ q.

1. (basis) p en q
Let b be p. Then, we show (B1, B2, B3) as follows:

p ⇒ b , trivially, from b ≡ p
b �→ q , from p �→ q and b ≡ p
b ∧ ¬q co b ∨ q , from p ∧ ¬q co p ∨ q and b ≡ p

2. (transitivity) Suppose p �→ r and r �→ q, for some predicate r.
We may assume, by induction hypothesis on p �→ r, that there is a
predicate br such that

p ⇒ br , br �→ r , br ∧ ¬r co br ∨ r

Similarly, we may assume, by induction hypothesis on r �→ q, that
there is a predicate bq such that

r ⇒ bq , bq �→ q , bq ∧ ¬q co bq ∨ q

Define b to be br ∨ bq. We now establish that b satisfies (B1), (B2),
and (B3).

(a) (Proof of B1) p ⇒ b:

p ⇒ br , induction hypothesis
p ⇒ br ∨ bq , br ⇒ br ∨ bq
p ⇒ b , b ≡ br ∨ bq
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(b) (Proof of B2) b �→ q:

br �→ r , given
bq �→ q , given
br ∨ bq �→ r ∨ q , disjunction
b �→ r ∨ q , b ≡ br ∨ bq
b �→ q , cancellation using r �→ q

(c) (Proof of B3) b ∧ ¬q co b ∨ q:
br ∧ ¬r co br ∨ r , given
br ∧ ¬bq co br ∨ r , strengthen lhs using r ⇒ bq
br ∧ ¬bq ∧ ¬q co br ∨ r , strengthen lhs
bq ∧ ¬q co bq ∨ q , given
(br ∨ bq) ∧ ¬q co br ∨ r ∨ bq ∨ q

, disjunction
(br ∨ bq) ∧ ¬q co br ∨ bq ∨ q

, in the rhs r ⇒ bq
b ∧ ¬q co b ∨ q , b ≡ br ∨ bq

3. (disjunction) We are given r �→ q for all r in some set S and that
p ≡ 〈∃ r : r ∈ S : r〉. By induction hypothesis, for every r in S
there is a predicate b.r such that
r ⇒ b.r, b.r �→ q, b.r ∧ ¬q co b.r ∨ q

Define b to be 〈∃ r : r ∈ S : b.r〉. For any r, r ∈ S,

(a) p ⇒ b :

r ⇒ b.r , given
p ⇒ b , disjunction over r in S

(b) b �→ q :

b.r �→ q , given
〈∃ r : r ∈ S : b.r〉 �→ q , disjunction
b �→ q , definition of b

(c) b ∧ ¬q co b ∨ q :
b.r ∧ ¬q co b.r ∨ q , given
〈∃ r : r ∈ S : b.r ∧ ¬q co b.r ∨ q〉 , disjunction
b ∧ ¬q co b ∨ q , definition of b

We establish (W5) from (B1, B2, B3), as follows. First, wlt.q �→ q, from
(W3). Using (B1, B2, B3) on this property, with p as wlt.q and q as q, there
is a predicate w, analogous to b, such that

wlt.q ⇒ w (B1′)
w �→ q (B2′)
w ∧ ¬q co w ∨ q (B3′)
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Now

w ⇒ wlt.q , from (B2′ and W2)
w ≡ wlt.q , from above and B1′

wlt.q ∧ ¬q co wlt.q ∨ q , replace w by wlt.q in B3′

wlt.q ∧ ¬q co wlt.q , simplify the rhs using (W4)

This establishes (W5). ✷

6.6.2 A fixpoint characterization of wlt
The following fixpoint characterization of wlt is under weak fairness. We
define a predicate transformer we that captures the essence of en, and we
define wlt in terms of we. These definitions have been used in automatic ver-
ifications of finite state programs where the extreme solutions (i.e., weakest
or strongest) can be computed iteratively; see Kaltenbach [104].
Predicate we.p is the weakest predicate such that, starting in any state

that satisfies we.p, p is eventually established, and we.p holds until p is
established. Predicate we.p can be written as a disjunction of several predi-
cates (we.p)t, one predicate for each action t in a given program. Predicate
(we.p)t has the same meaning as we.p but has the additional requirement
that p can be established by executing action t with pre-condition (we.p)t.
Specifically, (we.p)t is the weakest solution of (1) in q; here, wp.s.q is the
weakest pre-condition of s when the post-condition is q.

q ≡ (〈∀ s :: wp.s.q〉 ∧ wp.t.p) ∨ p (1)

Now predicate transformer we can be defined. Below, t is quantified over
all actions of a program.

we.p ≡ 〈∃ t :: (we.p)t〉 (2)

Finally, we define wlt.q as the strongest solution in p of (3).

p ≡ q ∨ we.p (3)

The existence of the weakest solution for (1) and the strongest solution for
(3) can be established by appealing to the Knaster-Tarski theorem; see [103]
for details. The definition of wlt given by equation (3) can be shown to be
the same as definition (W1) of section 6.6.1. The fixpoint characterization
yields a number of properties of we and wlt (we have seen some of these
earlier):

p ⇒ we.p
wlt.p ≡ p ∨ we.(wlt.p)
〈(p ∨ we.q) ⇒ q〉 ⇒ 〈wlt.p ⇒ q〉
we.(wlt.p) ⇒ wlt.p
p ⇒ wlt.p
(p ⇒ q) ⇒ (wlt.p ⇒ wlt.q)
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wlt.false ≡ false
wlt.(wlt.p) ≡ wlt.p
wlt.(p ∨ wlt.q) ⇒ wlt.(p ∨ q)

6.6.3 The role of the disjunction rule
We have defined �→ using three inference rules. The basis and transitiv-
ity rules are intuitively acceptable. However, the need for the disjunction
rule is not easy to see. In this section, we show that the disjunction rule
is (1) unnecessary for performing finite disjunctions and (2) necessary for
performing infinite disjunctions. One consequence of this observation is
that for a finite-state program —where the number of predicates them-
selves is finite, so disjunction can be performed only over a finite number
of predicates— the disjunction rule is unnecessary. Therefore, finite state
model checking needs only the basis and transitivity rules.
Let |⇒ (a “poor cousin” of �→ ) be the transitive closure of en; i.e., |⇒

is defined by the following two inference rules.
p en q
p |⇒ q

p |⇒ q , q |⇒ r
p |⇒ r

We show that |⇒ is finitely disjunctive, i.e.,

p |⇒ q , p′ |⇒ q
p ∨ p′ |⇒ q

We first show
p |⇒ q

p ∨ r |⇒ q ∨ r (1)

We use induction on the structure of the proof of p |⇒ q .

(basis) Assume p en q
p ∨ r en q ∨ r , see Exercise (4d)
p ∨ r |⇒ q ∨ r , definition of |⇒

(transitivity) Assume for some b that p |⇒ b and b |⇒ q .
p ∨ r |⇒ b ∨ r , induction hypothesis
b ∨ r |⇒ q ∨ r , induction hypothesis
p ∨ r |⇒ q ∨ r , transitivity

• Finite disjunctivity of |⇒: given p |⇒ q and p′ |⇒ q,

p ∨ p′ |⇒ q ∨ p′ , from the premise p |⇒ q and (1), use p′ as r
q ∨ p′ |⇒ q , from the premise p′ |⇒ q and (1), use q as r
p ∨ p′ |⇒ q , transitivity on above two
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This concludes the proof that |⇒ is finitely disjunctive. Now, we show that
|⇒ is not infinitely disjunctive.
We show that if p |⇒ q holds in a program, there is a natural number

k, depending only on p and q, such that for any state that satisfies p there
is an execution of length at most k that establishes q.
If p |⇒ q is proved by p en q, there is an action t such that

{p ∧ ¬q} t {q}

For a state that satisfies p ∧ q, an empty execution sequence establishes q,
and for a state that satisfies p ∧ ¬q, the sequence that consists of action t
establishes q. Thus, the bound k equals 1 in this case. If p |⇒ q is proved
by p |⇒ r and r |⇒ q, k1 + k2 is the required bound where k1 is the
bound for p |⇒ r and k2 is the bound for r |⇒ q.
The impossibility result is derived by considering a program that consists

of a single action; the action decrements an integer variable x by 1. It
is straightforward to show that true �→ x < 0 holds in this program.
However, true |⇒ x < 0 cannot be proved. Because if it can be proved,
there is a bound k associated with this proof. Then, for any state —state
x = k, in particular— we can find an execution sequence of length at most
k that establishes x < 0, which is impossible.

6.7 Concluding Remarks

The major theme of this chapter is a definition of leads-to and the pro-
mulgation of its derived rules. The definition uses the auxiliary concept of
transient predicate (which is used to define ensures, which forms the basis
for the definition of leads-to). Transient predicates are defined directly from
the program text for different forms of fairness.
The manipulation rules for leads-to consist of about four lightweight and

four heavyweight rules. The prominent ones are cancellation, PSP, and
induction rules (in addition to transitivity and disjunction rules that appear
in the definition of leads-to). The examples illustrate how these rules can
be applied effectively in practice.
The minimal progress assumption can be used to prove absence of system

deadlock and, in some cases, eventual program termination. But it cannot
be used to prove absence of individual starvation, e.g., that a transmit-
ted message is eventually delivered. That is why we have discussed weak
fairness prominently in this chapter.
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6.8 Bibliographic Notes

The treatment of progress properties in this chapter closely follows the
original development described in [32]. The only new element is the intro-
duction of transient predicates and the replacement of unless by co in the
derived rules, such as in the PSP and the completion rules. Portions of
this chapter appeared earlier in Misra [138]; they are reprinted here with
permission from Elsevier Science.
The minimal progress condition is due to Dijkstra [57]. For a comprehen-

sive treatment of fairness, see Francez [72] or Manna and Pnueli [127]. The
definition of transient predicate is inspired by Cohen [42]. The definition
of ensures for minimal progress appears in Jutla and Rao [102]. The def-
inition of transient predicate under weak fairness is inspired by Lehmann,
Pnueli, and Stavi’s notion [122] of “helpful actions”. Operator leads-to was
introduced in Lamport [113]; its interpretation in linear temporal logic is
in Owicki and Lamport [146]. Our definition, using inference rules, has
facilitated the proofs of the derived rules using structural induction. Lam-
port [118] prescribes deducing progress properties from the conjunction of
the fairness assumption —expressed as a formula in temporal logic— and
the safety properties.
The graph problem in section 6.5.6 is from [134, note 2]; the original

inspiration for this problem is from Chandy and Misra [29].
Chandy and Sanders [34] have proposed combining progress with sta-

bility; they write p ↪→ q to denote that once p holds in the program,
q will eventually hold and will continue to hold thereafter. Operator ↪→
has many pleasing properties, including lhs strengthening, rhs weakening,
infinite disjunction, and transitivity. It is particularly interesting that ↪→
is finitely conjunctive.
The notion of wlt appears in Knapp [107] and in Jutla, Knapp, and

Rao [103]. The latter paper includes the fixpoint characterization of wlt
given in section 6.6.2. Property (W5) in section 6.6.1 is due to Singh [163].
Several varieties of completeness (and incompleteness) results have been
established for leads-to. Jutla and Rao [102] contains a thorough exposi-
tion of what completeness means in this context. They argue that relative
completeness in the sense of Cook [48] is all that we can hope for. Such com-
pleteness results appear in Cohen [42], Jutla and Rao [102], Knapp [108],
Pachl [148], and Rao [156, 155]. The fact that the disjunction rule in the
definition of leads-to is unnecessary for finite-state programs is due to van
de Snepscheut [167]. It has been exploited by Kaltenbach [104] in imple-
menting a model checker for finite state programs. Operator leads-to has
been extended to probabilistic programs in [155]. Carruth [27] shows how
the progress operators can be extended for real-time programs. His exten-
sions preserve the derived rules stated in this chapter.
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The observations in section 6.3.4 are due to Will Adams. The problem in
section 6.5.5 was communicated to me by Robert Blumofe, who attributes
it to Maurice Herlihy. The proof given here is due to Rajeev Joshi.
Abadi and Lamport [2] introduced prophecy variables in connection with

proofs of refinements. Earlier, only auxiliary variables were used in re-
finements (see [111]), which are inadequate in general. Prophecy variables
predict the future, whereas auxiliary variables remember the past. The
treatment of strong fairness in section 6.5.7 is due to Cohen.
Model checking, employing some variation of temporal logic, is one of

the most important developments in the area of automatic verification; see
Clarke and Emerson [39] and Quielle and Sifakis [153] for the pioneering
papers on this subject and Clarke, Grumberg, and Peled [40] for a compre-
hensive survey of the field. Dill [64] and Kaltenbach [104] have developed
efficient model checkers for finite state action systems.
Assertional reasoning about safety and liveness properties of concurrent

programs, applied to a variety of synchronization and communication prob-
lems, appear in Schneider [161]. For a comprehensive survey of verification
of concurrent systems see de Roever et al. [53].

6.9 Exercises

1. (Exercise due to C.S. Jutla and J.R. Rao) A program consists of the
following actions. Below, p and q are boolean variables.

————————————
α :: p := ¬p

[] β :: q := ¬q
[] γ :: q → p := true
————————————

Show that

under minimal progress true �→ (p ∨ q)
under weak fairness true �→ p and true �→ q
under strong fairness for all actions true �→ (p ∧ q)

2. Show that the following property holds for the program Fairness of
section 6.2, under both minimal progress and weak fairness assump-
tions. For any integer k

x = k ∧ y = k en x+ y > 2× k

3. (Simulating minimal progress by weak fairness)
A program that consists of the following actions is executed under
minimal progress.
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————————————
α :: x := x+ 1

[] β :: x := x− 1
————————————

Construct a “simulator” program that operates under weak fairness
and mimics the behavior of the above program. Specifically, establish
a 1-1 correspondence between the execution sequences of the above
program and the simulator, where two executions correspond if they
assign the same sequence of values to x.

Hint: introduce a variable in the simulator that determines whether
α or β is to be executed.

4. Show the following for ensures.

(a) (implication) p ⇒ q
p en q

(b) (rhs weakening) p en q
p en q ∨ r

(c) (lhs manipulation)

(p en q) ≡ (p′ en q)
where p ∧ ¬q ⇒ p′ and p′ ⇒ p ∨ q

Apply this rule to show that the following are equivalent.

p en q ∨ r , p ∨ r en q ∨ r , p ∧ ¬q en q ∨ r
(d) p en q

p ∨ r en q ∨ r
(e) p ∨ q en r

p en q ∨ r
(f) (transient p) ≡ (true en ¬p)

5. In a given program effective execution of any non-skip action estab-
lishes q as a post-condition given p as a pre-condition; i.e., for every
non-skip action of the form gi → si,

{p ∧ gi} si {q}, for all i

Show that p ∧ 〈∃i :: gi〉 �→ q holds under minimal progress as well
as weak fairness. Pay special attention to the case where the program
has no non-skip action.

6. The following alternative definition of leads-to eliminates the use of
the ensures operator; it replaces the original basis rule by the two
rules shown next.
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(implication) p ⇒ q
p �→ q

(basis) p co p ∨ q , transient p
p �→ q

The transitivity and the disjunction rules are retained. Prove that
this definition of leads-to is equivalent to the original definition.

7. Consider the program consisting of the actions

————————————
α :: b → x := x+ 1

[] β :: ¬b → x := x− 1
————————————

where x is integer and b is boolean. The initial value of b is immaterial.
Show that under weak fairness

true �→ |x| > m

for any integer m. Can this property be deduced if the program had
an additional action

b := ¬b ?

8. In the following program, variables x, y, and z are integers. Show that
true �→ x, y = 0, 0 under weak fairness.

————————————
x > 0 → x, y := x− 1, z

[] y > 0 → y := y − 1
[] z := z + 1
————————————

Can you place a bound, as a function of the initial values of x and
y, on the number of assignments to x and y required to establish
x, y = 0, 0?

9. (Working with the lightweight rules) Show for arbitrary predicates
p, q, r, p′, and q′:

(a) p ∨ q �→ r
p �→ r

(b) p ∧ q �→ r
p �→ ¬q ∨ r

(c) p �→ q , p′ �→ q′

p ∨ p′ �→ (q ∧ ¬p′) ∨ q′
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(d) For any r where

p ∧ ¬q ⇒ r and r ⇒ p ∨ q, show that
(p �→ q) ≡ (r �→ q)

In particular,

(p �→ q) ≡ (p ∧ ¬q �→ q)
(p �→ q) ≡ (p ∨ q �→ q)

(e) 〈∀ i :: p.i �→ q〉 ≡ 〈∃ i :: p.i〉 �→ q

10. Show for arbitrary predicates p, q, and r

(a) p �→ q , stable ¬r ∧ ¬q
p ⇒ q ∨ r

(b) p �→ q
FP ⇒ (p ⇒ q) where FP is the fixed point predicate

(c) p �→ ¬p , ¬p �→ p
¬FP

11. For programs F and G whenever p en q holds in F , p �→ q holds
in G, for all p and q. Show that every leads-to property of F is a
property of G.

12. Show that boolean variable b is true infinitely often in the follow-
ing program under the weak fairness assumption. Here x and y are
integers.

————————————
α :: b → x := x+ 1

[] β :: ¬b → y := y + 1
[] γ :: x �= y → b := ¬b
————————————

13. Given that integer variables x and y are not changed synchronously
and at least one of them is changed eventually, show that x differs
from y infinitely often.

14. For a given program, (1) any step that increases x establishes q, and
(2) x increases without bound. Show that q is infinitely often true.

15. Show counterexamples to the following:

(a) p en q , p′ en q′

p ∨ p′ en q ∨ q′

(b) p ∧ ¬q co p ∨ q , p �→ q
p en q

(c) p �→ q , p′ �→ q′

p ∧ p′ �→ q ∧ q′
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(d) p �→ q , q �→ p
p ≡ q

16. (Methodology in applying PSP)

(a) The safety property, “x is nondecreasing”, can be written in the
following equivalent ways, using free variable m,

stable x ≥ m
x = m co x ≥ m

Which of these properties is preferable for applying the PSP
rule?

(b) Given p �→ q , r co s and r′ co s′, compute the strongest pred-
icate b that satisfies

p ∧ (r ∧ r′) �→ b

Does this suggest a methodology for applying the PSP rule?

17. (Induction)

(a) Show x = k �→ x = k − 1
x > 0 �→ x = 0

(b) Let A[0..N ] be an array of integers. Define M to be the number
of inversions in A, i.e.,

M = 〈+ i, j : 0 ≤ i < j ≤ N ∧ A[i] > A[j] : 1〉
Show that for all m, m > 0 :

M = m �→ M < m
true �→ 〈∀ i : 0 ≤ i < N : A[i] ≤ A[i+ 1]〉

(c) If x decreases eventually and y never decreases, show that x < y
holds infinitely often. Does stable x < y hold?

(d) Items are added to set s only if p holds as a pre-condition. If s is
nonempty, some item is eventually removed from s. Show that
eventually either s is empty or p holds.

18. For predicates p and q define p tracks q to mean

1. invariant p⇒ q
2. p co ¬q ∨ p
3. q �→ ¬q ∨ p

Predicate p tracks q in the following sense:

1. if p holds, q holds too
2. once p holds, it continues to hold until q becomes false
(then, from p⇒ q, p becomes false)

3. if q continues to hold, then p will hold
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Show that

(a) tracks is a partial order (i.e., reflexive, antisymmetric, transitive
relation) over predicates.

(b) p tracks q, p′ tracks q′

p ∧ p′ tracks q ∧ q′

Simplify the definition of tracks given stable q.

19. (Completion) A process is either idle or active. An idle process can
become active by acquiring a set of resources. The rules for state
transition and resource acquisition are the following. Let R be a fixed
set of resources.

(a) If a process is idle and holds all resources in R, eventually it
becomes active.

(b) A process does not release any resource r, r ∈ R, as long as it
is idle.

(c) For any r, r ∈ R, if a process remains idle, it eventually holds r.

Show that a process does not stay idle forever. Note that an idle
process may become active without holding all resources in R; the
stated properties do not prevent this possibility.

20. Show that the completion rule does not hold for an infinite set of
predicate pairs (pi, qi).

21. (Generalizations of the completion rule)

(a) Prove, for 0 ≤ i < N and any set S of indices between 0 and
N − 1,

〈∀ i : 0 ≤ i < N : pi �→ qi , stable qi〉
〈∀ j : j ∈ S : pj〉 �→

〈∀ j : j ∈ S : qj〉 ∧ 〈∀ j : j /∈ S : pj ⇒ qj〉
(b) Prove, for 0 ≤ i < N ,

pi �→ qi ∨ ri

qi co qi ∨ ri

〈∀ i :: pi〉 �→ 〈∀ i :: qi〉 ∨ 〈∃ i :: ri〉
Hint: Let b be 〈∃ i :: ri〉. Weaken the rhs of the premises to get

pi �→ qi ∨ b
qi co qi ∨ b

Show, from these premises, that

〈∀ i :: pi〉 �→ 〈∀ i :: qi〉 ∨ b
This is the completion rule, stated in section 6.4.5.
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(c) Propose and prove a general version combining exercises (21a)
and (21b).

22. Prove that transitivity and disjunction rules in the definition of �→
can be combined into the following single rule. For any set S of pred-
icates,

p �→ 〈∃ q : q ∈ S : q〉 , 〈∀ q : q ∈ S : q �→ r〉
p �→ r

23. Show (using W1–W5 of section 6.6.1)

stable q ⇒ stable wlt.q

24. Show p �→ q , stable ¬r ∧ ¬q
p ∧ ¬q co q ∨ r

Hint: Use the properties of wlt (section 6.6.1).

6.10 Solutions to Exercises

1. (Minimal progress) Prove from the program text that ¬(p ∨ q) is
transient. Then true en (p ∨ q); hence, true �→ (p ∨ q).
(Weak fairness) Observe that {¬p} α {p}. Therefore, ¬p is transient;
hence, true en p and true �→ p. Similarly, true �→ q.

(Strong fairness) Action β is executed infinitely often because its
guard is true. Therefore, q holds infinitely often. Hence, γ is executed
infinitely often in a state where q holds and {q} γ {p∧ q}. Therefore,
p ∧ q holds infinitely often.

2. (Minimal progress) The proof obligations are

x = k ∧ y = k ⇒ true
{x = k ∧ y = k} x := x+ 1 {x+ y > 2× k}
{x = k ∧ y = k} y := y + 1 {x+ y > 2× k}
{x = k ∧ y = k ∧ x �= y} z := z + 1 {x+ y > 2× k}

These are easily established (the last assertion is of the form
{false} s {p}).

(Weak fairness) The proof obligations are

x = k ∧ y = k co (x = k ∧ y = k) ∨ (x+ y > 2× k)
〈∃ t :: {x = k ∧ y = k} t {x+ y > 2× k}〉
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The first proof is easy. For the second proof, use either of the actions
α or β for t.

3. Introduce a boolean variable b; initially, b is true. The program con-
sists of

————————————
γ :: if b then x := x+ 1 else x := x− 1 endif

[] δ :: b := ¬b
————————————

Given an execution of this program under weak fairness construct
an execution of the program in exercise 3 under minimal progress as
follows. An occurrence of γ is replaced by α if b holds, or by β if ¬b
holds. Every occurrence of δ is removed. Similarly, given an execution
of the program in exercise 3 under minimal progress, construct an
execution of the program (under weak fairness) as follows. For each
α, if b holds, execute the sequence 〈δ; δ; γ〉, else execute 〈δ; γ〉.
Similarly, for β, if b holds, execute 〈δ; γ〉, else execute 〈δ; δ; γ〉.
Observe that in the resulting execution sequence both γ and δ appear
infinitely often.

4. (a) See the proof of the implication rule for �→ (section 6.4.5).

(b) p ∧ ¬q co p ∨ q , from p en q
p ∧ ¬q ∧ ¬r co p ∨ q ∨ r , strengthen lhs, weaken rhs (1)
transient p ∧ ¬q , from p en q
transient p ∧ ¬q ∧ ¬r , strengthen
p en q ∨ r , from (1) and above

(c) From p ∧ ¬q ⇒ p′ and p′ ⇒ p ∨ q,
p′ ∧ ¬q ≡ p ∧ ¬q and p′ ∨ q ≡ p ∨ q

Replace p ∧ ¬q and p ∨ q in the definition of p en q by p′ ∧ ¬q
and p′∨ q, respectively, to get the result. The given equivalences
can be proved easily using this rule.

(d) p en q ∨ r , from p en q (use exercise 4b)
p ∨ r en q ∨ r , from above (use exercise 4c)

(e) p ∨ q en q ∨ r , weaken rhs of premise (exercise 4b)
p en q ∨ r , from above (use exercise 4c)

(f) true en ¬p
≡ {definition of en}
p co true, transient p

≡ {p co true holds for all p}
transient p
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5. First, we take care of the case where the program has no non-skip
action. The result to be proved then is false �→ q, which follows
from the implication rule. Next, we show that p ∧ gi en q, for all i.

(a) p ∧ gi ∧ ¬q co (p ∧ gi) ∨ q:
For any action, αj :: gj → sj , we have

{p ∧ gj} sj {q}
, given

{(p ∧ gi ∧ ¬q) ∧ gj} sj {(p ∧ gi) ∨ q}
, strengthen lhs and weaken rhs

p ∧ gi ∧ ¬q co (p ∧ gi) ∨ q
, definition of co

(b) transient p∧ gi ∧¬q : The proof under minimal progress is left
to the reader; the proof is similar to the one in part (a). Under
weak fairness, we have to show the existence of an action βi such
that

{p ∧ gi ∧ ¬q} βi {¬(p ∧ gi ∧ ¬q)}
We show that βi is αi, i.e., gi → si .

{p ∧ gi} si {q}
, given

{p ∧ gi} αi {q}
, αi is gi → si

{p ∧ gi ∧ ¬q} αi {¬(p ∧ gi ∧ ¬q)}
, strengthen lhs and weaken rhs

Now we are ready to prove the main result, p ∧ 〈∃i :: gi〉 �→ q.
For all i,

p ∧ gi en q , proved
p ∧ gi �→ q , basis rule for �→
p ∧ 〈∃i :: gi〉 �→ q , disjunction over all i

6. The proof is by mutual implication.

• original definition ⇒ proposed definition:
The implication rule is proved in section 6.4.5. The transitiv-
ity and disjunction rules follow trivially. So it remains to show,
under the original definition of �→ ,

p co p ∨ q , transient p
p �→ q
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p ∧ ¬q co p ∨ q , strengthen lhs of co-property
in the premise

transient p ∧ ¬q , strengthen the premise
p en q , definition of en
p �→ q , definition of �→

• proposed definition ⇒ original definition:
We prove the basis rule of the original definition

p en q
p �→ q

under the new interpretation for �→ (the other two rules have
been retained).

p ∧ ¬q co p ∨ q , from p en q in the premise
transient p ∧ ¬q , from p en q in the premise
p ∧ ¬q �→ q , from the basis rule of the proposed

definition (using p ∧ ¬q for p)
p ∧ q �→ q , from the implication rule in the

proposed definition
p �→ q , proposed definition’s disjunction rule

7. For free variables k and m

x = k ∧ b en x > k ∧ b , program text
x = k ∧ b �→ x > k ∧ b , basis for �→
b �→ x > m , induction on integers
b �→ |x| > m , weaken rhs (1)
¬b �→ x < −m , similarly
¬b �→ |x| > m , weaken rhs

(x < −m ⇒ −x > m)
true �→ |x| > m , disjunction of above and (1)

This property cannot be deduced if γ :: b := ¬b is an additional
action in the program because starting in a state where ¬b holds, the
infinite repetition of 〈α; γ; β; γ〉 never changes x though it is a fair
execution.

8. For natural numbers m and n, define (x, y) ≺ (m,n) to mean that
x < m ∨ (x = m ∧ y < n); i.e., (x, y) is lexicographically smaller
than (m,n).

x, y = m,n ∧ m �= 0 en (x, y) ≺ (m,n)
, from the program text

x, y = m,n ∧ n �= 0 en (x, y) ≺ (m,n)
, from the program text
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x, y = m,n ∧ ¬(m,n = 0, 0) �→ (x, y) ≺ (m,n)
, convert above two to leads-tos and take disjunction

x, y = m,n ∧ m,n = 0, 0 �→ (x, y) = (0, 0)
, implication

x, y = m,n �→ (x, y) ≺ (m,n) ∨ (x, y) = (0, 0)
, disjunction on above two

true �→ x, y = 0, 0
, induction: lexicographic order over naturals is well-founded

There is no bound on the length of the execution that establishes
x, y = 0, 0. This is because z can be assigned an arbitrarily large
value, so y can be made arbitrarily large whenever x is decreased.

9. (a) Strengthen lhs of the premise to p.

(b) p ∧ q �→ r , premise
p ∧ ¬q �→ ¬q , implication
p �→ ¬q ∨ r , disjunction

(c) p �→ q , premise
p �→ (q ∧ ¬p′) ∨ p′ , weaken the rhs to q ∨ p′

p′ �→ q′ , premise
p �→ (q ∧ ¬p′) ∨ q′ , cancellation on above two
p ∨ p′ �→ (q ∧ ¬p′) ∨ q′

, disjunction on above two

(d) The proof is by mutual derivation.

Proof of (p �→ q) ⇒ (r �→ q) :
p �→ q , premise
q �→ q , implication
p ∨ q �→ q , disjunction
r �→ q , strengthen lhs (use r ⇒ p ∨ q)

Proof of (r �→ q) ⇒ (p �→ q) : From
(p ∧ ¬q ⇒ r) and (r ⇒ p ∨ q)

we deduce
(r ∧ ¬q ⇒ p) and (p ⇒ r ∨ q)

The result follows from the first proof, interchanging the roles
of p and r.

(e) 〈∀ i :: pi �→ q〉 , assume
〈∃ i :: pi〉 �→ q , disjunction

Conversely,
〈∃ i :: pi〉 �→ q , premise
〈∀ j :: pj �→ q〉 , strengthen lhs
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10. (a) p �→ q , premise
stable ¬r ∧ ¬q , premise
p ∧ ¬r ∧ ¬q �→ false

, stable conjunction
¬(p ∧ ¬r ∧ ¬q) , impossibility
p ⇒ q ∨ r , simplify

(b) p �→ q , premise
stable FP ∧ ¬q , stability at fixed point (section 5.3.2)
FP ⇒ (p ⇒ q) , proof similar to exercise (10a)

(c) FP ⇒ (p ⇒ ¬p) , from exercise (10b), use p �→ ¬p
FP ⇒ ¬p , simplify
FP ⇒ p , similarly, from ¬p �→ p
FP ⇒ false , conjunction of the above two
¬FP , predicate calculus

11. Consider the structure of each leads-to property in F . If it is an en
property, it is a leads-to property in G. Otherwise, apply induction
on the structure of the leads-to property in F to show that it holds
in G.

12. Prove (1, 2, 3) from the program text (prove corresponding ensures
properties).

x < y �→ b (1)
x = y �→ x < y ∨ b (2)
x > y �→ x ≤ y ∨ b (3)

Now,
x = y �→ b , cancel in rhs of (2) using (1)
x ≤ y �→ b , disjunction of above and (1)
x > y �→ b , cancel in rhs of (3) using above
true �→ b , disjunction on above two

13. Variables x and y are not changed synchronously, and at least one of
them is changed eventually. So for free variables m and n,

x, y = m,n co x = m ∨ y = n (1)
x, y = m,n �→ x �= m ∨ y �= n (2)

• Proof of true �→ x �= y:

x, y = m,n �→ (x = m ∧ y �= n) ∨ (x �= m ∧ y = n)
, PSP on (1,2)

x, y = m,m �→ (x = m ∧ y �= m) ∨ (x �= m ∧ y = m)
, replace n by m
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x, y = m,m �→ x �= y , weaken rhs
x = y �→ x �= y , disjunction over all m
x �= y �→ x �= y , implication
true �→ x �= y , disjunction of above two

14. For any m,

x ≤ m co (x > m⇒ q) , given safety property
true �→ x > m , given progress property
x ≤ m �→ x > m ∧ q , PSP
x = m �→ q , strengthen lhs, weaken rhs
true �→ q , disjunction over all m

15. (a) This solution is due to Roland Backhouse. In the following pro-
gram x is an integer variable.

————————————
α :: x > 0 → x := 0

[] β :: x < 0 → x := 0
————————————

We can show x > 0 en x = 0 and x < 0 en x = 0. But, we
cannot show x �= 0 en x = 0, because there is no action t such
that {x �= 0} t {x = 0}.

(b) In the program of exercise (15a) with

p ≡ x �= 0 and q ≡ x = 0

we can show that p ∧ ¬q co p ∨ q (i.e., x �= 0 co true) holds.
Also, p �→ q holds because

x > 0 �→ x = 0 , from x > 0 en x = 0
x < 0 �→ x = 0 , from x < 0 en x = 0
x �= 0 �→ x = 0 , disjunction
p �→ q , definition of p and q

But as we have shown in exercise 15a, p en q cannot be proved.

(c) Consider a program that has a single boolean variable b that is
initially true. There is a single action b := ¬b. Then

b �→ ¬b , from b en ¬b
b �→ b , implication
b �→ false , apply the alleged inference rule
¬b , impossibility

The conclusion is invalid since it asserts that ¬b is invariant,
which contradicts that b holds initially.
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(d) In the program shown in exercise (15c), b �→ ¬b and ¬b �→ b.
Yet the conclusion, b ≡ ¬b, is invalid.

16. (a) Let us attempt applying the PSP rule on p �→ q and each of
the given properties. The first property, stable x ≥ m, yields

p ∧ x ≥ m �→ q ∧ x ≥ m (1)

and the second property, x = m co x ≥ m, yields
p ∧ x ≥ m �→ (q ∧ x = m) ∨ x > m (2)

We can deduce (2) from (1) by weakening the rhs of the latter.
However, we cannot deduce (1) from (2). Therefore, the first
property is preferable for application of PSP.

(b) We consider two strategies.

i. Apply PSP twice:
p �→ q , premise
r co s , premise
p ∧ s �→ (q ∧ r) ∨ (¬r ∧ s) , PSP
r′ co s′ , premise
p ∧ s ∧ s′ �→
(q ∧ r ∧ r′) ∨ (¬r ∧ s ∧ r′) ∨ (¬r′ ∧ s′)

, PSP
ii. Conjoin the co properties and then apply PSP:

r co s , premise
r′ co s′ , premise
r ∧ r′ co s ∧ s′ , conjunction
p �→ q , premise
p ∧ s ∧ s′ �→

(q ∧ r ∧ r′ ) ∨ (¬r ∧ s ∧ s′) ∨ (¬r′ ∧ s ∧ s′)
, PSP

p ∧ s ∧ s′ �→
(q ∧ r ∧ r′ ) ∨ (¬r ∧ s ∧ r′)
∨ (¬r ∧ s ∧ ¬r′ ∧ s′) ∨ (¬r′ ∧ s ∧ s′)
, expand second disjunct using r′ ⇒ s′

p ∧ s ∧ s′ �→
(q ∧ r ∧ r′ ) ∨ (¬r ∧ s ∧ r′) ∨ (¬r′ ∧ s ∧ s′)
, combine the last two disjuncts

The rhs of the conclusion in (b-ii) is stronger than the rhs of
the conclusion in (b-i). This suggests that safety properties
be computed as far as possible before applying PSP.

17. (a) x = k �→ x = k − 1 , premise
x = k ∧ k > 0 �→ x = k − 1 ∧ k > 0

, stable conjunction with k > 0
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x > 0 ∧ x = k �→ (x > 0 ∧ x < k) ∨ x = 0
, rewrite lhs and rhs

x > 0 �→ x = 0 , induction over integers (use
the range, k > 0)

(b) 〈∀ m : m > 0 : M = m �→ M < m〉
, premise

true �→ M ≤ 0 , induction over integers

M ≤ 0
≡ 〈+ i, j : 0 ≤ i < j ≤ N ∧ A[i] > A[j] : 1〉 ≤ 0
≡ 〈∀ i, j : 0 ≤ i < j ≤ N ∧ A[i] ≤ A[j]〉
⇒ {instantiating j = i+ 1}
〈∀ i : 0 ≤ i < N : A[i] ≤ A[i+ 1]〉

(c) For any m and n
x = m �→ x < m , premise
true �→ x < n , induction over integers
stable y ≥ n , premise
y ≥ n �→ x < n ∧ y ≥ n , stable conjunction
y = n �→ x < y , strengthen lhs, weaken rhs
true �→ x < y , disjunction over n

To see that x < y is not stable: even though x is decreased
eventually, say from m to n, x may be increased beyond m and
(beyond y) some time between these two points in the compu-
tation.

(d) For an arbitrary set S:

¬p ∧ s = S co s ⊆ S , premise
s = S ∧ s �= ∅ �→ S − s �= ∅ , premise
¬p ∧ s = S ∧ s �= ∅ �→

(s ⊆ S ∧ S − s �= ∅)
∨ (p ∧ s ⊆ S) ∨ s ⊂ S , PSP

¬p ∧ s = S ∧ s �= ∅ �→ s ⊂ S ∨ p , weaken rhs
p ∧ s = S ∧ s �= ∅ �→ p , implication
s = S ∧ s = ∅ �→ s = ∅ , implication
s = S �→ s ⊂ S ∨ s = ∅ ∨ p , disjunction (above 3)
true �→ s = ∅ ∨ p , induction

18. The proof is left to the reader. See Misra [134, note 30].

19. We write the proof for a generic process; the identity of the process
is not shown. Use idle and ¬idle to denote that the process is idle
and active, respectively. Let H denote the set of resources that the
process holds.

In the following, r is an arbitrary element of R.
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idle ∧ R ⊆ H �→ ¬idle (a)
idle ∧ r ∈ H co ¬idle ∨ r ∈ H (b)
idle �→ ¬idle ∨ r ∈ H (c)

We have to show
true �→ ¬idle

Proof: Observe that the rhs of (b) and (c) can be written as
(idle ∧ r ∈ H) ∨ ¬idle

Apply completion on (b) and (c) over all r, r ∈ R:
idle �→ 〈∀ r : r ∈ R : idle ∧ r ∈ H〉 ∨ ¬idle
idle �→ (idle ∧ R ⊆ H) ∨ ¬idle

, simplify
idle �→ ¬idle , cancellation with above and (a)
true �→ ¬idle , disjunction with ¬idle �→ ¬idle

20. Consider a program that has an integer variable x and a single action
x := x+ 1. For any integer k, k ≥ 0,

x = 0 �→ x > k
stable x > k

Yet 〈∧ k :: x = 0〉 �→ 〈∧ k :: x > k〉, which is equivalent to
x = 0 �→ false, is invalid.

21. (a) The following proof is due to Ernie Cohen.

For k, 0 ≤ k ≤ N , let Ak be 〈∀ i : 0 ≤ i < k : pi ⇒ qi〉.
We show for all k, 0 ≤ k ≤ N , true �→ Ak. The proof is by
induction on k.

Case k = 0: true �→ A0, trivially from A0 ≡ true .
Case k + 1, 0 ≤ k < N :

true
�→ {induction hypothesis}
Ak

�→ {weaken}
(Ak ∧ ¬pk) ∨ pk

�→ {cancellation using pk �→ qk}
(Ak ∧ ¬pk) ∨ qk

�→ {conjunction of true �→ Ak and stable qk yields
qk �→ Ak ∧ qk. Apply cancellation.}

(Ak ∧ ¬pk) ∨ (Ak ∧ qk)
≡ {definition of Ak+1}
Ak+1

Now we prove the desired result. Henceforth, 0 ≤ i < N unless
the quantification of i is shown explicitly.
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true �→ 〈∀ i :: pi ⇒ qi〉
, from true �→ Ak, setting k = N

stable 〈∀ i : i ∈ S : qi〉
, stable conjunction of the premise

〈∀ i : i ∈ S : qi〉 �→
〈∀ i :: pi ⇒ qi〉 ∧ 〈∀ i : i ∈ S : qi〉

, stable conjunction of the above two
〈∀ i : i ∈ S : pi〉 �→ 〈∀ i : i ∈ S : qi〉

, completion rule on the premises
〈∀ i : i ∈ S : pi〉 �→

〈∀ i :: pi ⇒ qi〉 ∧ 〈∀ i : i ∈ S : qi〉
, transitivity on the above two

〈∀ i : i ∈ S : pi〉 �→
〈∀ i : i /∈ S : pi ⇒ qi〉 ∧ 〈∀ i : i ∈ S : qi〉

, rewrite rhs

(b) Henceforth, 0 ≤ i ≤ N unless the quantification of i is shown
explicitly. As suggested in the hint, let b be 〈∃ i :: ri〉. We show
that

〈∀ i :: pi〉 �→ 〈∀ i :: qi〉 ∨ b

This is the completion rule, stated in section 6.4.5. We use the
same notation and the proof structure as in that proof.

Case N = 0: We have to show true �→ true, which follows
from the implication rule for �→ .

Case N + 1: Writing P for 〈∀ i : 0 ≤ i < N : pi〉 and Q for
〈∀ i : 0 ≤ i < N : qi〉, we have to show

P ∧ pN �→ (Q ∧ qN ) ∨ b .

Rewriting the premises for i, 0 ≤ i ≤ N ,

pi �→ qi ∨ b (1)
qi co qi ∨ b (2)

Using the facts about wlt (section 6.6.1), and the given premise
pN �→ qN ∨ b, there is a predicate r (r is wlt.qN ) such that

r �→ qN ∨ b (3)
pN ⇒ r (4)
(qN ∨ b) ⇒ r (5)
r ∧ ¬(qN ∨ b) co r (6)

By the induction hypothesis
P �→ Q ∨ b

The proof of P ∧ pN �→ (Q ∧ qN ) ∨ b is as follows.
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P ∧ pN

⇒ {4}
P ∧ r

�→ {qN co qN ∨ b , from (2)
r ∧ qN ∧ ¬b co qN ∨ b , strengthen lhs
r ∧ ¬qN ∧ ¬b co r , from (6)
r ∧ ¬b co r ∨ qN ∨ b , disjunction
r ∧ ¬b co r , (qN ∨ b)⇒ r from (5)
P �→ Q ∨ b , induction hypothesis
P ∧ r ∧ ¬b �→ (Q ∧ r) ∨ b , PSP, weaken rhs
P ∧ r ∧ b �→ b , implication
P ∧ r �→ (Q ∧ r) ∨ b , disjunction
}

(Q ∧ r) ∨ b
�→ {r �→ qN ∨ b , from (3)

Q co Q ∨ b , conjoin (2), 0 ≤ i < N
Q ∧ r �→ (Q ∧ qN ) ∨ b , PSP
b �→ b , implication
(Q ∧ r) ∨ b �→ (Q ∧ qN ) ∨ b , disjunction: above two
}

(Q ∧ qN ) ∨ b

(c)

pi �→ qi ∨ ri

qi co qi ∨ ri

〈∀ i : i ∈ S : pi〉 �→ (〈∀ i : i ∈ S : qi〉 ∧
〈∀ i : i /∈ S : pi ⇒ qi〉) ∨ 〈∃ i :: ri〉

The proof is left to the reader.

22. Introduce a new symbol ❀ for the leads-to defined in the exercise.

• First, we show that
p ❀ q ⇒ p �→ q

The proof is by induction on the structure of the proof of p ❀ q.

1. p ❀ q is proved by p en q: then, from the basis rule,
p �→ q .

2. p ❀ q is proved by displaying a set S of predicates
where

p ❀ 〈∃ r : r ∈ S : r〉 and 〈∀ r : r ∈ S : r ❀ q〉
Now,
〈∀ r : r ∈ S : r �→ q〉 , induction hypothesis
〈∃ r : r ∈ S : r〉 �→ q , disjunction rule for �→
p �→ 〈∃ r : r ∈ S : r〉 , induction hypothesis
p �→ q , transitivity of �→ on

above two
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• The remaining proof obligation is
p �→ q ⇒ p ❀ q

which may be proved by induction on the structure of the proof
of p �→ q .

23. wlt.q ∧ ¬q co wlt.q , (W5) of section 6.6.1
q co q , premise
wlt.q ∨ q co wlt.q ∨ q , disjunction
stable wlt.q , q ⇒ wlt.q (W4 of section 6.6.1)

24. wlt.q �→ q , from (W3) of section 6.6.1
stable ¬r ∧ ¬q , premise
wlt.q ⇒ q ∨ r , use wlt.q for p in exercise (10a) (1)
p ⇒ wlt.q , use p �→ q and (W2) (section 6.6.1) (2)
wlt.q ∧ ¬q co wlt.q , from (W5) of section 6.6.1
p ∧ ¬q co wlt.q , strengthen lhs using (2)
p ∧ ¬q co q ∨ r , weaken rhs using (1)
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7
Maximality Properties

7.1 Introduction

Traditionally, a program specification is given by safety and progress prop-
erties, as explained in chapters 5 and 6. A safety property —e.g., no two
neighbors eat simultaneously in a dining philosophers solution— is used to
exclude certain undesirable execution sequences. A specification with safety
properties alone can be implemented by a program that does nothing; that
is, the safety constraints are implemented by excluding all nontrivial execu-
tions. Therefore, it is necessary to specify progress properties —e.g., some
hungry philosopher eats eventually— which guarantee that some execution
sequence will be included. Safety and progress requirements are sufficient
for specifying nontrivial sequential programming tasks, but they are not
sufficient for concurrent program design because, for instance, the dining
philosophers solution may allow only one philosopher to eat at a time, thus
eliminating all concurrency. We propose a new class of properties, called
maximality, to permit inclusion of all executions that satisfy a specifica-
tion. Thus, the sequential solution to the dining philosophers problem can
be excluded by requiring that the solution be maximal for the appropriate
specification.
Typically, program design involves constructing a program P that im-

plements a given specification S; that is, the set |P | of executions of P is
a subset of the set |S| of executions that satisfy S. For instance, given a
specification to generate an infinite sequence of natural numbers, a pro-
gram that generates a sequence of zeroes implements the specification. So
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does the program that generates the natural numbers in order. In many
cases, we seek a program P that not only implements S —i.e., |P | ⊆ |S|—
but for which |P | = |S|. Then every execution that satisfies specification
S is a possible execution of P ; we call P maximal for specification S. For
example, the program that generates a stream of zeroes is not maximal for
the specification to generate an infinite sequence of natural numbers, nor
is the solution that allows only one philosopher to eat at a time.
There are at least three reasons why we are interested in maximal so-

lutions. First, as remarked above, we exploit maximality to eliminate un-
desirable solutions for a given specification, ones that restrict concurrency,
for instance. With an appropriate specification, a maximal solution admits
maximal concurrency.
Second, we often simulate an artifact by a program, and the latter has to

simulate all behaviors of the former; in this case, the simulation program
has to be maximal for the specification of the artifact. In sections 4.1.6
and 7.6, we consider a faulty channel that may lose, duplicate or reorder
messages sent along it, as is the case in the alternating bit protocol [159]. To
study the correctness of senders and receivers that communicate over such
channels, the program that simulates this device has to be maximal. For
instance, to apply model checking [41] for the verification of this protocol,
it has to be shown that the programs that describe the sender, the receiver,
and the faulty channel satisfy certain properties when they are composed
together. For such a proof, we require that the program used for the faulty
channel be maximal for its specification.
The third reason for designing a maximal solution is that we often de-

velop (and prove correct) such a solution and then refine it —by eliminating
a certain degree of nondeterminism, for instance— to obtain a program that
is actually implemented. This strategy may be easier than developing the
implemented program directly. A single maximal program for a problem
may be the basis for a family of interrelated programs, each of which may
be appropriate for a different computing platform. In section 11.3, we con-
sider the problem of task scheduling in Seuss; we show a maximal solution
and several refinements of it.
Typically, a maximal solution is nondeterministic; in many cases, the

nondeterminism is unbounded.

Overview of the chapter

In this chapter, we suggest a method for proving the maximality of a pro-
gram with respect to a given specification. Given a program P that is to be
proved maximal with respect to a specification, we have to show that each
sequence σ of states meeting the specification arises in a possible execution
of the program. We first construct a constrained program P ′ from P and
σ; the constrained program retains the structure of P , but its actions are
restricted by guards and augmented by assignments to certain auxiliary
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variables. Next, we show that all fair executions of P ′ produce σ and that
any fair execution of P ′ corresponds to a fair execution of P ; hence, σ is a
possible sequence of states in an execution of P .
Even though we prove facts about possible executions of programs, there

is no need to appeal to branching-time logics; we employ the logic developed
in chapters 5 and 6. The method seems to be quite effective in practice,
resulting in concise proofs for nontrivial examples such as the fair unordered
channel of section 7.5 and the task scheduler of section 11.3. The proposed
proof method may also serve as a guide in constructing maximal programs
from specifications.

7.2 Notion of Maximality

To illustrate the notion of maximality, consider a box in which a method
fnat returns a natural number in each call and a positive natural number
eventually. The solution given below is maximal in the sense that any se-
quence of natural numbers that obey these constraints may be returned by
the method fnat .

————————————
box FairNatural
integer n = 0;
total action :: n := n+ 1
total method fnat(x: integer):: x, n := n, 0

end {FairNatural}
————————————

The action system corresponding to this box is given below. In the pro-
gram below, α corresponds to the total action and β to method fnat .

————————————
program FairNatural
integer x;
integer n = 0;

α:: n := n+ 1
[] β:: x, n := n, 0

end {FairNatural}
————————————

The safety and progress proof obligations for this program are that x
is assigned only non-negative numbers as values and x is infinitely often
positive; i.e.,

invariant x ≥ 0
true �→ x > 0
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These properties are proved easily using the methods of chapters 5 and 6.
Next, we argue that the given program is maximal with respect to these
two properties; a formal proof appears in section 7.3.4.
Given an infinite sequence of natural numbers X, where X contains

nonzero elements infinitely often, we show an execution of FairNatural such
that x takes on successive values from X. Consider the following sequence
of actions, where Xj is the item j of X, j ≥ 0:

αX0β αX1β . . . αXjβ . . ., for all j, j ≥ 0
Here, αXj stands for Xj repetitions of α; if Xj = 0, then αXj is an empty
sequence. We claim that (1) this sequence of actions corresponds to a fair
execution of the program, in the sense that both α and β appear infinitely
often in this sequence, and (2) the sequence of values assigned to x is
X. To see the first claim, observe that X contains an infinite number of
nonzero elements (from the specification), and that each nonzero element
contributes at least one α to the sequence; there are an infinite number of
βs by construction. For the second claim, note that αXjβ sets x to Xj , for
each j.
Henceforth, we use the action system model of chapter 2 in developing

the theory of maximality.

7.2.1 Definition of maximality
Given a program P and specification S we can show that P satisfies S
(i.e., P has all the properties in S) using the logic in chapters 5 and 6. To
prove maximality, we have to show that any sequence that satisfies S may
be obtained from an execution of P in the sense described below. First, we
define when an infinite sequence σ of states, σ = σ0, σ1, . . ., satisfies S. We
consider only the following types of properties in S: initially p, p co q
and p �→ q. In the following description, p(σi) means that predicate p
holds in state σi.

σ satisfies initially p means p(σ0) holds.
σ satisfies p co q means 〈∀i :: p(σi)⇒ q(σi+1)〉.
σ satisfies p �→ q means 〈∀i :: (∃j : i ≤ j : p(σi)⇒ q(σj))〉.

Sequence σ satisfies S if it satisfies each property in S, as described
above.

Definition of program execution A program execution is an infinite
sequence of the form τ0A0τ1 . . . τiAiτi+1 . . . where each τi is a program state
and Ai is an action; τ0 satisfies the initial condition and (τi, τi+1) ∈ Ai.
(Recall that action Ai is a binary relation over states.) Each execution
satisfies the following fairness requirement: each action appears infinitely
often in an execution. ✷
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Let δ be an execution of a program, V a subset of program variables and
σ an infinite sequence of states over V (a state over V is an assignment of
values to the variables in V ). The projection of δ over V is the (infinite)
sequence of states obtained by constructing from each δi a state in which
the values assigned only to the variables in V are retained. Henceforth, we
say that δ reduces to σ over V if the projection of δ over V is equivalent
to σ up to finite stuttering. That is, if we remove the action names from δ,
retain the values only in variables V in each state and remove some number
of states from each finite segment of repeating states, then we get σ. For
program FairNatural , the fragment of the execution sequence

(1, 0)α(1, 1)α(1, 2)β(2, 0)α(2, 1)β(1, 0)

where each state is a pair of values of (x, n), reduces to (finite) sequence
〈121〉 and also to 〈1121〉 over the set of variables {x}.
Definition of maximal Program P is maximal for specification S with
respect to V provided that P satisfies S and for any infinite sequence σ
that satisfies S some execution δ of P reduces to σ over V . ✷

Henceforth, whenever V is understood we omit any mention of it; we
write “δ reduces to σ” and “P is maximal for specification S”.

7.3 Proving Maximality

7.3.1 Constrained program
Let σ be a sequence of states that satisfies S; we have to show that some
execution of P reduces to σ. The strategy is to construct a constrained
program P ′ such that all executions of P ′ reduce to σ and each execution
of P ′ corresponds to some fair execution of P in the sense to be defined in
section 7.3.2.
The constrained program P ′ is constructed from P as follows.

1. Variables of P are retained in P ′; they are called original variables.

2. New variables, called chronicles, are introduced in P ′. Chronicles are
like history variables: they encode the given state sequence σ. They
are not altered in the constrained program; their values are only read.
There may be several chronicles, one corresponding to each variable
of P , to encode the sequence of values that a variable assumes in an
execution.

3. Auxiliary variables are introduced in P ′. In our examples, we use a
special auxiliary variable, which we call a point, to show the posi-
tion in the chronicles that matches the current state of P ′. Auxiliary
variables may be read and written in P ′.
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4. An action α of P is modified to

α′ :: g → α ; β

where g is a guard that may name any variable of P ′ and β, which is
optional, may assign only to the auxiliary variables. Action α′ is an
augmented action corresponding to α and g is the augmenting guard
of α′. Augmenting an action may eliminate some of the executions
of P . If α is a guarded command of the form h → γ, then α′ is
g ∧ h → γ;β .

5. Constrained program P ′ may also include additional actions of the
form g → β, where g names any variable of P ′ and β assigns only
to the auxiliary variables.

6. Initialization in P ′ assigns the same values to the original variables as
in P . Additionally, auxiliary variables and other variables of P (that
are not initialized in P ) may be assigned values.

In summary, in P ′ no assignment is made to the chronicles. Auxiliary
variables appear only in guards, tests, and assignments to themselves.
Therefore, auxiliary variables do not affect the values of the original vari-
ables. Original variables of P are assigned values exactly as they were as-
signed in P , except that some of the variables that were uninitialized in P
may be initialized in P ′. We will show that the sequence of values assumed
by the original variables in P ′ is the same as the chronicle and each fair
execution of P ′ corresponds to some (fair) execution of P .

Example

Consider program FairNatural of section 7.2.1. To prove its maximality for
the specification

invariant x ≥ 0
true �→ x > 0

pick an arbitrary sequence X that satisfies the specification. That is, X
satisfies the following conditions.

X0 ≥ 0
〈∀i :: Xi ≥ 0 ⇒ Xi+1 ≥ 0〉
〈∀i :: (∃j : i ≤ j : Xj > 0)〉

Now construct a constrained program FairNatural ′ that includes chron-
icle X and an auxiliary variable j that denotes the point. The augmented
actions corresponding to α and β are α′ and β′.
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————————————
program FairNatural ′

integer x = X0;
integer j = 1;
integer n = 0;

α′:: n < Xj → n := n+ 1
[] β′:: n = Xj → x, n := n, 0; j := j + 1

end {FairNatural ′}
————————————

We claim that in every fair execution of FairNatural ′, the sequence of
values assigned to x is X; i.e., invariant j > 0 ∧ x = Xj−1. We also show
that any fair execution of FairNatural ′ corresponds to a fair execution of
FairNatural . So X is the outcome of some execution of FairNatural .

Remarks on the constrained program
The following example shows that a constrained program may not be ex-
ecutable. Consider the specification: output a sequence of integers where
each element is one more than the preceding element with, possibly, one
exception where the element is one less than the preceding element. Given
below is a program that is maximal for this specification. The program
has an integer variable x and a boolean b. Neither variable is initialized.
If b is true initially, x only increases, and if b is false initially, eventually
x decreases once and then increases forever. The output is the sequence of
values assigned to x.

————————————
program choice
integer x;
boolean b;

α:: x := x+ 1
[] β:: ¬b → x := x− 1; b := true

end {choice}
————————————

To prove maximality of this program given a possible output sequence
X, we have to construct a constrained program in which the initial value of
b depends on X. However, no finite prefix of X can tell us how to initialize
b; b has to be set to true if and only if X is an increasing sequence. That
is, initially,

b ≡ 〈∀i : i ≥ 0 : Xi+1 > Xi〉
Therefore, the constrained program is not executable.
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7.3.2 Proving maximality
We describe the proof steps required to establish the maximality of a pro-
gram for a given specification. The constrained program inherits all safety
properties of the original program since assignments to the original vari-
ables are not modified. We have to establish the following facts in the
constrained program.

1. Chronicle correspondence: Show that every fair execution of the
constrained program assigns a sequence of values to the original vari-
ables which is same as the values in the chronicle.

• (Safety) Show that the values of the original variables are identi-
cal to those of the chronicle at the current point (recall that the
point is given by an auxiliary variable, such as j in FairNatural).
This proof obligation is stated as an invariant of the constrained
program.

• (Progress) The current value of the point is incremented even-
tually. That is, longer sequences of the chronincle are made to
match the values assigned to original variables. (This property
often follows from the progress proof for execution correspon-
dence; see below.)

2. Execution correspondence: Show that every fair execution of the
constrained program corresponds to a fair execution of the original
program such that both executions compute the same values in the
original variables.

• (Safety) The truth of the augmenting guard of each action is
preserved by all other actions. That is, the augmenting guard of
α′ may be falsified by executing α′ only.
This condition is met trivially if all augmenting guards are pair-
wise disjoint; no guard can then be falsified by the execution of
another action because the latter’s guard is then false and its
execution has no effect.

• (Progress) Show that each augmenting guard is true infinitely
often.

Example

For FairNatural ′ the proof obligations are as follows.

1. Chronicle correspondence:

(Safety) invariant j > 0 ∧ x = Xj−1 .

(Progress) j = J �→ j = J + 1, for any natural J .
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2. Execution correspondence:

(Safety) The augmenting guard of α′, n < Xj , is preserved by β′,
and that of β′, n = Xj , is preserved by α′ . (These follow because the
guards are disjoint.)

(Progress) true �→ n < Xj , true �→ n = Xj .

7.3.3 Justification for the proof rules
The chronicle correspondence rule establishes that the computation of the
constrained program P ′ matches the given chronicle. The safety require-
ment guarantees the match at the current point, and the progress require-
ment guarantees that successively longer prefixes of the chronicle will be
computed.
Given that the execution correspondence conditions hold, we argue that

for any fair execution τ of P ′, τ = τ0A0τ1 . . . τiAiτi+1 . . ., there is a fair
execution γ of P , γ = γ0B0γ1 . . . γiBiγi+1 . . . such that τ reduces to the
sequence of states γ0γ1 . . . γiγi+1 . . . over the variables of P .
We modify τ by removing certain actions and states from it as follows.

For each action Ai in τ that has an augmenting guard g, if g(τi) does not
hold, then (τi = τi+1 in this case) remove τiAi from τ . We show that the
resulting sequence τ ′ is an infinite sequence, so it is an execution.
From the progress condition of execution correspondence, the augment-

ing guard g of an augmented action α′ is true infinitely often; from the
safety condition of execution correspondence, g remains true as long as α′

is not executed. Each action α′ is executed infinitely often in a fair exe-
cution of P ′. Therefore, α′ is infinitely often executed in a state where its
augmenting guard g is true. Actions whose guards were false at the time
of their execution have been removed from τ . Therefore, τ ′ contains ev-
ery augmented action infinitely often, and the corresponding guard is then
true. In a state where the augmenting guard g of α′ holds, α′ has the same
effect on the original variables as the action α that it corresponds to. (The
superposed actions do not modify the original variables.) Therefore, τ ′ is
an execution of the constrained program, and it corresponds to a fair ex-
ecution γ of the original program such that the sequence of states for the
original variables in τ , τ ′ and γ are identical.
Not all executions of the constrained program P ′ have counterparts

in P , the original program. In particular, if X is a sequence of zeroes,
FairNatural ′ computes X by executing the sequence of actions (α′β′)ω; in
this execution, α′ has no effect and β′ computes the next value. However,
the corresponding sequence, (αβ)ω in FairNatural , does not compute X.
The execution correspondence rule ensures that every fair execution of P ′

corresponds to a fair execution of P that computes the same sequence of
states (in the original variables of P ). In FairNatural ′, the guard of α′,



224 7. Maximality Properties

n < Xi, does not hold infinitely often if X is a sequence of zeroes, so the
execution correspondence rule does not apply.

7.3.4 Proof of maximality of program FairNatural
We prove the maximality of FairNatural (page 217) using FairNatural ′

(page 221) as the constrained program. We first state certain properties
of FairNatural ′ that are required in the maximality proof; these properties
follow from the program text. Then we give a complete proof of maximal-
ity. In the following, J and K are free variables of type natural.

invariant j > 0 ∧ n ≤ Xj ∧ x = Xj−1 (P1)
j = J co j = J ∨ (j = J + 1 ∧ n = 0) (P2)
n ≤ Xj ∧ Xj − n = K en (n ≤ Xj ∧ Xj − n < K) ∨ n = Xj (P3)
n = Xj ∧ j = J en j = J + 1 ∧ n = 0 (P4)

We also have the following properties of X from the specification of
FairNatural .

〈∀i :: Xi ≥ 0 ⇒ Xi+1 ≥ 0〉
〈∀i :: (∃j : i ≤ j : Xj > 0)〉

Property (P5), below, follows from the properties of X. Here, f(i) is
the next position beyond i where Xf(i) is positive. Such a position exists
because 〈∀i :: (∃j : i ≤ j : Xj > 0)〉.

There is a function f , f : naturals → naturals, such that
f(i) > i and Xf(i) > 0, for all i. (P5)

Proof of chronicle correspondence

• (Safety) invariant j > 0 ∧ x = Xj−1 follows from (P1).

• (Progress) j = J �→ j = J + 1, for any natural J : (1)

true �→ n = Xj , execution corresp.(3), see below
j = J co j = J ∨ (j = J + 1 ∧ n = 0)

, P2
j = J �→ (n = Xj ∧ j = J) ∨ (j = J + 1 ∧ n = 0)

, PSP applied to above two
n = Xj ∧ j = J �→ j = J + 1 ∧ n = 0

, from (P4), use basis rule of �→
j = J �→ j = J + 1 ∧ n = 0 , cancellation on above two (2)
j = J �→ j = J + 1 , weaken rhs ✷
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Proof of execution correspondence

• (Safety): The guards n < Xj and n = Xj are disjoint.

• (Progress) true �→ n = Xj : (3)

n ≤ Xj ∧ Xj − n = K �→ (n ≤ Xj ∧ Xj − n < K) ∨ n = Xj

, from P3, use basis rule of �→
n ≤ Xj �→ n = Xj , induction
true �→ n = Xj , substitution axiom:

invariant n ≤ Xj from (P1) ✷

• (Progress) true �→ n < Xj :

j = J �→ j = J + 1 , chronicle correspondence (1), above
j = J �→ j = f(J)− 1 , induction on above
j = f(J)− 1 �→ j = f(J) ∧ n = 0

, let J be f(J)− 1 in (2) of chronicle correspondence proof
j = J �→ j = f(J) ∧ n = 0 , transitivity on the above two
j = J �→ n < Xj , j = f(J) ⇒ Xj > 0 from (P5)
true �→ n < Xj , disjunction over all J ✷

7.4 Random Assignment

A maximal solution is typically highly nondeterministic. In our previous
example, FairNatural , we exploited the nondeterminacy of action execu-
tion; an arbitrary natural number is computed because n is incremented
an indeterminate number of times. In many cases, it is convenient to have
nondeterminacy in the code itself. To this end, we introduce a “random as-
signment” statement that assigns a random value to a variable; see Apt and
Olderog [12, section 9.4] for an axiomatic treatment of random assignment.
We show the additional proof steps required to prove the constrained pro-
gram when random assignments are replaced by specific assignments. As an
example, we treat a fair unordered channel in which random assignments
are essential in constructing the solution.

7.4.1 The form of random assignment
A random assignment statement is of the form

x :=?

and execution of this statement assigns a random value of the appropri-
ate type to x. There is no notion of fairness in this assignment; repeated
execution of this statement may always assign the same value to x.
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Random assignment is convenient for programming maximal solutions.
However, it can be simulated using the existing features of our programming
model. For instance, in the following program, similar to FairNatural , every
execution of γ stores a random natural number in x. The program is also
maximal: any sequence of natural numbers may be assigned to x.

————————————
program RandomNatural
integer x;
integer n = 0;

α:: n := n+ 1
[] β:: n > 0 → n := n− 1
[] γ:: x := n

end {RandomNatural}
————————————

Note on the maximality of program RandomNatural
We omit the proof of maximality of RandomNatural ; the proof is similar
to FairNatural ’s proof. Note that augmenting α, β and γ by the guards
n < Xj , n > Xj , n = Xj , where X is a given sequence of natural numbers
as in FairNatural , is not sufficient for the proof of maximality. If X is
an increasing sequence, for instance, n > Xj never holds, and execution
correspondence cannot be proved. Create a constrained program in which
the codes of the augmented actions α′ and β′ are executed at least once
following each execution of γ′, as follows. Let c be an auxiliary variable,
c ∈ {0, 1, 2}, where c = 1 if the last executed action is γ′, and then α′ is
executed and c is set to 2; if c = 2, then β′ is executed and c is set to 0;
when c = 0 any of α′, β′, γ′ may be executed.

————————————
program RandomNatural ′

integer x = X0; integer j = 1;
integer n = 0;
enum (0, 1, 2) c = 0;

α′:: (c = 0 ∧ n < Xj) ∨ c = 1 →
n := n+ 1; if c = 1 then c := 2 endif

[] β′:: (c = 0 ∧ n > Xj) ∨ c = 2 →
n > 0 → n := n− 1; c := 0

[] γ′:: c = 0 ∧ n = Xj →
x := n; c := 1; j := j + 1

end {RandomNatural ′}
————————————
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Note The augmenting guard of β′ implies n > 0, since n > Xj ⇒ n > 0,
and it can be shown that (c = 2 ⇒ n > 0) is invariant. Hence, the second
guard of β′, n > 0, may be dropped. ✷

General form of random assignment
We use a more general form of random assignment

x :=? st p

where variable x is assigned any value such that predicate p holds after the
assignment. For instance, for integer x,

x :=? st 〈∃i :: x = 2× i〉
assigns any even number to x, and

y := x; x :=? st x > y

increases the value of x arbitrarily. It is the programmer’s responsibility to
ensure that such a random assignment is feasible.

Constraining random assignments
In constructing a constrained program, a random assignment is replaced
by a specific assignment. If

x :=? st p is replaced by
x := e

it has to be shown that p holds after the assignment x := e.
There is one caveat in constructing these proofs. Earlier, we had said

that a constrained program inherits all safety properties of the original
program. This is true only if the random assignments have been correctly
constrained. Therefore, it cannot be assumed that the constrained program
inherits the safety properties until the correctness of these assignments
in the constrained program have been shown. In particular, the proof of
correctness of these assignments cannot assume any safety properties of the
original program; any such assumption has to be proved explicitly in the
constrained program.

7.5 Fair Unordered Channel

To illustrate proofs with random assignments, we take the example of a
channel interposed between a sender and a receiver. A first-in–first-out
(fifo) channel guarantees that the order of delivery of messages is the same
as the order in which they were put into the channel. In this section we
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consider a fair unordered channel in which (1) the messages are delivered
in random order and (2) every message sent is eventually delivered. We
propose a maximal solution. A fifo channel implements both requirements,
but it is not maximal.
This problem, which is couched as a message transmission problem, has

a number of other applications. In particular, the solution can be used to
output all natural numbers, where any order of output is a possibility; the
sender simply sends the natural numbers in sequence and the channel then
delivers them in any possible order. The solution can also be used as a
scheduler for programs that have an infinite number of actions, and each
action has to be scheduled eventually. This can be implemented by using
the sequence created by the channel just described; schedule action i when
the channel outputs i.
A maximal program for this problem appears in section 4.1.3. Here, we

consider the following simplification of the problem. A program has an
infinite input sequence x, and it has to generate a sequence y that is a
permutation of x; any permutation is a possible output. We assume further
that the items in x are distinct, which can be assured by appending a unique
sequence number to each item of x. Then, every item in y corresponds to
a unique item in x and vice versa. The specification of the program is as
follows: the safety conditions state that every item in y is from x and that
the elements in y are unique; the progress condition states that every item
of x eventually appears in y.

〈∀j :: (∃i :: xi = yj)〉
〈∀i, j :: yi = yj ⇒ i = j〉
〈∀i :: true �→ (∃j :: xi = yj)〉

7.5.1 Maximal solution for fair unordered channel
The solution shown below consists of two actions, read and write. In the
read action, an item is removed from x and stored in set z; in the write
action an item from z is removed and appended to sequence y. The write
action permits removal of any item from z, yet it is not sufficient to remove
an arbitrary item because the progress property does not hold if some item
is left in z forever. Therefore, we associate a height, a natural number, with
each item that is placed into z, and in the write action we remove any item
with the smallest height from z. When an item is added to z it is assigned
a height that is at least the value of variable t; we describe below how t is
computed.
In the following program, the heights of the items are stored in array

H; in particular, H[c] and H[d] are the heights of items c and d, respec-
tively. Since the items are all distinct this representation is unambiguous.
Variables i and j are the numbers of items read from x and written to y,
respectively. Items in a sequence are indexed starting at 0.
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————————————
program FUnCh
integer i, j, t = 0, 0, 0;
item c;
seq(item) y = 〈〉;
set(item) z = ∅;

read:: c := xi; H[c] :=? st H[c] ≥ t;
z := z ∪ {c}; i := i+ 1

[] write:: z �= ∅ →
c :=? st c ∈ z ∧ 〈∀d : d ∈ z : H[c] ≤ H[d]〉;
t, yj , z, j := H[c] + 1, c, z − {c}, j + 1

end {FUnCh}
————————————

The following properties hold in FUnCh:

〈∀j :: (∃i :: xi = yj)〉
〈∀i :: true �→ (∃j :: xi = yj)〉

The first property says that every item of y is some item in x, and the
second property states that every item of x is eventually appended to y. We
leave it to the reader to prove these properties. For the progress property,
it has to be shown that each item u in z is selected eventually, as c, in
write. We give an outline of this proof.
Let n be the number of items in z whose height is less than t. For a specific

item u in z consider the pair (H[u] + 1− t, n), where H[u] is the height of
u. Both components of the pair are non-negative. This pair is unaffected
by the execution of read, because read does not change H[u], t or n. The
pair decreases lexicographically whenever an item is removed from z. Since
the pair cannot be decreased indefinitely, eventually u is removed.

7.5.2 The constrained program
Let Y be any permutation of x; i.e.,

〈∀j :: (∃i :: xi = Yj)〉
〈∀i, j :: Yi = Yj ⇒ i = j〉
〈∀i :: (∃j :: xi = Yj)〉

We show that Y is a possible output of the program FUnCh. For the
proof, we create a constrained program using the transformations described
in section 7.3.1. Additionally, we replace the random assignments of FUnCh
by specific assignments. In particular, the height assigned to an item is its
position in Y .



230 7. Maximality Properties

————————————
program FUnCh ′

integer i, j, t = 0, 0, 0;
item c;
seq(item) y = 〈〉;
set(item) z = ∅;

read′:: Yj /∈ z →
c := xi; H[c] := k st c = Yk;
z := z ∪ {c}; i := i+ 1

[] write′:: Yj ∈ z →
z �= ∅ →
c := Yj ;
t, yj , z, j := H[c] + 1, c, z − {c}, j + 1

end {FUnCh ′}
————————————

Note The assignment to H[c] in read′ is not a random assignment; there
is a unique value Yk that matches c, i.e., xi.
The augmenting guard of write′, Yj ∈ z, implies the original guard,

z �= ∅. ✷

7.5.3 Proof of maximality: invariants
We write x0:i for the set {x0, x1, . . . , xi−1}; thus, x0:0 is the empty set. The
proofs of the following properties of FUnCh ′ are left to the reader.

invariant x0:i = z ∪ y0:j (P1)
invariant y0:j = Y0:j (P2)
invariant 〈∀d : d ∈ z : d = YH[d] ∧ j ≤ H[d]〉 (P3)
invariant t = j (P4)

The proofs of (P1, P2) are straightforward; these proofs use the fact
that the items in z are distinct. The proof of (P3) needs some explanation.
Action read′ adds c to z where H[c] = k ∧ c = Yk; hence, c = YH[c]. To
see that j ≤ H[c] in read′: it follows from (P1) that xi /∈ y0:j ; hence,
c = xi = Yk, where j ≤ k, i.e., j ≤ H[c]. Action write′ removes c from z
provided that H[c] is the smallest height. From (P3), all heights are distinct
because all items in Y are distinct; further, each height is at least j. From
the guard, Yj ∈ z, the height of Yj is the lowest, and all other items in
z have height exceeding j. Therefore, the incrementation of j in write′

preserves j ≤ H[d] for each d in z. The proof of (P4) is similar.
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7.5.4 Correctness of implementation of random assignments
We have to show

1. in read′: H[c] := k st c = Yk implements H[c] :=? st H[c] ≥ t .

2. in write′: c := Yj implements

c :=? st c ∈ z ∧ 〈∀d : d ∈ z : H[c] ≤ H[d]〉

• Proof of (1):
In read′, prior to the assignment we have, from invariant (P1),

x0:i = z ∪ y0:j
⇒ {From (P2), y0:j = Y0:j ; x is a permutation of Y }

xi /∈ Y0:j ∧ 〈∃k :: xi = Yk〉
⇒ {Predicate calculus}

〈∃k : k ≥ j : xi = Yk〉
⇒ {k above is unique since items of Y are distinct; c = xi}

H[c] := k st c = Yk implements H[c] :=? st H[c] ≥ j
⇒ {From P4, j = t}

H[c] := k st c = Yk implements H[c] :=? st H[c] ≥ t ✷

• Proof of (2):
We have to show after the assignment c := Yj that

c ∈ z ∧ 〈∀d : d ∈ z : H[c] ≤ H[d]〉
holds. Applying the axiom of assignment (see appendix A.4.1), we have to
show before the assignment that

Yj ∈ z ∧ 〈∀d : d ∈ z : H[Yj ] ≤ H[d]〉
holds. The first conjunct, Yj ∈ z, follows from the guard of write′. The
second conjunct is proved next. From (P3),

〈∀d : d ∈ z : d = YH[d] ∧ j ≤ H[d]〉
⇒ {each item of z is a unique item of Y }

〈∀d, k : d ∈ z : (d = Yk ≡ H[d] = k) ∧ j ≤ H[d]〉
⇒ {Yj ∈ z from the guard of write′}

〈∀k : Yj = Yk ≡ H[Yj ] = k〉 ∧ 〈∀d : d ∈ z : j ≤ H[d]〉
⇒ {setting k to j}

H[Yj ] = j ∧ 〈∀d : d ∈ z : j ≤ H[d]〉
⇒ {predicate calculus}

〈∀d : d ∈ z : H[Yj ] ≤ H[d]〉
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7.5.5 Proof of chronicle and execution correspondence

Proof of chronicle correspondence
• (Safety) We have to show that y0:j = Y0:j , which follows from (P2).

✷

• (Progress) We have to show that j = J �→ j = J + 1 for any natural
J . Each execution of write′ increments j. From the progress proof of
write′ under execution correspondence (see below) the code of write′

is executed arbitrarily many times. Therefore, j increases without
bound. ✷

Proof of execution correspondence
• (Safety) The augmenting guards Yj /∈ z and Yj ∈ z are disjoint.

• (Progress of read′) true �→ Yj /∈ z:

Yj ∈ z en Yj /∈ z , from the text of FUnCh ′

Yj ∈ z �→ Yj /∈ z , basis rule of �→
Yj /∈ z �→ Yj /∈ z , implication rule of �→
true �→ Yj /∈ z , disjunction of above two ✷

• (Progress of write′) true �→ Yj ∈ z:

There is a unique k such that Yj = xk. For any n,

Yj /∈ z ∧ k − j = n en k − j < n , from the text of FUnCh ′

Yj /∈ z ∧ k − j = n �→ k − j < n , basis rule of �→
Yj /∈ z �→ Yj ∈ z , induction
Yj ∈ z �→ Yj ∈ z , implication rule of �→
true �→ Yj ∈ z , disjunction of above two ✷

7.6 Faulty Channel

In section 4.1.6, we have considered a faulty channel that may lose messages,
duplicate any message an unbounded (though finite) number of times and
permute the order of messages. For any point in the computation, it is given
that not all messages beyond this point will be lost; otherwise, there can
be no guarantee of any message transmission at all. This is similar to the
fault model of a channel assumed in the alternating bit protocol [159] (the
difference being that in the latter, the channel does not reorder messages).
Such a protocol can be proved correct by encoding the communication
between the sender and the receiver using a maximal solution for the faulty
channel. As we remarked earlier, it is essential to have a maximal solution



7.7 Concluding Remarks 233

in this case, because a protocol must cope with any possible behavior of
the channel. We leave the correctness and maximality proof of the program
in section 4.1.6 to the reader. The maximality proof is similar to that for
FUnCh of section 7.5.1; below, we sketch an outline of the proof.
Consider an infinite sequence S each of whose elements is of the form

(put, y) or (get, y). As we did for the unordered channel, we assume that all
messages are distinct. A sequence is valid if (1) every (get, y) is preceded
by exactly one (put, y) and (2) every (put, y) is followed by a finite number
—possibly zero— of (get, y)s. Given a valid sequence, we construct an ex-
ecution as follows. Whenever the next element of S is (put, y), we simulate
a call of put with argument y. Let d be the number of (get, y) appearing
in S. From the definition of a valid sequence, d is well defined. The step in
put that needs a natural number calls fnat , and we require that the value
returned by fnat be d. Whenever the next element of S is (get, y), we assign
y to x; this is possible because y ∈ b at that point.

7.7 Concluding Remarks

We described the notion of maximality, which rules out implementations
with insufficient nondeterminism. A maximal program for a given speci-
fication has (up to finite stuttering [114]) all the behaviors admitted by
the specification. Although we described techniques for proving maximal-
ity only, our proof method may be used to show that a program admits a
specific set of executions.

7.8 Bibliographic Notes

Notions similar to maximality have been studied elsewhere in the litera-
ture, e.g., bisimulation due to Milner [132]. However, unlike bisimulation,
which relates two programs (i.e., agents of a process algebra), our notion
of maximality relates a program written using guarded commands with a
specification written in a UNITY-like temporal logic. The work described
in this chapter appears in [101].
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8
Program Composition

8.1 Introduction

The goal of a program composition theory is to answer questions of the
following form:

• Given a program consisting of one or more components, how do we
deduce properties of the program from the specifications of its com-
ponents?

• Given the specification of a program, how do we partition its design
among its components?

• When does a program “inherit” a property of one of its components?

The first question is fundamental for program analysis. The second ques-
tion is identical to the first except that it involves a design question: how
to partition a specification. We ignore the heuristic aspects of design in
this chapter. Therefore, our answer to the first two questions is to propose
inference rules that permit deductions of program properties from those of
its components; these rules can also provide guidelines for postulating the
specifications of components from a given program specification. The third
question is motivated by the possibility of adopting the following “ideal”
methodology for program design: partition the specification of the program
(to be designed) so that each part in the partition is the specification of
a component. If each component meets its specification, and the program
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inherits the properties of its components, then the program meets its spec-
ification. Each component can then be designed in a similar manner, until
the specifications are so trivial that they can be implemented directly. Such
a methodology, though attractive, poses a number of formidable technical
challenges. We develop a theory in chapter 9 that qualifies the kinds of
properties that can be inherited by a program from its components.
We have been intentionally vague about what constitutes a component

of a system. Traditionally, a component represents a function or procedure
that, upon invocation, returns a result; or it includes the representation
of a data object and the methods by which the representation may be
manipulated; or it is a process that carries out a portion of the overall
computation autonomously. We make no specific assumptions about the
nature of a component; therefore, our theory includes each of these inter-
pretations as a special case. Each component is an action system, and we
expect the components to operate on global as well as local data. We use
“program” to designate a single box as well as unions of several boxes.
A common misconception in program structuring is that a process —

whose code can be executed on a single processor, or which can be viewed as
a unit of computation, as in a transaction processing system, for instance—
constitutes a “natural” decomposition of a system; therefore, it is argued
that a system should be understood (i.e., specified) process by process. In
many cases, it is best to understand a system in a manner orthogonal to
the way it is structured as a set of processes. As an example, Fig. 8.1 shows
a communication protocol structured as a hierarchy of three components:
bit communication, data transfer, and connection management. Each com-
ponent addresses a specific concern in the given application. There are two
processes —a sender and a receiver— in this system. Each of the com-
ponents is partitioned between the sender and the receiver . However, the
protocol is best understood component by component, not process by pro-
cess.
A compositional theory is best applied if the components are “loosely

coupled”, i.e., their interactions take place through a few shared variables,
and there is a strict discipline in the manner in which the shared variables
are accessed (read or written). In such cases, concise specifications can be
written for the components and their interactions. By contrast, “tight”
coupling —as in a mutual exclusion algorithm, for instance— involves in-
teractions that cannot be expressed succinctly, component by component.
In a typical mutual exclusion algorithm, for instance, specification of a
process is often its implementation. It is not useful to design or verify such
systems by considering one component at a time.
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bit communication

data transfer

connection management

receiversender

Figure 8.1: Components in a data transfer protocol

8.2 Composition by Union

We begin the study of program composition by considering the union oper-
ator (written []), which is used for compositions of asynchronously operating
components. An informal description of the union of programs F and G,
denoted by F [] G, is as follows: F [] G is a program in which

• The initial conditions of both F and G hold.

• In each step, an action is chosen from F or G for execution, and each
action (from both F and G) is chosen eventually.

Union may be applied to any finite set of programs; for technical reasons,
we require that this set of programs be nonempty.

Restriction Throughout this chapter, we assume weak fairness in pro-
gram execution. All boxes are action systems (see chapter 2 for a description
of action systems). ✷

8.2.1 Definition of union
For program composition, it is particularly important to specify which vari-
ables named in a program are local to that program, i.e., those that can
be neither read nor written by any other program; the remaining variables
named in that program are global (i.e., they may possibly be read or written
by other programs). We prefix the declaration of a variable in a program
by local or global.
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Note on name clashes Local variables of different programs may have
identical names. Similarly, a local variable of one program may have the
same name as a global variable declared elsewhere. We assume that the
local variables are renamed, if necessary, to avoid such name clashes. ✷

It is useful to regard F [] G as a single action system that is constructed
out of F and G as follows. The local (global) variables of F [] G are the
ones that are declared local (global) in F or in G. Declarations of the same
global variable in two different programs should not be conflicting, e.g., if a
global variable x is declared in F , it is either undeclared (so not accessed) in
G, or similarly declared in G. Also, the initial conditions of F and G should
not conflict in order for their union to be defined. The initial condition of
F [] G is the conjunction of the initial conditions of F and G. (It is useful
for theoretical purposes to define F [] G even when the initial conditions
of F and G conflict; we do not pursue this possibility.) The body of F [] G
consists of all the actions from F and G.

Example:

We show two boxes —send and receive— and their union.

————————————————————————
box send box receive

global boolean global boolean
b = true; b = true;

local integer ns = 0; local integer nr = 0;

b → ns, b := ns + 1, false ¬b → nr, b := nr + 1, true
end {send} end {receive}
————————————————————————

Box send [] receive has global variable b and local variables ns and nr.
The variables are initialized as in the components. The set of actions of
send [] receive is the union of the ones from send and receive.

————————————
box send [] receive

global boolean b = true;
local integer ns, nr = 0, 0;

b → ns, b := ns + 1, false
[] ¬b → nr, b := nr + 1, true

end {send [] receive}
————————————

Notation So far, we have been writing properties such as p co q,
transient p, p en q, p �→ q, fixed point predicate (FP), and initial
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condition (IC) without explicit mention of the program to which these
apply. This is because we always had a single program under consideration.
Now we use explicit program names, for instance,

p co q in F

to denote that p co q holds in program F and

F .FP and F.IC

to denote the fixed point predicate and the initial condition, respectively,
of program F . ✷

8.2.2 Hierarchical program structures
From the definition of union, each global variable of F and of G is global
in F [] G. It is often useful to declare that a variable shared between F
and G cannot be accessed by any other program, i.e., we would like to
hide the variable. For instance, if F and G communicate by messages, the
channels between them are local to any system of which both F and G are
components. For the example given on page 238, we may wish to specify
that variable b cannot be accessed by any program other than send and
receive.
We propose a notation that permits us to hide variables. It also allows

hierarchical program construction using union. Consider the following ex-
ample.

————————————
program H
global integer x = 0;
local integer y;

program F
global integer x, y;
local integer z;
{body of F}

end {F}

[] program G
global integer x, y;
local integer u;
{body of G}

end {G}

end {H}
————————————
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Here H is F [] G with the restriction that the set of local and global
variables of H is the set of global variables of F [] G. Thus, variable x can
be accessed outside H, whereas y cannot be accessed outside H; only F
and G may communicate through y. Additionally, we permit H to initialize
its local and global variables as long as it does not conflict with the initial
condition of F [] G; see the initialization of x.
Properties of H can be deduced from the properties of F [] G; any prop-

erty of F [] G that names only its global variables, i.e., the (local and global)
variables of H, is a property of H. Further, we may use the initial condition
of H to deduce additional properties, such as invariants, that do not hold
in F [] G.
The declaration mechanism we have proposed hides variables. Hence, it

can be used for hierarchical program constructions. For instance, programs
F and G may themselves hide certain variables of the components out
of which they are built. In this form of hierarchy, only the access rights
are constrained. Unlike sequential program hierarchy, flow of control is
unaffected; each action of every component program is chosen eventually
for execution.

8.2.3 Union theorem
Fundamental to the study of union is the union theorem. It permits us
to deduce certain properties of a program from those of its components.
We state the theorem for 〈[] i :: Fi〉, where index i assumes values from a
nonempty finite set.

Union theorem

1. 〈[] i :: Fi〉.IC ≡ 〈∀i :: Fi.IC〉
〈[] i :: Fi〉.FP ≡ 〈∀i :: Fi.FP〉

2. p co q in 〈[] i :: Fi〉 ≡ 〈∀i :: p co q in Fi〉

3. transient p in 〈[] i :: Fi〉 ≡ 〈∃i :: transient p in Fi〉 ✷

Condition (1) gives a method to compute the initial conditions and fixed
point predicates of a system from those of its components. From condition
(2), a co-property of a system is a co-property of each component and
vice versa. Condition (3) is the counterpart of condition (2) for transient
predicates.

Corollaries
Corollaries (2,3,4), below, show that stable, constant, and ensures prop-
erties are inherited by a program from its components. Note that we have
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an equivalence (not just an implication) in each case. Corollaries (5,6,7)
show that certain properties of a box —co, invariant, and en— are in-
herited by a program in which the box is a component provided that the
predicate in the lhs is stable in the other components of the program.

p co q in F
p′ co q′ in G

p ∧ p′ co q ∨ q′ in F [] G (1)

stable p in 〈[] i :: Fi〉 ≡ 〈∀ i :: stable p in Fi〉 (2)

constant e in 〈[] i :: Fi〉 ≡ 〈∀ i :: constant e in Fi〉 (3)

p en q in 〈[] i :: Fi〉
≡ 〈∀ i :: p ∧ ¬q co p ∨ q in Fi〉 ∧ 〈∃ i :: p en q in Fi〉 (4)

stable p in F
p co q in G

p co q in F [] G (5)

stable p in F
invariant p in G

invariant p in F [] G (6)

stable p in F
p en q in G

p en q in F [] G (7)

8.2.4 Proof of the union theorem and its corollaries

Proof of the union theorem, part (1)
The initial condition of 〈[] i :: Fi〉 is 〈[] i :: Fi〉.IC, which is the conjunction
of the initial conditions of the components, Fis, by definition. Similarly, for
the FP ,

〈[] i :: Fi〉.FP
≡ {s.FP is the fixed-point predicate for action s. Definition of FP}
〈∀s : s ∈ 〈[] i :: Fi〉 : s.FP〉

≡ {actions of 〈[] i :: Fi〉 is the union of the actions of the Fis}
〈∀i :: 〈∀s : s ∈ Fi : s.FP〉 〉

≡ {using the definition of Fi .FP}
〈∀i :: Fi .FP〉

Proof of the union theorem, part (2)
p co q in 〈[] i :: Fi〉

≡ {definition of co}
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〈∀s : s ∈ 〈[] i :: Fi〉 : {p} s {q}〉
≡ {actions of 〈[] i :: Fi〉 is the union of the actions of the Fis}
〈∀i :: 〈∀s : s ∈ Fi : {p} s {q}〉 〉

≡ {definition of co}
〈∀i :: p co q in Fi〉

Proof of the union theorem, part (3)
transient p in 〈[] i :: Fi〉

≡ {definition of transient}
〈∃ s : s ∈ 〈[] i :: Fi〉 : {p} s {¬p}〉

≡ {actions of 〈[] i :: Fi〉 is the union of the actions of the Fis}
〈∃ i :: 〈∃ s : s ∈ Fi : {p} s {¬p}〉 〉

≡ {definition of transient}
〈∃ i :: transient p in Fi〉

Proofs of the corollaries
1. p co q in F , premise
p ∧ p′ co q ∨ q′ in F , strengthen lhs, weaken rhs
p ∧ p′ co q ∨ q′ in G , similarly
p ∧ p′ co q ∨ q′ in F [] G , union theorem (part 2) ✷

2. Set q to p in part (2) of the union theorem. ✷

3. constant e in 〈[] i :: Fi〉
≡ {definition of constant}

〈∀ m :: stable e = m in 〈[] i :: Fi〉 〉
≡ {Corollary 2}

〈∀ m :: 〈∀ i :: stable e = m in Fi〉 〉
≡ {predicate calculus}

〈∀ i :: 〈∀ m :: stable e = m in Fi〉 〉
≡ {definition of constant}

〈∀ i :: constant e in Fi〉 ✷

4. p en q in 〈[] i :: Fi〉
≡ {definition of en}

(p ∧ ¬q co p ∨ q in 〈[] i :: Fi〉) ∧
(transient p ∧ ¬q in 〈[] i :: Fi〉)

≡ {union theorem, parts 2 and 3}
〈∀ i :: p ∧ ¬q co p ∨ q in Fi〉 ∧
〈∃ i :: transient p ∧ ¬q in Fi〉

≡ {definition of en}
〈∀ i :: p ∧ ¬q co p ∨ q in Fi〉 ∧ 〈∃ i :: p en q in Fi〉 ✷
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5. p co p in F , premise
p co q in G , premise
p co p ∨ q in F [] G , Corollary 1
p co q in F [] G , p ⇒ q from p co q in G ✷

6. invariant p in G , premise
G.IC ⇒ p , definition of invariant
(F [] G).IC ⇒ G.IC , part (1) of the union theorem
(F [] G).IC ⇒ p , from the above two

Also,
stable p in G , from the premise, invariant p in G
stable p in F , premise
stable p in F [] G , from Corollary 2

Hence, from (F [] G).IC ⇒ p and stable p in F [] G,
invariant p in F [] G . ✷

7. p co p in F , premise
p ∧ ¬q co p ∨ q in G , from p en q in G
p ∧ ¬q co p ∨ q in F [] G , Corollary 1 on the above two (*)
transient p ∧ ¬q in G , from p en q in G
transient p ∧ ¬q in F [] G, union theorem (part 3)
p en q in F [] G , above and (*), use definition of en ✷

8.2.5 Locality axiom
A program can change only the variables declared in it; this is the essence
of the locality axiom. For a predicate p, let x be the variables named in it
that are accessible (i.e., declared as local or global variable) in program F .
Execution of an action in F can change p only by changing x; if F does
not change x, it does not change p either.

Locality axiom p ∧ x = m co (x = m)⇒ p in F . ✷

If x is empty, x = m should be treated as true. If p names no variable
declared in F , from the locality axiom, p is stable in F . Applying the same
argument, ¬p is also stable in F . Hence, p is constant in F in this case.
As an application of the locality axiom, we prove

Lemma

p ◦ q in F
p ∧ x = m ◦ q ∨ x �= m in F [] G
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where (1) ◦ is any of the operators, co, en, or �→, (2) p and q name only the
variables accessible in F , and (3) x denotes the variables shared between
F and G.
Proof: We prove the result for each operator separately.

• Assume p co q in F :

p ∧ x = m co p ∨ x �= m in G , locality axiom
p ∧ x = m co q ∨ x �= m in G , weaken rhs: p⇒ q from p co q
p ∧ x = m co q ∨ x �= m in F

, strengthen lhs, weaken rhs of the premise
p ∧ x = m co q ∨ x �= m in F [] G

, union theorem

• Assume p en q in F :

p en q in F , given
p ∧ x = m en q ∨ x �= m in F , property of en (1)

(chapter 6, exercises 4b, 4c)
(p ∧ ¬q ∧ x = m) co (p ∧ x = m) ∨ q ∨ x �= m in F

, from above (2)
(p ∧ x = m) co (x = m) ⇒ p in G , locality axiom
(p ∧ ¬q ∧ x = m) co (p ∧ x = m) ∨ q ∨ x �= m in G

, strengthen lhs, weaken rhs
p ∧ x = m en q ∨ x �= m in F [] G , corollary 4 on (1,2, above)

• Assume p �→ q in F :
We apply induction on the structure of the proof of p �→ q in F . We have
already proved the result for p en q in F ; the remaining two cases are
treated below.

p �→ r in F and r �→ q in F :
p ∧ x = m �→ r ∨ x �= m in F [] G , induction hypothesis
p ∧ x = m �→ (r ∧ x = m) ∨ x �= m in F [] G

, rewrite rhs
r ∧ x = m �→ q ∨ x �= m in F [] G , induction hypothesis
p ∧ x = m �→ q ∨ x �= m in F [] G , cancellation on above two

〈∀i :: p.i �→ q〉 in F where p ≡ 〈∃i :: p.i〉:
p.i ∧ x = m �→ q ∨ x �= m in F [] G , induction hypothesis
〈∃i :: p.i ∧ x = m〉 �→ q ∨ x �= m in F [] G

, disjunction
p ∧ x = m �→ q ∨ x �= m in F [] G , rewrite lhs
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8.2.6 Union theorem for progress
The union theorem of section 8.2.3 permits us to deduce elementary progress
properties in a compositional manner: a predicate is transient in a system
if it is transient in some component. Our ultimate goal is to deduce the
leads-to properties in a similar fashion. Unfortunately, there is no simple
compositional rule for leads-to similar to that for transient. Plausible infer-
ence rules —if p �→ q holds in both F and G, then p �→ q in F [] G,
or if stable p in F and p �→ q in G, then p �→ q in F [] G— are all
invalid. The following example illustrates the difficulty.

Example Let F and G share a global integer variable x. Program F has
a single action that increments x; G has a single action that decrements x.
For any k, we can show

true �→ |x| > k in F
true �→ |x| > k in G

However, true �→ |x| > k in F [] G does not hold because alternate
steps by F and G starting in state x = 0 guarantees |x| ≤ 1 at all times. ✷

This example lends new meaning to the proverb “Too many cooks spoil
the broth”: even though either one of F or G could establish a property,
their interleaved execution may not; some of the proof steps of p �→ q in F
may be invalidated by G. For instance, p �→ q may have been established
in F by

p �→ r in F and r �→ q in F

Suppose that program G always falsifies r eventually. Then the following
segment of an execution of F [] G starting in a state that satisfies p,

{p} execution of F {r} execution of G {¬r}
establishes ¬r, and there is no guarantee that q will ever be established
later during this execution. Program G is said to have interfered with F ’s
execution.

Avoiding interference

We may so restrict the behavior of program G that it never interferes with
F ’s execution; in its extreme form, we may prohibit G from writing into a
variable that F reads. Then every progress proof in F is unaffected by the
steps of G. But this observation is not too useful because the result applies
only to programs with severely restricted forms of variable sharing. We
propose a less severe restriction on G that preserves the progress properties
of F .
Let x denote all the variables shared between F and G and < be a well-

founded ordering relation among the possible values of x. Let predicates p
and q name only the variables accessible from F (including variables in x).
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Union theorem for progress

p �→ q in F ,
p ∧ ¬q ∧ x = m co (p ∧ x ≤ m) ∨ q in F [] G

p �→ q in F [] G

The progress condition in the hypothesis requires p �→ q to be estab-
lished in one component (in this case, F ). The safety condition requires
that both F and G may only “decrease” x along the well-founded order (as
long as p ∧ ¬q holds). A consequence of the safety condition is that F and
G preserve p as long as q is not established; that is, p∧¬ q co p∨ q holds.
To see the validity of this theorem in operational terms, consider any

execution of F [] G starting in a state where p holds. If G changes the value
of x an infinite number of times in this execution, from

p ∧ ¬ q ∧ (x = m) co (p ∧ x ≤ m) ∨ q

eventually q will hold (because as long as p ∧ ¬ q holds, the value of x
decreases each time it is changed, from the safety hypothesis; from well-
foundedness, x cannot decrease forever, so q will be established). If G
changes x only a finite number of times and q has not been established
by the time G last changes x, then p holds at that point (again from
the given safety property); G no longer interferes by changing x; so, from
p �→ q in F , eventually q is established.

Proof of the Union Theorem for Progress

p �→ q in F , premise of the theorem
p ∧ x = m �→ q ∨ x �= m in F [] G

, above and lemma (page 243)
p ∧ ¬ q ∧ x = m co (p ∧ x ≤ m) ∨ q in F [] G

, premise of the theorem
p ∧ ¬ q ∧ x = m �→ (p ∧ x < m) ∨ q in F [] G

, PSP and simplify
p ∧ q ∧ x = m �→ q , implication rule for �→
p ∧ x = m �→ (p ∧ x < m) ∨ q in F [] G

, disjunction of above two
p �→ q in F [] G , induction on the above

8.3 Examples of Program Union

Program union is a central concept of our theory. So we consider a few
examples involving union in some depth. We show the component boxes
and derive some of their properties employing the union theorem and its
corollaries.
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8.3.1 Parallel search
The following program contains the essence of parallel state-space search.
In a parallel search, a given state space is partitioned and a process assigned
to search each part independently. The processes accumulate their results
in certain global variables.
We consider a very simple case: count the number of zeroes in an array,

A[0..N ], N ≥ 0. We partition the elements of A into those with even and
those with odd indices. Box Even counts the number of zeroes in the part
with even indices; box Odd works analogously. The total count is stored in
a global variable z.

————————————
box Even
global integer z = 0;
global array[0..N ](integer) A;
local integer i = 0;

A[i] = 0 ∧ i ≤ N → i, z := i+ 2, z + 1
[] A[i] �= 0 ∧ i ≤ N → i, z := i+ 2, z

end {Even}

box Odd
global integer z = 0;
global array[0..N ](integer) A;
local integer j = 1;

A[j] = 0 ∧ j ≤ N → j, z := j + 2, z + 1
[] A[j] �= 0 ∧ j ≤ N → j, z := j + 2, z

end {Odd}
————————————

It is straightforward that z is the number of zeroes in A when the state
satisfies the fixed point predicates of both boxes (further, both boxes will
eventually satisfy their FPs). Observe that each action in F or G is an
“atomic” action in F [] G. Thus, assignments to i and z in Even are carried
out together, without preemption by any action of Odd.

Note A better methodology for parallel search is for each box to store
the result of its search in a local variable. On completion of its search it
updates the global variable in which the result of the entire search is stored,
using the value of its local variable. Thus, Even and Odd may store their
zero-counts in local variables ez and oz, respectively, and on completion of
their searches, they may increase z by ez and oz. ✷
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Derivations of program properties

We prove the following properties of Even [] Odd. In the following, even.i
holds iff i is even; similarly, odd.j.

1. stable z ≥ m for any integer m

2. invariant even.i ∧ i ≤ N + 2
invariant odd.j ∧ j ≤ N + 2

3. stable i > N , stable j > N

4. invariant z =
〈+ k : 0 ≤ k < i ∧ even.k ∧ A[k] = 0 : 1〉 +
〈+ k : 0 ≤ k < j ∧ odd.k ∧ A[k] = 0 : 1〉

5. true �→ i > N , true �→ j > N

6. true �→ z = 〈+ k : 0 ≤ k ≤ N ∧ A[k] = 0 : 1〉

In the following proofs, we do not explicitly show the proofs of co- or
en-properties in the boxes Even and Odd. Such properties are deduced
from the program texts using the techniques of chapters 5 and 6.

• Proof of (1), stable z ≥ m in Even [] Odd:

stable z ≥ m in Even , from the text of Even
stable z ≥ m in Odd , from the text of Odd
stable z ≥ m in Even [] Odd , union theorem corollary ✷

• Proof of (2), invariant even.i ∧ i ≤ N + 2 in Even [] Odd:

constant i in Odd , locality axiom (section 8.2.5)
stable even.i ∧ i ≤ N + 2 in Odd , constant predicate is stable
invariant even.i ∧ i ≤ N + 2 in Even

, from the text of Even
invariant even.i ∧ i ≤ N + 2 in Even [] Odd

, union theorem corollary

Proof of invariant odd.j ∧ j ≤ N + 2 is similar. ✷

• Proof of (3): similar to proof of (2). ✷

• Proof of (4):
Let q be the predicate

z = 〈+ k : 0 ≤ k < i ∧ even.k ∧ A[k] = 0 : 1〉
+ 〈+ k : 0 ≤ k < j ∧ odd.k ∧ A[k] = 0 : 1〉
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We show invariant q in Even [] Odd. From the union theorem, initially,

i, j, z = 0, 1, 0 in Even [] Odd
⇒ {predicate calculus}

z = 〈+ k : 0 ≤ k < i ∧ even.k ∧ A[k] = 0 : 1〉
+ 〈+ k : 0 ≤ k < j ∧ odd.k ∧ A[k] = 0 : 1〉

It remains to show that stable q in Even [] Odd. From the union theo-
rem corollary, we have to show that this expression is stable in both Even
and Odd, which follow from the texts of Even and Odd. ✷

• Proof of (5), true �→ i > N in Even [] Odd:

i = k en i > k in Even , from the text of Even
stable i = k in Odd , locality axiom
i = k en i > k in Even [] Odd , union theorem corollary
i = k �→ i > k in Even [] Odd , definition of �→
true �→ i > N in Even [] Odd , induction on integers

Proof of true �→ j > N is similar. ✷

Note the structure of progress proof (5): an en property is first estab-
lished for the system using the union theorem; then the leads-to property
is established and induction applied. Conversely, if we had first established

true �→ i > N in Even

then union theorem could not have been used directly in proving the desired
result.

• Proof of (6),
true �→ z = 〈+ k : 0 ≤ k ≤ N ∧ A[k] = 0 : 1〉 in Even [] Odd:

The following proof is over Even [] Odd.

true
�→ {completion rule using (3) and (5)}

i > N ∧ j > N
⇒ {use (2) and the substitution axiom}

i > N ∧ j > N
∧ even.i ∧ i ≤ N + 2 ∧ odd.j ∧ j ≤ N + 2

⇒ {use (4)}
z = 〈+k : 0 ≤ k ≤ N ∧ A[k] = 0 : 1〉 ✷

The proof of this program is given in excruciating detail to highlight the
application of the union theorem. In each case, the proof is carried out
at two levels: (1) deducing properties directly from the text of a program
component, and (2) deducing properties by applying the union theorem
and other inference rules. We have shown the second kind of deduction in
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detail. This proof structure permits us to carry out deductions where the
components are specified by their properties and not by their codes. We
study another such proof in section 8.3.3.

8.3.2 Handshake protocol
Consider the program given as an example in section 8.2.1. Box send sends
a message and waits for acknowledgment before sending another message.
Box receive sends an acknowledgment after receiving a message. Therefore,
the two actions of box send [] receive are, in effect, executed alternately. The
shared boolean variable, b, determines which action is effectively executed
next: if b holds, then send can send a message, and if ¬b holds, receive can
receive a message (and transmit an acknowledgment). Each action inverts b
to allow the other action to be executed. We do not explicitly show message
send and receive; variables ns and nr are the number of messages sent and
received, by send and receive, respectively.
Here, we consider a variation of the protocol: boolean b is eliminated,

replaced by nr ≥ ns. We focus attention on one of the components, send ,
given below.

————————————
box send
global integer nr ,ns = 0, 0;

nr ≥ ns → ns := ns+ 1
end {send}
————————————

Program F with which send is to be composed should have the following
properties: (1) it should not modify ns (see F1 below), (2) it may only
increase nr and only up to ns (see F1 below), and (3) if nr < ns, it should
increase nr to establish nr = ns (see F2 below). We can directly establish
these properties for program receive of section 8.2.1 from its code (substi-
tuting ¬b by nr < ns). However, our interest is in establishing properties
of F [] send for any F that satisfies the specification, among them program
receive.
We postulate the following safety and progress properties of F . Hence-

forth, m and n are arbitrary natural numbers.

• (F1) nr, ns = m,n co ns = n ∧ (nr = m ∨ m ≤ nr ≤ n) in F .

• (F2) nr < ns �→ nr = ns in F .

From the properties (F1) and (F2) of F and the text of send we will
establish that (1) nr and ns differ by at most 1 (see FG1), so send and F ,
in effect, are executed alternately, and (2) ns increases without bound (see
FG2); therefore, so does nr.
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• (FG1) invariant nr ≤ ns ≤ nr + 1 in F [] send .

• (FG2) true �→ ns > n in F [] send .

Derivations of Program Properties
First, we prove a number of safety properties of F , from its specification
(F1), and send , from its code.

• (F3) constant ns in F : In this proof, all properties are in F .

nr, ns = m,n co ns = n , weaken rhs of F1
ns = n co ns = n , disjunction over all m
constant ns , definition of constant

• (F4) stable nr ≥ m in F : use elimination theorem on F1.

• (F5) stable nr ≤ ns in F : use elimination theorem on F1.

From its text, we can establish the following properties in send :

• (F6) stable ns ≥ n in send .

• (F7) stable nr ≥ m in send .

• (F8) stable nr ≤ ns in send .

We deduce

• (FG3) stable ns ≥ n in F [] send: union theorem on (F3, F6).

• (FG4) stable nr ≥ m in F [] send: union theorem on (F4, F7).

• (FG5) stable nr ≤ ns in F [] send: union theorem on (F5, F8).

We now establish the safety property (FG1) of the system.

• Proof of (FG1), invariant nr ≤ ns ≤ nr + 1 in F [] send:
Proof: All the properties below are in F [] send.

initially nr ≤ ns , initially nr, ns = 0, 0; from send ’s text
stable nr ≤ ns , from FG5
invariant nr ≤ ns , from above two

The proof of invariant ns ≤ nr + 1 in F [] send is similar. ✷

Next, we prove two progress properties in preparation for the proof of
(FG2).
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• Proof of (FG6), nr < ns �→ nr = ns in F [] send:
Proof: Given F2, this result follows from the union theorem for progress
(section 8.2.6), provided that the following is a property in F [] send:

nr < ns ∧ (nr, ns) = (m,n) co
〈nr < ns ∧ (nr, ns) $ (m,n)〉 ∨ 〈nr = ns〉

From the union theorem, this property (with a suitable partial order ≺)
has to be proved in both F and send . We use the following partial order ≺
over pairs of naturals:

(p, q) ≺ (r, s) ≡ |p− q| < |r − s|
In send the property can be shown from its text. The proof in F follows
by applying the elimination theorem on F1. ✷

• Proof of (FG7), nr = ns �→ nr < ns in F [] send:
Proof: similar to that of FG6. ✷

Now we establish the main progress property of the system, FG2.

• Proof of (FG2), true �→ ns > n in F [] send, for any natural n:
In the following proof all properties are in F [] send.

stable ns ≥ n ∧ nr ≥ n
, conjuction of (FG3, FG4), using n for m

nr = ns ∧ ns ≥ n ∧ nr ≥ n �→ nr < ns ∧ ns ≥ n ∧ nr ≥ n
, stable conjuction of FG7 and above

nr = ns ∧ ns ≥ n �→ ns > n
, rewrite lhs and weaken rhs of above

nr < ns ∧ ns ≥ n �→ nr = ns ∧ ns ≥ n
, stable conjuction of FG6 and FG3

nr ≤ ns ∧ ns ≥ n �→ ns > n
, transitivity, disjunction on above two

ns ≥ n �→ ns > n , substitution axiom: nr ≤ ns is true
true �→ ns > n , induction ✷

8.3.3 Semaphore
The purpose of the next example is to illustrate how specifications of some
components can be combined with the codes of other components to derive
properties of a system. We choose an example, semaphore, that is treated
in great detail in section 4.9. Our goal here is not to gain additional insight
into the semaphore problem but to illustrate the application of the union
theorem on a well-understood problem so that the specifics of the problem
do not obscure the treatment of program composition.
We show a program sem that implements a binary semaphore. Programs

F and G interact with sem by requesting a P - or a V -operation. Program
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F (or G) requests a P -operation by setting a global boolean variable pf (or
pg) to true. Program sem responds to a request for P -operation by granting
the semaphore to F or G (if the semaphore is available); the response is
indicated by changing the corresponding variable —pf or pg— from true
to false. (Thus, as long as pf is true F is “waiting” for the semaphore.)
Similarly, F and G request V -operations by setting global variables vf
and vg, respectively, to true and the sem program sets them to false after
completion of the respective V -operations.

Remark: The protocol for requesting an operation, P or V , and receiving
a response is cumbersome in the model of action systems. However, this is
the best we can do if components communicate through shared variables.
The model of Seuss, in which the procedure call is a primitive, was moti-
vated by the need to simplify interactions among the components. ✷

It is readily seen that program sem can be regarded as the union of
two programs semf and semg , which respond to requests from F and G,
respectively. The value of the semaphore has to be shared between semf
and semg ; boolean variable s stores this value. Fig. 8.2 shows the decom-
position of sem. Codes for semf and semg are as follows. Program sem is
semf [] semg .

————————————
box semf
global boolean pf , vf = false, false;
global boolean s = true;

pf ∧ s → pf , s := false, false
[] vf → vf , s := false, true

end {semf }
box semg
global boolean pg , vg = false, false;
global boolean s = true;

pg ∧ s → pg , s := false, false
[] vg → vg , s := false, true

end {semg}
————————————

Another version of semaphore
The protocol for changing pf , vf , pg, and vg is too liberal; it permits pro-
gram F to set pf and vf to true simultaneously, and this is illegal according
to our interpretation. We can restrict the behavior of F by imposing ex-
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Figure 8.2: Decomposition of program sem into semf and semg . The
semaphore value s is shared between semf and semg .

plicit constraints in its specification. A better strategy is to restrict the
interface syntactically in such a way that few illegal actions are permitted.
Introduce a global boolean variable rf that F sets to true to request a

P -operation or a V -operation. The ambiguity —whether the requested op-
eration is a P - or a V— can be resolved by the semaphore program because
it can retain information regarding which program holds the semaphore;
if program F holds the semaphore, rf being true signals a V -operation,
and if F does not hold the semaphore, rf being true signals a request for
a P -operation. The semaphore program sets rf to false to indicate com-
pletion of the requested operation. Similarly, program G communicates its
intention using a global boolean variable rg .
This proposal simplifies the interface considerably. The semaphore pro-

gram now has to retain information regarding who holds the semaphore.
Let sh be a variable that assumes the following values:

F: Program F holds the semaphore.

G: Program G holds the semaphore.

N: Neither program holds the semaphore.

Now we no longer need variable s (which stores the semaphore value) be-
cause

s ≡ (sh = N).

Introduction of sh prevents both programs from holding the semaphore
simultaneously; thus, the proof obligation for mutual exclusion has been
discharged by syntactic means.
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As before, we implement the semaphore program as the union of two
programs, semf1 and semg1 in this case.

————————————
box semf1
global boolean rf ;
global enum (F,G,N) sh = N;

P:: rf ∧ sh = N → rf , sh := false,F
[] V:: rf ∧ sh = F → rf , sh := false,N
end {semf1}
box semg1
global boolean rg ;
global enum (F,G,N) sh = N;

P:: rg ∧ sh = N → rg , sh := false,G
[] V:: rg ∧ sh = G → rg , sh := false,N
end {semg1}
————————————

Program semf1 [] semg1 implements a “weak” semaphore; F may request
the semaphore but it may never hold it because G is being granted the
semaphore arbitrarily many times (andG releases the semaphore arbitrarily
many times). This program has the following progress property:

rf ∨ rg �→ sh �= N in F [] G [] semf1 [] semg1

A program for strong semaphore
A “strong” semaphore is one in which every request for a P -operation is
eventually honored, provided that every program holding the semaphore
eventually releases it. That is, under the assumption of eventual release of
the semaphore,

rf �→ sh = F in F [] G [] semf2 [] semg2
rg �→ sh = G in F [] G [] semf2 [] semg2

To implement a strong semaphore, we introduce a boolean variable pr
that indicates which process has the priority in acquiring the semaphore:
variable pr is true iff F is to be given priority whenever there is contention
for the semaphore. The initial value of pr is immaterial. Whenever F is
granted the semaphore pr is set to false —thus giving priority to G in
future contentions— and similarly, pr is set to true whenever G is granted
the semaphore.
As before, we introduce two component programs, semf2 and semg2 .

Variables rf , rg, and pr are shared between these two programs.
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————————————
box semf2
global boolean rf , rg , pr ;
global enum (F,G,N) sh = N;

P:: rf ∧ sh = N ∧ (pr ∨ ¬rg) → rf , sh, pr := false,F, false
[] V:: rf ∧ sh = F → rf , sh := false,N
end {semf2}
box semg2
global boolean rf , rg , pr ;
global enum (F,G,N) sh = N;

P:: rg ∧ sh = N ∧ (¬pr ∨ ¬rf ) → rg , sh, pr := false,G, true
[] V:: rg ∧ sh = G → rg , sh := false,N
end {semg2}
————————————

We show below that

rf �→ sh = F in F [] G [] semf2 [] semg2
rg �→ sh = G in F [] G [] semf2 [] semg2

Derivations of program properties
We have four boxes under consideration: F , G, semf2 , and semg2 . This
is an example where codes of some of the components —F and G— are
unavailable. We prove properties of the program using the specifications of
F and G.
The composite program, F [] G [] semf2 [] semg2, is designated by sys. A

safety property of sys is that at most one program —F or G— holds the
semaphore at any time; this is vacuously established because sh identifies
the holder of the semaphore, if any. A progress property of sys is that any
program, F or G, which requests the semaphore is eventually granted the
semaphore, provided that every semaphore holder requests a V -operation
eventually. Specifically, our goal is to establish

rf �→ sh = F in sys and analogously, (PrF)
rg �→ sh = G in sys assuming (PrG)
sh = F �→ rf in sys and (s0)
sh = G �→ rg in sys (s1)

Assume that programs F and G obey the following protocol in modifying
the global variables:

stable rf in F (s2)
stable rg in G (s3)
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Also, the only global variable which is accessible in F is rf ; similarly, G
can access only rg . Therefore, from the locality axiom,

constant rg , pr, sh in F (s4)
constant rf , pr, sh in G (s5)

We can establish the following safety properties of sys:

invariant sh = F ⇒ ¬pr (s6)
invariant sh = G ⇒ pr (s7)
rf ∧ sh �= F co rf ∨ sh = F (s8)
¬rg ∧ sh = G co sh = G (s9)

Properties (s6–s9) are proved by applying the union theorem. We prove
(s9) for illustration.

• Proof of (s9), ¬rg ∧ sh = G co sh = G in sys:

stable sh = G in G , from s5
¬rg ∧ sh = G co sh = G in G , strengthen above lhs (1)
stable ¬rg ∧ sh = G in F , from s4 (2)
stable ¬rg ∧ sh = G in semf2 , text of semf2 (3)
stable ¬rg ∧ sh = G in semg2 , text of semg2 (4)
¬rg ∧ sh = G co sh = G in sys

, union theorem corollary on (1–4) ✷

The following progress properties capture the essence of the system op-
eration: (s10) says that a request for a V -operation is eventually honored,
and then the program other than the requester has priority in acquiring
the semaphore; (s11) says that if the program that requests the semaphore
has priority and the semaphore is available, then the program is eventually
granted the semaphore; (s12) says that a request for a P -operation when
the semaphore is available is granted unless the other program requests the
semaphore.

In sys:
rg ∧ sh = G �→ pr ∧ sh = N (s10)
rf ∧ pr ∧ sh = N �→ sh = F (s11)
rf ∧ sh = N �→ (sh = F) ∨ (rf ∧ rg ∧ sh = N) (s12)

Note Each of the properties (s6–s12) has a dual that is obtained by re-
placing one predicate in the following pairs by the other: (rf , rg), (pr,¬pr),
(sh = F, sh = G), (sh �= F, sh �= G), and (sh = N, sh = N). For example,
the dual of (s11) is rg ∧ ¬pr ∧ sh = N �→ sh = G. ✷

The proofs of the progress properties (s10–s12) are similar. We establish
these properties as ensures properties in sys by showing that an appro-
priate predicate is transient in semg2 for (s10), in semf2 for (s11), and



258 8. Program Composition

in semf2 for (s12). Next we prove corresponding safety properties for the
other components; they are derived from (s2–s5) and the texts of semf2
and semg2 . A typical proof is given below.

• Proof of (s12),
rf ∧ sh = N �→ (sh = F) ∨ (rf ∧ rg ∧ sh = N) in sys:

stable rf ∧ sh = N in G , from s5
rf ∧ ¬rg ∧ sh = N co (sh = F) ∨ (rf ∧ sh = N) in G (1)

, strengthen lhs, weaken rhs
stable rf ∧ ¬rg ∧ sh = N in F (2)

, from (s2, s4)
stable rf ∧ ¬rg ∧ sh = N in semg2 (3)

, text of semg2
rf ∧ ¬rg ∧ sh = N co (sh = F) ∨ (rf ∧ sh = N) in semf2 (4)

, text of semf2
rf ∧ ¬rg ∧ sh = N co (sh = F) ∨ (rf ∧ sh = N) in sys (5)

, union theorem on (1–4)
transient rf ∧ ¬rg ∧ sh = N in semf2 (6)

, text of semf2
rf ∧ sh = N en (sh = F) ∨ (rf ∧ rg ∧ sh = N) in sys

, union theorem on (5–6)
rf ∧ sh = N �→ (sh = F) ∨ (rf ∧ rg ∧ sh = N) in sys

, from above ✷

Properties (s2–s12) have the information we need to establish the desired
progress properties, (PrF) and (PrG). Thus, we establish certain elemen-
tary properties from the program text (or the specifications of the compo-
nents) and then apply the derived rules to establish additional properties.

• Proof of (PrF), rf �→ sh = F in sys:
In the following proof all properties are in sys. The result follows by taking
disjunction of the following three.

rf ∧ sh = G �→ sh = F , proved below (s13)
rf ∧ sh = N �→ sh = F , proved below (s14)
rf ∧ sh = F �→ sh = F , implication ✷

• Proof of (s13), rf ∧ sh = G �→ sh = F:

¬rg ∧ sh = G �→ rg ∧ sh = G , PSP on (s1, s9)
¬rg ∧ sh = G �→ pr ∧ sh = N , transitivity on above and s10
sh = G �→ pr ∧ sh = N , disjunction on above and s10
rf ∧ sh = G �→ (rf ∧ pr ∧ sh = N) ∨ (sh = F)

, PSP on (above, s8)
rf ∧ sh = G �→ sh = F , cancellation (above, s11) ✷
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• Proof of (s14), rf ∧ sh = N �→ sh = F:

rg ∧ ¬pr ∧ sh = N �→ sh = G , dual of (s11)
rf ∧ rg ∧ ¬pr ∧ sh = N �→ (rf ∧ sh = G) ∨ (sh = F)

, PSP on (above, s8)
rf ∧ rg ∧ ¬pr ∧ sh = N �→ sh = F, cancellation (above, s13)
rf ∧ rg ∧ pr ∧ sh = N �→ sh = F , strengthen lhs on s11
rf ∧ rg ∧ sh = N �→ sh = F , disjunction on above two
rf ∧ sh = N �→ sh = F , cancellation (above, s12) ✷

8.3.4 Vending machine
This example is inspired by Hoare [92]. A vending machine has a coin slot
that accepts either a small coin or a large coin from a user . The machine
has two buttons, one for requesting a small chocolate bar and the other for
a large chocolate bar. If a button is pressed after depositing an adequate
amount of money —a small coin for a small bar, a large coin for a large
bar— then the machine dispenses the appropriate bar. If a large coin has
been deposited and the button is pressed for a small bar, the machine
dispenses a small bar and returns the appropriate change.
The behavior of the machine can be described by the finite state diagram

of Fig. 8.3. Each node represents a state and each edge a transition; the
initial state is denoted by a circle. The label on an edge is the name of the
event that causes the transition. An event can be caused by the user —uds,
for instance, denotes the user depositing a small coin— or the event can be
generated by the vending machine —mdl denotes the machine dispensing
a large chocolate bar. The caption in Fig. 8.3 gives the meaning of each
event in the diagram.
Fig. 8.3 provides a succinct description of the allowable execution se-

quences. Thus, we can observe that 〈udl url mdl〉 is an allowable execution
sequence whereas 〈uds mdl〉 is not. The small size of the specification makes
it possible to trace all individual execution sequences and be assured of the
“correctness of the specification”.
Fig. 8.3 should be regarded as the specification of the entire system,

consisting of both the user and the vending machine. Whenever compo-
nents of a system are “tightly coupled” —an action in one component is
followed by an action in another component, for instance— their behaviors
are often best described by a single state diagram. In such cases, there is
little advantage in separating the specifications of the individual compo-
nents. However, for systems with even a few components the state space
can become extraordinarily large. It is generally preferable to specify each
component individually so that the state spaces remain manageable. For
this example, we specify the user and the vending machine individually.
The interface between the user and the vending machine (henceforth

called vm) consists of the following variables.
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url: user requests large chocolate
urs: user requests small chocolate
udl: user deposits large coin
uds: user deposits small coin

mdl: machine dispenses large chocolate
mds: machine dispenses small chocolate
mrc: machine returns change

Figure 8.3: The state transitions in the vending machine.

cin: (s, l, φ) The value of cin is the amount of the coin in the input box
of the machine. Here, s denotes a small coin, l a large coin, and φ the
absence of any coin. This variable can be increased (from φ to s or l)
by user alone; it may be decreased (to φ) by vm alone.

req : (s, l, φ) The value of req is the outstanding request for a chocolate
bar; s is for a small bar, l for a large one, and φ denotes that there is
no outstanding request for chocolate. Similar to cin, the value of req
can be increased only by user and decreased only by vm.

dis: (s, l, φ) The value of dis is the size of the chocolate in the dispenser-
tray: s for small, l for large, and φ for the absence of chocolate. This
variable is increased (from φ to s or l) by vm and decreased (to φ)
by user removing the dispensed chocolate.

cout : (boolean) The value of cout indicates if there is money in the coin
return box. It is set to true only by vm and to false only by user .

Note We have simplified the original description by replacing two choco-
late buttons by one. This abstraction prevents requesting a small and a
large chocolate bar simultaneously. ✷
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Define the following partial order over {φ, s, l}:

φ < s and φ < l

This partial order is often called a “flat order”; here, φ is the “bottom”
element and it is “smaller” than every other element; the remaining ele-
ments are unrelated by the partial order. The relations >, ≤, and ≥ have
the appropriate meaning.
In the following, variables m and n take arbitrary values from {φ, s, l}.

The specification of user merely states how each of the interface variables
—cin, req , dis, cout— can be changed by user . There is no progress re-
quirement for user .

In user ::
stable cin ≥ m
stable req ≥ m
stable dis ≤ m
stable ¬cout

The safety specification of vm is obtained similarly.

In vm ::
stable cin ≤ m
stable req ≤ m
stable dis ≥ m
stable cout

Additionally, we have the progress requirement for vm that it has to dis-
pense the appropriate chocolate and change. For all C and B from {φ, s, l}

cin, req, dis, cout = C,B, φ, false ∧ B �= φ ∧ C ≥ B �→
cin, req, dis, cout = φ, φ,B,C > B in vm

Note on the specification The proposed specification is quite crude.
The progress property of vm poses considerable technical difficulties; we
explain the difficulties and propose a different specification later in this
section. We modeled the chocolate dispenser tray by variable dis; this dis-
allows vm from dispensing another chocolate until the previous one has
been removed. A general dispenser tray can be modeled by a bag whose
elements are s or l; user removes an element from the bag and vm adds
to the bag. Similar remarks apply to cout . The given specification allows
user to set the interface variables in arbitrary order. In particular, user
may first request a chocolate and then deposit a coin. The specification in
Fig. 8.3 disallows this possibility. ✷
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Derivations of program properties
The main purpose of this subsection is to derive certain properties of the
vending machine system by applying the union theorem. A secondary pur-
pose is to show that certain intuitively plausible properties, justified by the
informal description, cannot be established from the given formal specifi-
cation.
First, observe that the progress property of vm —a leads-to property—

is in a form that is not amenable to manipulation by the union theorem.
Therefore, we postulate a stronger specification; we strengthen the property
to an ensures property: for all C and B from {φ, s, l}

cin, req, dis, cout = C,B, φ, false ∧ B �= φ ∧ C ≥ B en
cin, req, dis, cout = φ, φ,B,C > B in vm

We establish that a small chocolate bar will be dispensed provided that
a small coin is inserted, a small bar is requested, and both the chocolate
dispenser tray and the output coin box are empty.

• Proof of cin, req, dis, cout = s, s, φ, false �→ dis = s in vm [] user :

stable cin, req, dis, cout = s, s, φ, false in user
, each conjunct is stable in user

cin, req, dis, cout = s, s, φ, false en
cin, req, dis, cout = φ, φ, s, false in vm

, progress property of vm with C,B := s, s
cin, req, dis, cout = s, s, φ, false en

cin, req, dis, cout = φ, φ, s, false in vm [] user
, union theorem corollary on above two

cin, req, dis, cout = s, s, φ, false �→ dis = s in vm [] user
, definition of �→ and weaken rhs ✷

An intuitively plausible property of vm [] user is

cin, req = s, s �→ dis = s

That is, a small chocolate bar will be dispensed if a small coin is inserted
and a small bar is requested. However, this property does not hold in our
system. In particular, if the dispenser tray already contains a large bar,
i.e., dis = l, then vm is prevented from dispensing a small bar, i.e., setting
dis to s, because

stable dis ≥ m for all m in {φ, s, l}
Thus, user can break the system by not removing a single chocolate. We
have discussed how to model the dispenser tray by a bag (see Note on
the specification on page 261); the reader may wish to prove this progress
property in the revised model.
A more involved property is
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stable cin, req = s, l

That is, if user inserts a small coin and requests a large chocolate bar,
the system is deadlocked! This is plausible because (1) user cannot insert
additional coins nor can he cancel the request and (2) vm cannot honor
this request. However, this property is not provable. The specification of vm
does not prevent it from removing an inserted coin or canceling a button
push. If desired, vm’s specification may be modified to state that cin (or
req) is not modified until req (or cin) has the appropriate value.

8.3.5 Message communication
An asynchronous message-communicating system is a program where the
components are the individual processes and the global variables represent
the contents of the channels along which communications take place. For
instance, let process F send messages to process G along a fifo channel C;
the system is F [] G and the global variable (declared in both F and G)
is a sequence (of messages) C. Program F “sends” by appending messages
to the end of C and program G “receives” by removing the message at the
head of C, provided that C is non-null. Data pipelining can be regarded
as message communication over a network of processes. In particular, let
Fi send messages in fifo order to Fi+1, 0 ≤ i < N , and Ci be the channel
directed from Fi to Fi+1. Then Ci is a sequence of messages and Ci is
declared as a global variable in Fi and Fi+1. The system is 〈[] i :: Fi〉.
Channels between the processes need not be fifo. An unordered channel

—see section 4.1.3— may be implemented by a bag of messages. Also, a
bounded fifo channel C is implemented by a bounded sequence (see sec-
tion 4.1.2); the sender can append a message to C only if the length of
C is lower than the bound. Other forms of asynchronous communication
—for instance, where each transmission is acknowledged— can be similarly
modeled. Of particular interest is the transmission of a “signal”; a signal
has no associated data and a new signal can be sent only after the previous
one has been acknowledged. Signal transmission and acknowledgment can
be modeled using a global boolean variable that is set to true to indicate
signal transmission and false to indicate acknowledgment. We have used
this scheme in the semaphore program —section 8.3.3— where variable rf ,
for instance, was set to true by program F to request an operation and set
to false by program semf to indicate the completion of that operation.
Synchronous message communication, where the send and receive opera-

tions are executed simultaneously [92], cannot be easily modeled using the
union operator.
A more elaborate example of message communication is treated next.
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A client-server network
A set of client processes —CL0 , . . . ,CLj— request service from a set of
server processes —SR0 , . . . ,SRK— during a computation. Any server can
serve any client . A typical example is a set of user processes (clients) con-
nected to a set of printers (servers) where the print request of any user can
be satisfied by any printer.
We propose a communication network which connects clients and servers.

Each channel in the network carries requests; further, a channel contains
at most one request at any time. Therefore, a channel can be modeled by
a (global) variable whose value is either a request or φ; φ denotes that the
corresponding channel is empty.
The protocol for accessing such a variable is as follows: a “send” on the

channel is simulated by writing into the corresponding variable provided
that its current value is φ; a “receive” is simulated by reading the corre-
sponding variable value and then setting its value to φ. A similar model of
communication —called word— is proposed on page 60.
An interconnection network for the clients and the servers is shown in

Fig. 8.4. The components of the system are the following.

Clients, CLj , 0 ≤ j ≤ J : Client CLj sends its requests using global vari-
able rj . As described above, CLj may store a request in rj provided
that the value of rj is φ.

Client-Manager, CM : This process merges the requests of the individual
Clients and issues one request at a time to the Servers using variable
r. It reads rjs ( reading an rj is accompanied by setting it to φ) in
some order and writes into variable r.

Buffer , BUFF : This process implements a buffer of N requests, N ≥ 0,
in order to smooth out the speed variations between the clients and
the servers. The process reads from r and writes into w.

Server-Manager, SM : This process receives a stream of requests through
global variable w, and it distributes the requests among the wks. The
policy for distribution need not be fair; it may depend on the number
and types of the servers.

Servers, SRk, 0 ≤ k ≤ K: Server SRk receives requests from global vari-
able wk (as described above, SRk sets wk to φ after reading a request).

The entire system is

〈[] j : 0 ≤ j ≤ J : CLj〉 [] CM [] BUFF [] SM [] 〈[] k : 0 ≤ k ≤ K : SRk〉

and the variables —rj and wk, for all j and k, and r and w— may be
declared local to this system.



8.3 Examples of Program Union 265

Servers

Buffer

Clients

• • •CL0 CLJ

• • •r0 rj

BUFF

w

r

CM

SM

• • •w0 wk

• • •SR0 SRK

Figure 8.4: A Client-Server interconnection network: Process CM shown
is Client-Manager and SM is Server-Manager.
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8.4 Substitution Axiom under Union

Substitution axiom, described in section 5.4.3, allows us to replace an in-
variant by true and vice versa in any property of a program. This axiom has
proved to be extremely useful in practice. However, care must be exercised
when it is applied to unions of programs.
Any invariant of F [] G can still be replaced by true (and vice versa) in

any property of F , G, or F [] G. However, it is not permissible to use the
substitution axiom with an invariant of F on a property of F [] G. To see
this, consider programs F and G that share two global boolean variables,
p and q. Initially, p and q are true in F , and the only action in F is q := p.
Then, p ∧ q is invariant in F , and using the substitution axiom in F , q is
invariant in F .
Now suppose G does not modify q. Then q is stable in G. Therefore, q is

invariant in F [] G, according to the corollary of the union theorem. This
conclusion is invalid, as can be seen by considering program G that has the
action p := ¬p. Then, in a state where p is false, an execution of q := p
in F falsifies q.
The invalid step in this argument is to apply the substitution axiom to

a property of F [] G using invariant q in F . This invariant is established
using the substitution axiom with an invariant of F alone. Therefore, it
cannot be used to establish a property of a larger program of which F is a
component.

8.5 Theoretical Issues

We propose certain axioms that any asynchronous composition operator
like union should satisfy. Also, we study what it means for one program to
refine another. Two programs are taken to be equivalent if they refine each
other. Our approach is based on identifying a program with its properties; a
refined program has all the properties of the program it refines. We propose
two different definitions of refinement. We show that only one of the notions
of refinement (and equivalence) is preserved under union, i.e., if F and G
are equivalent, so are F [] H and G [] H for any H. This demonstration
shows why transient and en are important concepts, particularly in the
study of asynchronous composition.

8.5.1 Axioms of union
It is clear from the description that union is commutative and associative;
further, there is a program —which has no variable and whose only action
is skip— that serves as the “identity” element of union. Formally, we pos-
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tulate the following as axioms for the union operator. For programs F,G,
and H:

• (Commutativity) F [] G = G [] F , if either side is defined.

• (Associativity) (F [] G) [] H = F [] (G [] H), if either side is defined.

• (Existence of id) There is a program id such that F = F [] id .

We have not yet defined the meaning of equality of programs. We take
up this question next and study its relationship to union. Henceforth, we
write “<≡>” instead of “=” to denote equality of programs.

8.5.2 A definition of refinement
For a program F , let F.co be the set of pairs (p, q) such that

p co q in F

Let F.transient be the set of predicates p such that p is transient in F .
The following are restatements of the appropriate parts of the union

theorem. For programs F and G,

(F [] G).co = F.co ∩ G.co
(F [] G).transient = F.transient ∪ G.transient

Next we define the refinement relation among programs. Program F is
refined by G, written as F ≡> G, if all of the following hold.

G.IC ⇒ F.IC
F.co ⊆ G.co
F.transient ⊆ G.transient

That is, G’s initial condition is stronger than F ’s and G has all the co-
properties and the transient predicates of F . Define F <≡> G to mean that
F ≡> G and G ≡> F .
As a small exercise, given F ≡> G, we show that any invariant of F is

an invariant of G.

invariant p in F
≡ {definition of invariant}

(F.IC ⇒ p), stable p in F
⇒ {from F ≡> G, G.IC ⇒ F.IC and stable p in G}

(G.IC ⇒ p), stable p in G
≡ {definition of invariant}

invariant p in G

From its definition, ≡> is reflexive and transitive. Further, ≡> is pre-
served under union, as shown in the following theorem.



268 8. Program Composition

Theorem Given that (F ≡> G) and F [] H and G [] H are defined,
(F [] H ≡> G [] H).
Proof:

Proof of (G [] H).IC ⇒ (F [] H).IC:

(G [] H).IC
≡ {union theorem, condition (1)}

G.IC ∧ H.IC
⇒ {G.IC ⇒ F.IC, from F ≡> G}

F.IC ∧ H.IC
≡ {union theorem, condition (1)}

(F [] H).IC

Proof of (F [] H).co ⊆ (G [] H).co:

(F [] H).co
= {union theorem, condition (2)}

F.co ∩ H.co
⊆ {F.co ⊆ G.co, from F ≡> G}

G.co ∩ H.co
= {union theorem, condition (2)}

(G [] H).co

Proof of (F [] H).transient ⊆ (G [] H).transient:

(F [] H).transient
= {union theorem, condition (3)}

F.transient ∪ H.transient
⊆ {F.transient ⊆ G.transient , from F ≡> G}

G.transient ∪ H.transient
= {union theorem, condition (3)}

(G [] H).transient ✷

Corollary If F <≡> G then F [] H <≡> G [] H. ✷

Note The definition of refinement requires, implicitly, that a program
name the same variables as the program it refines. A more general approach
is to permit “data refinements” in which a group of variables is replaced by
another group; the relation between the two groups of variables can be given
by an invariant relation. See Knapp [108] for a discussion of refinement
along these lines. ✷
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x = 0 1 2
α.x = 2 1 2
β.x = 1 2 2

Table 8.1: Actions of Program F

x = 0 1 2
α′.x = 2 2 2
β′.x = 1 1 2

Table 8.2: Actions of Program G

8.5.3 Alternative definition of refinement
We propose an alternative definition of refinement that is weaker (more
general) than the previous one. For programs F and G, define F ≡> G by

G.IC ⇒ F.IC , F.co ⊆ G.co, and F.lt ⊆ G.lt

where F.lt is the set of pairs (p, q) where

p �→ q in F

As before, F <≡> G means that F ≡> G and G ≡> F . Clearly, ≡> is
reflexive and transitive and <≡> is an equivalence relation. However, it is
no longer true that for any H,

if (F ≡> G) then (F [] H ≡> G [] H)
or even

if (F <≡> G) then (F [] H <≡> G [] H)

We give a counterexample to the last proposition by showing three pro-
grams F,G, and H where F <≡> G but F [] H <≡> G [] H does not
hold. Let F,G, and H access a common integer variable x that takes on
three possible values: 0, 1, or 2. Initially, x = 0 in F , G, and H. Program
F has two actions α and β, where the values of x after executing α and
β are shown in Table 8.1. Similarly, program G has two actions —α′ and
β′— whose effects are given in Table 8.2.
Programs F and G have the same set of co-properties because for any

state (i.e., any particular value of x), the set of possible next states in F and
G are identical; this can be seen by comparing Tables 8.1 and 8.2 column
by column. Now, the fair executions of F and G yield identical sequences of
states; in both cases, the possible sequences of states are given by 0 1∗ 2∞;
that is, initially x = 0, x is 1 for a finite number of steps, x eventually
becomes 2, and it remains 2 forever. Since the sequence of states in fair
executions of F and G are identical, F.lt = G.lt. Therefore, F <≡> G,
according to the proposed definition.



270 8. Program Composition

x = 0 1 2
γ.x = 0 0 2

Table 8.3: Actions of Program H

Consider a program H that has one action γ, as defined in Table 8.3.
We show that (F [] H).lt �= (G [] H).lt. Therefore, (F [] H) <≡> (G [] H)
does not hold.

• Proof of x = 0 �→ x = 2 in G [] H:

transient x = 0 ∨ x = 1 in G , from Table 8.2
transient x = 0 ∨ x = 1 in G [] H , union theorem (part 3)
x = 0 ∨ x = 1 en x = 2 in G [] H , definition of en
x = 0 ∨ x = 1 �→ x = 2 in G [] H , basis rule of �→
x = 0 �→ x = 2 in G [] H , strengthen lhs ✷

• Proof that x = 0 �→ x = 2 in F [] H does not hold:
We display an execution of F [] H, starting in state x = 0, in which x �= 2

holds at all times. Consider the fair execution sequence (βαγ)∞ starting in
x = 0; the sequence of states is (0 1 1)∞.

Discussion

The notion of transient predicate encapsulates “atomic actions”. The def-
inition in section 8.5.2 suggests that any refinement of a component that
preserves atomicity also refines an asynchronous system. The weaker notion
of refinement, as given in section 8.5.3, is not required to preserve atom-
icity, and the counterexample shows that the refinement of a component
may not refine the system. Thus, the notion of atomicity —as embodied in
transient and en— seems crucial in refinements of asynchronous systems.
There are occasions where we prefer to use the weaker notion of refine-

ment (given in section 8.5.3); in such cases, we are careful to note that the
entire system should be refined as a whole, not component by component.

8.6 Concluding Remarks

The most common operator for asynchronous compositions of programs is
union. Many of the properties of F [] G can be derived from the components,
F and G, by applying the union theorem and its corollaries. The major
exception are the leads-to properties. We have given a theorem —union
theorem for progress, on page 246— for deductions of such properties, but
it requires us to specify how the global variables are modified by each
component.
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In chapter 9, we develop theories that simplify deductions of properties
from component specifications, especially for leads-to.

8.7 Bibliographic Notes

Program composition is a recurring theme in software engineering; Dahl,
Dijkstra and Hoare [51] is an early classic on this subject. Some of the
earliest formal treatment of structuring operators for concurrency appear
in Hoare [92] and Milner [132].
The union operator of this chapter is from Chandy and Misra [32]; sim-

ilar operators had been introduced earlier in CSP [92] and CCS [132]. The
union theorem for progress is based on Singh [164] and Misra [134, note 17].
The vending machine example is inspired by Hoare [92]. Some of the dif-
ficulties regarding application of the substitution axiom (section 8.4) are
noted in Sanders [158], Knapp [108] and Misra [134, note 14]. The example
in section 8.5.3 is based on Misra [134, note 11]. Paulson [149] has me-
chanically verified several nontrivial action systems, developed by Chandy
and Sanders [35] and Charpentier and Chandy [37], that are built through
composition.
The compositional issues that arise in large-scale systems are significantly

more complex than the ones discussed in this chapter; see Jackson and
Zave [96] for an example from telephony that addresses feature modularity,
structured feature composition, and analysis of feature interactions.

8.8 Exercises

1. A box F consists of the following actions.

————————————
b → x := 0

[] ¬b → x := 1
————————————

where x is local to F and b is global.

Prove or disprove the following properties. Here G is any program
other than F .

(a) (stable b in G) ⇒ (stable b ∧ x = 0 in F [] G)

(b) (stable b in G) ⇒ (stable x = 0 in F [] G)

(c) (stable b in G) ⇒ (b �→ x = 0 in F [] G)

(d) (true �→ b in G) ⇒ (true �→ x = 0 in F [] G)
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2. Consider box F given below.

————————————
box F
global integer y;
local integer x;

x := x− 1
[] x ≤ 0 ∧ y > 0 → y := −y

end {F}
————————————

Suppose stable y �= 0 in G. Prove that y �= 0 �→ y < 0 in F [] G.

3. (Modeling) The states of a client process C are either computing
(sometimes called thinking), waiting for a resource (called hungry),
or using the resource (called eating). The behavior of the client is
given by (1) a computing process may transit only to waiting, (2)
a waiting process remains waiting, (3) a process using the resource
eventually transits to computing in one atomic step. A server process
S can affect the states of a client as follows: it can only change a
waiting client to one using the resource; it can cause no other state
transition.

State the given properties formally. Show that in C [] S a process (1)
remains computing unless it starts waiting, (2) remains waiting unless
it starts using the resource, (3) continues using the resource unless it
starts computing. Also, (4) the last transition eventually happens in
one atomic step.

4. Let boxes F and G share only a single global variable x. Suppose
that G can only read the value of x, not write into it. Which of the
following holds? Here, p and q name only the variables of F (including
x) and r and s the variables of G (including x) .

p co q in F
p co q in F [] G

p en q in F
p en q in F [] G

p �→ q in F
p �→ q in F [] G

r co s in G
r co s in F [] G

r en s in G
r en s in F [] G

r �→ s in G
r �→ s in F [] G

Suppose further that F cannot modify x either. Which of the above
hold?

5. Show the following (where G .FP is the fixed point predicate of G).
Use stability at fixed point rule (see page 100).

(a) p co q in F
p ∧G .FP co q in F [] G
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(b) p en q in F
p en q ∨ ¬G .FP in F [] G

(c) p �→ q in F
p �→ q ∨ ¬G .FP in F [] G

(d) Using exercise (5c) show that

p �→ q in F
r ⇒ G .FP
stable r in F

p ∧ r �→ q ∧ r in F [] G

6. Give a counterexample to the following conjecture. Here the variables
and relations have the same meaning as in the union theorem for
progress on page 246.

p ∧ x = m �→ (p ∧ x < m) ∨ q in F
p ∧ x = m co (p ∧ x ≤ m) ∨ q in G

p �→ q in F [] G

7. Consider boxes semf1 and semg1 of section 8.3.3. Show that

rf ∨ rg �→ sh �= N in semf1 [] semg1

8. (Semaphore) It is required to implement a strong semaphore to be
shared among N processes. Sketch a generalized version of the pro-
gram given on page 255.

9. We elaborate on the interface of box BUFF described as a part of
the Client-Server network in section 8.3.5. The box in this exercise
implements a one-place buffer as follows. BUFF reads data from vari-
able r and writes the data into variable w, all in one step (it has no
additional internal storage). Variable r (and w) has value φ when it
holds no useful data. Box BUFF obeys the following protocol: when-
ever it reads any data from r it sets r to φ, and it writes into w only
if w = φ (i.e., when w holds no data). It is expected that box CM
(in the role of producer) writes into r only if r = φ and SM (in the
role of consumer) sets w to φ after reading data from it.

Propose a specification of BUFF . Using your specification and as-
suming that

stable r �= φ in CM [] SM
stable w = φ in CM [] SM

show that

w = φ �→ r = φ in BUFF [] CM [] SM
r �= φ �→ w �= φ in BUFF [] CM [] SM
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10. Given programs F,G,H, and J where F [] H, G [] J , and G [] H are
defined, show that

F ≡> G , H ≡> J
F [] H ≡> G [] J

Use the definition of ≡> given in section 8.5.2.

11. (Program refinement by strengthening a guard) This exercise gives a
condition under which the guard of an action may be strengthened
while preserving all the safety and leads-to properties. Let α be an
action with guard q and β be the same action with the guard replaced
by p. Let F be a program in which p tracks q (see exercise 18 of
chapter 6 for definition of tracks). Show that every co and leads-to
property of F [] α is also a property of F [] β. Note that en properties
are not necessarily preserved.

8.9 Solutions to Exercises

1. (a) The proof is as follows.

stable b in G , premise
stable x = 0 in G , locality axiom
stable b ∧ x = 0 in G , conjunction
stable b ∧ x = 0 in F , text of F
stable b ∧ x = 0 in F [] G , union theorem corollary

(b) This conjecture is false. In a state where ¬b ∧ x = 0 holds,
executing the second action of F sets x to 1.

(c) The proof is as follows.

b en x = 0 in F , text of F
stable b in G , premise
b en x = 0 in F [] G , union theorem corollary
b �→ x = 0 in F [] G , definition of �→

(d) This conjecture is false. Let there be two actions in G:

————————————
b := true

[] b := false
————————————

Clearly, true �→ b in G. The following execution sequence of
F [] G is a counterexample to true �→ x = 0 in F [] G.
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{x = 1}
loop
{x = 1}
b := true (in G) {x = 1};
b := false (in G) {¬b ∧ x = 1};
b → x := 0 (in F ) {¬b ∧ x = 1};
¬b → x := 1 (in F ) {¬b ∧ x = 1}

forever

2. Proof of y �= 0 �→ y < 0 in F [] G:
y �= 0 �→ x ≤ 0 ∧ y �= 0 in F [] G , proved below (1)
x ≤ 0 ∧ y �= 0 �→ y < 0 in F [] G , proved below (2)
y �= 0 �→ y < 0 in F [] G , transitivity on (1,2)

Proof of (1) y �= 0 �→ x ≤ 0 ∧ y �= 0 in F [] G:
stable y �= 0 in F , text of F
stable y �= 0 in G , given
stable y �= 0 in F [] G , union theorem
true �→ x ≤ 0 in F [] G , proved below (1.1)
y �= 0 �→ x ≤ 0 ∧ y �= 0 in F [] G , stable conjunction on

the above two

Proof of (2) x ≤ 0 ∧ y �= 0 �→ y < 0 in F [] G:
stable y �= 0 in G , given
stable x ≤ 0 in G , locality axiom
stable x ≤ 0 ∧ y �= 0 in G , stable conjunction
x ≤ 0 ∧ y �= 0 en y < 0 in F , text of F
x ≤ 0 ∧ y �= 0 en y < 0 in F [] G , union theorem corollary
x ≤ 0 ∧ y �= 0 �→ y < 0 in F [] G , definition of �→

Proof of (1.1) true �→ x ≤ 0 in F [] G:
For any integer k,
x = k en x < k in F , text of F
stable x = k in G , locality axiom
x = k en x < k in F [] G , union theorem corollary
x = k �→ x < k in F [] G , definition of �→
true �→ x ≤ 0 in F [] G , induction on integers

3. Let t, h, e denote that the client is computing, waiting or using. Clearly,

t ∨ h ∨ e ≡ true (ST1)
¬(t ∧ h) , ¬(h ∧ e) , ¬(t ∧ e) (ST2)

The specification of the client is
t co t ∨ h in C (C1)
stable h in C (C2)
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e co e ∨ t in C (C3)
transient e in C (C4)

The specification of the server is

constant t in S (S1)
stable e in S (S2)

Proof of t co t ∨ h in C [] S:
stable t in S , from S1
t co t ∨ h in C [] S , union theorem corollary on (C1, above)

Proof of h co h ∨ e in C [] S:
stable ¬t in S , from S1
stable h ∨ e in S , ¬t ≡ h ∨ e from (ST1, ST2)
h co h ∨ e in S , strengthen lhs
h co h ∨ e in C [] S , union theorem corollary on (C2, above)

Proof of e co e ∨ t in C [] S: union theorem corollary on (C3, S2).

Proof of transient e in C [] S: union theorem on (C4).

4. Since G can only read from x, predicate p is stable in G. Using the
union theorem corollary,

p co q in F
p co q in F [] G and p en q in F

p en q in F [] G

Also, applying induction on the structure of p �→ q in F , we can
show

p �→ q in F
p �→ q in F [] G

Thus, G interferes not at all with F ’s execution.

However, none of the properties of G are necessarily inherited by
F [] G. To see this, let x be a boolean variable and G have the action
y := x, where y is a local boolean variable. From the text of G,

stable x in G
x en y in G
x �→ y in G

However, none of the above is a property of F [] G if F has the action
x := ¬x.
If neither F nor G modifies x, applying the argument given above,
every property of a component is a property of the system.
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5. (a) p co q in F , premise
p ∧G .FP co q in F , strengthen lhs
stable p ∧G .FP in G , stability at fixed point in G
p ∧G .FP co q in F [] G , union theorem corollary

(b) p en q in F , premise
p en q ∨ ¬G .FP in F , exercise (4b) of chapter 6
p ∧G .FP en q ∨ ¬G .FP in F , exercise (4c) of chapter 6
stable p ∧G .FP in G , stability at fixed point
p ∧G .FP en q ∨ ¬G .FP in F [] G

, union theorem corollary
p en q ∨ ¬G .FP in F [] G , exercise (4c) of chapter 6

(c) Proof is by induction on the structure of p �→ q in F .

• p en q in F : see solution to exercise (5b)

• p �→ r in F , r �→ q in F :
p �→ r ∨ ¬G .FP in F [] G , induction hypothesis
r �→ q ∨ ¬G .FP in F [] G , induction hypothesis
p �→ q ∨ ¬G .FP in F [] G , cancellation on the

above two

• p = 〈∃ i :: pi〉 where 〈∀ i :: pi �→ q in F 〉:
〈∀ i :: pi �→ q ∨ ¬G .FP〉 in F [] G

, induction hypothesis
p �→ q ∨ ¬G .FP in F [] G , disjunction on above:

use p = 〈∃ i :: pi〉
(d) stable r ∧ G .FP in G , stability at fixed point

stable r in G , from above and r ⇒ G .FP
stable r in F [] G , from above and stable r in F
p �→ q ∨ ¬G .FP in F [] G , using (5c) on p �→ q in F
p ∧ r �→ q ∧ r in F [] G , PSP on above two:

use r ⇒ G .FP

6. Let F and G share a global variable x that assumes values from
{0,1,2}; let the well-founded order be defined by 0 < 1 < 2. Program
F consists of a single action, x := (x+ 1) mod 3, and G consists of
x := 1. Let p be x = 1 and q be x = 0. Then, for all m, m ∈ {0, 1, 2},

p ∧ x = m �→ (p ∧ x < m) ∨ q in F
(i.e., x = 1 �→ x = 0 in F ) and

p ∧ x = m co (p ∧ x ≤ m) ∨ q in G
(i.e., x = 1 co x = 1 ∨ x = 0 in G) .
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However, p �→ q in F [] G
(i.e., x = 1 �→ x = 0 in F [] G)

does not hold: consider alternate executions of the actions of F and
G starting in state x = 1.

7. Show that

rf en sh �= N in semf1 [] semg1

by applying the union theorem to

rf ∧ sh = N co rf ∨ sh �= N in semf1
rf ∧ sh = N co rf ∨ sh �= N in semf2
transient rf ∧ sh = N in semf1

Similarly,
rg en sh �= N in semf1 [] semg1

The desired result follows by converting the two ensures properties
to leads-tos and taking their disjunction.

8. Let the processes be numbered 1 through N . Variable sh assumes a
value between 0 and N ; sh = 0 denotes that the semaphore has not
been granted to any process; for i �= 0, sh = i denotes that process i
holds the semaphore.

Let pr.i, an integer, be the priority of process i. The strategy we
adopt is that a process that is granted the semaphore is assigned the
lowest priority. (The fair task scheduler in section 11.6 uses a similar
strategy.)

Let low be an integer smaller than any pr.i. Boolean variable r.i, for
process i, has the same role as rf or rg . The box that interacts with
process i, 1 ≤ i ≤ N , is shown below.

————————————
box sem.i
global boolean r.i;
global integer pr.i = i;
global integer low, sh = 0, 0;

P:: r.i ∧ sh = 0 ∧ 〈∀ j :: (pr.j ≤ pr.i) ∨ ¬r.j〉 →
pr.i, low, r.i, sh := low, low − 1, false, i

[] V:: r.i ∧ sh = i → r.i, sh := false, 0
end {sem.i}
————————————
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9. We abbreviate BUFF to B and CM [] SM toM . The safety property
of B is that the only allowable change in r and w is to transfer data
from r to w setting r to φ; this change is allowed provided that w = φ
prior to the change. If r = φ or w �= φ, both r and w retain their
values. Thus, for any X and Y ranging over data values and φ,

r, w = X,Y co r, w = X,Y ∨ r, w, Y = φ,X, φ in B (B1)

The progress property is that the state r �= φ ∧ w = φ does not
persist because the data will be moved from r to w.

transient r �= φ ∧ w = φ in B (B2)

Assuming

stable r �= φ in M (M1)
stable w = φ in M (M2)

we first prove that

r �= φ ∧ w = φ co r �= φ ≡ w = φ in B [] M (BM1)
transient r �= φ ∧ w = φ in B [] M (BM2)

• Proof of (BM1) r �= φ ∧ w = φ co r �= φ ≡ w = φ in B [] M :

In B

r �= φ ∧ w = φ
co {elimination theorem on B1}

〈∃ X,Y :: (X �= φ ∧ Y = φ ∧ r, w = X,Y )
∨ (X �= φ ∧ r, w, Y = φ,X, φ)〉

⇒ {predicate calculus}
(r �= φ ∧ w = φ) ∨ (r = φ ∧ w �= φ) in B

≡ {predicate calculus}
r �= φ ≡ w = φ

Thus,

r �= φ ∧ w = φ co r �= φ ≡ w = φ in B
, from above

stable r �= φ ∧ w = φ in M , conjunction of M1, M2
r �= φ ∧ w = φ co r �= φ ≡ w = φ in B [] M

, union theorem corollary ✷

• Proof of (BM2) transient r �= φ ∧ w = φ in B [] M :
Apply union theorem using (B2). ✷

Now we prove the desired progress properties using (BM1, BM2).
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• Proof of w = φ �→ r = φ in B [] M :
All properties in the following proof are in B [] M .
r �= φ ∧ w = φ co r = φ ∨ w = φ , weaken rhs of BM1
transient r �= φ ∧ w = φ , BM2
w = φ en r = φ , definition of en
w = φ �→ r = φ , definition of �→ ✷

• Proof of r �= φ �→ w �= φ in B [] M :
All properties in the following proof are in B [] M .
r �= φ ∧ w = φ co r �= φ ∨ w �= φ , weaken rhs of BM1
transient r �= φ ∧ w = φ , BM2
r �= φ en w �= φ , definition of en
r �= φ �→ w �= φ , definition of �→ ✷

10. F [] H
⇒ {F ≡> G. Apply the theorem in section 8.5.2}

G [] H
⇒ {H ≡> J . Apply the theorem in section 8.5.2}

G [] J

11. Preservation of co properties are easy to establish. For progress
properties show that if

r en s in F [] α, then
r �→ s in F [] β.

Then apply the result of exercise 11 of chapter 6 to conclude that all
leads-to properties are preserved. See Misra [134, note 19] for details.



9
Conditional and Closure Properties

9.1 Introduction

The union theorem, introduced in section 8.2.3, is the main tool for the
study of asynchronous compositions of programs. The major virtue of this
theorem is that it provides a simple rule for deducing the co-properties and
transient predicates of a system from those of its component boxes. The
major shortcoming is that it does not provide a simple rule for deducing the
leads-to properties of a system from those of its components. The only way
we can use a progress property of a component, p �→ q in F , to deduce a
similar property of the system is to either (1) apply the union theorem for
progress (see section 8.2.6), which requires introduction of a well-founded
order over the values of the shared variables, or (2) exhibit the proof of
p �→ q in F and show that the other components do not falsify the proof
steps. The first strategy is cumbersome, and the second defeats the whole
purpose of modular program construction.
The difficulty we have encountered is not merely due to the formalism

we have adopted. The problem of designing components of a system so
that only limited knowledge of the other components is required during
the design process is fundamental and fundamentally difficult. However, in
practice, application programs are routinely developed for execution under
operating systems given only the specification of the latter in the form:
“messages are eventually delivered”, or “each resource request is eventually
met”. We propose a theory in this chapter that may explain how modular
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design of software is possible in practice. The theory builds on the logical
operators introduced in the previous chapters.
Until now, we have specified a program F by a set of properties that hold

when F is executing alone; call such properties unconditional. The union
theorem (section 8.2.3) provides some help in combining the unconditional
properties of the components to deduce system properties. Limitations of
the union theorem illustrate that unconditional properties are too weak for
specifications when the goal is to construct a system from components.

Overview of the chapter

In the next section, we introduce conditional properties; conditional prop-
erty of a component F states what is assumed in F about its environment
G and what may then be guaranteed about the system, F [] G. If box
H meets the assumptions of F ’s environment, properties of F [] H can be
derived from the guarantee part of the conditional property. Progress prop-
erties of a system are derived quite easily in this fashion from component
properties. Several examples are given to illustrate the methodology.
In section 9.3, we introduce an even stronger class of properties, called

closure. We postulate that each component F is typically designed for com-
position with specific environments; therefore, we restrict F [] G to be de-
fined only when G satisfies the properties for F ’s environments, and F
for G’s. The properties of the environments are encoded into the text of
a component, and they can be checked by a linker during composition
with another component. The specification of F is given by its properties
not when it is executing alone, but when it is executing with its proposed
environment. Closure properties are generalizations of the usual co, en,
transient, �→ , etc. Several examples illustrate that use of such proper-
ties can reduce proof lengths significantly.

9.2 Conditional Properties

9.2.1 Specification using conditional properties
The kinds of properties used so far —co, en, transient, �→ , etc.— are
called unconditional. Given that Π and Π′ are unconditional properties,

〈∀ G : Π′ in G : Π in F [] G〉
is called a conditional property of program F . Property Π′ is what F as-
sumes about its environment G, and Π is what it guarantees about the
system, F [] G, provided that the assumption is met. Any program G that
satisfies Π′ is a possible environment of F . Such a conditional property
can be proved from the code/specification of F by assuming that Π′ in G
holds for an arbitrary G, and proving Π in F [] G. The main tool in such
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a proof is the union theorem. We have seen such proofs in section 8.3.2 for
the handshake protocol and in section 8.3.3 for a semaphore program.

Example (handshake protocol) Consider the handshake protocol of
section 8.3.2. The text of a program send was shown in that section, and
its environment F was postulated to have the following properties. For
arbitrary natural numbers m and n,

• (F1) nr, ns = m,n co ns = n ∧ (nr = m ∨ m ≤ nr ≤ n) in F

• (F2) nr < ns �→ nr = ns in F

Then the following properties of F [] send were deduced.

• (FG1) invariant nr ≤ ns ≤ nr + 1 in F [] send

• (FG2) true �→ ns > n in F [] send

Therefore, a conditional property of send is

〈∀F :
nr, ns = m,n co ns = n ∧ (nr = m ∨ m ≤ nr ≤ n) in F
nr < ns �→ nr = ns in F

:
invariant nr ≤ ns ≤ nr + 1 in F [] send,
true �→ ns > n in F [] send

〉 ✷

Conditional properties of multiple components can be combined to de-
duce a system property as follows. Let f , g, and h be programs. Suppose

〈∀ G : Π′ in G : Π in f [] G〉 (1)
〈∀ H : Π′′ in H : Π′ in g [] H〉 (2)
Π′′ in h (3)

Then

Π′ in g [] h , combining the properties (2,3) using h for H
Π in f [] g [] h , combining above and (1) using g [] h for G

We propose a general rule in the next section to simplify such deductions.

9.2.2 Linear network
Properties of a regular network —a systolic array [31, 110], for instance—
can often be established easily if each component of the network is specified
by a suitable conditional property. The following rule applies to a network
consisting of programs fi, 0 ≤ i ≤ N . Program fi+1 expects the property
Πi of its environment and it guarantees Πi+1 when composed with such an
environment.
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Linear network rule

Π0 in f0 and
〈∀ i : 0 ≤ i < N :

〈∀ g : Πi in g : Πi+1 in fi+1 [] g〉
〉

ΠN in 〈[] i : 0 ≤ i ≤ N : fi〉

Proof is by induction on N . For 〈[] i : 0 ≤ i ≤ j : fi〉 use the abbreviation
Fj . The conclusion is, then, ΠN in FN .

Case N = 0: Π0 in F0 , premise, F0 = f0

Case N + 1, N ≥ 0:
〈∀ g : ΠN in g : ΠN+1 in fN+1 [] g〉 , premise with i set to N
ΠN in FN , induction hypothesis
ΠN+1 in fN+1 [] FN , above two: use FN for g
ΠN+1 in FN+1 , FN+1 = fN+1 [] FN

The rule given here applies to any network configuration. There is no
constraint on the direction of “data flow”; any program fi may read/write
variables changed by any other program. We call the network “linear” be-
cause it is possible to order the components based on an ordering of the
properties to be established. We consider an example in section 9.2.4 where
program fi communicates with both fi−1 and fi+1, 0 < i < N , yet the ap-
parent circularity is resolved by judicious use of conditional properties.

9.2.3 Example: producer, consumer
We treat a producer–consumer problem in this section, deriving a progress
property of the system solely from the specifications of its components. A
producer writes successive values from a sequence in into a shared variable
x; the consumer removes the value from x and appends it to a sequence out.
A protocol for accessing x is imposed on both components so that no data is
overwritten before it is read, nor is any data read twice. Specification of each
component includes conditional properties: assuming that its environment
obeys the protocol for accessing x, it guarantees certain properties of the
system. We show how the conditional properties facilitate derivation of the
following progress property of the system: out eventually equals any finite
prefix of in.
Box con (consumer) has two variables: global x and local out . The job of

con is to take the value of x and append it to sequence out ; variable x has
a special value φ to denote that x holds no useful value; i.e., its most recent
value has been appended to out . It is expected that some other program
writes into x. However, it is crucial that the other program not change x
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as long as x �= φ; otherwise, a value in x will be overwritten without being
copied into out .
In the following, m and n are of the same type as values written into x

(including φ); B is a free variable of type sequence. Let B ++ m denote the
sequence obtained by appending m to B; note that B ++ φ = B. Property
(c1) specifies how x and out are modified. Property (c2) assures us that
every item from x is appended to out provided that the environment of con
obeys the desired protocol for writing into x.

Specification of con

x, out = m,B co x, out = m,B ∨ x, out = φ,B ++ m in con (c1)

〈∀ G : 〈∀ n : n �= φ : stable x = n in G〉 :
x, out = m,B �→ x, out = φ, B ++ m in con [] G

〉 (c2)

Next, consider program prd (for producer) that writes successive values
of its local sequence in into x. This program obeys the expected protocol
of writing into x: it stores the next item into x only if x = φ (see property
p1). The program has a local variable p that is the number of items from
in that have been written into x. The conditional property (p2) assumes
that the environment of prd does not write any non-φ value into x, i.e.,
prd is the only producer for x. In the following, in[i] is item i of in, i ≥ 0.
Initially, p = 0 and x = φ.

Specification of prd

p, x = i,m co p, x = i,m ∨ (m = φ ∧ p, x = i+ 1, in[i]) in prd (p1)

〈∀ F : stable x = φ in F : p, x = i, φ �→ p, x = i+ 1, in[i]
in prd [] F

〉 (p2)

Specification of con [] prd

We show that eventually out equals any finite prefix of in. That is, for any
natural number j,

p, x, out = 0, φ, 〈 〉 �→ out = inj in con [] prd (cp1)

where 〈 〉 denotes the empty sequence and inj is the sequence of items
in[i], 0 ≤ i < j, in increasing order of i.
As would be expected, the proof of (cp1) has to establish that (1) the

next item from in is stored in x if x = φ, from the specification of prd, and
(2) the value in x is appended to out and x set to φ, from the specification
of con. Below we deduce several properties (c3, p3, cp2, cp3) merely as
exercises in derivation; they are not required for the proof of (cp1). The
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progress properties of con [] prd are established by instantiating F by con
in (p2) (see cp2, below) and G by prd (see cp3).

• Proof of (c3), stable x = φ in con:

stable x, out = φ,B in con , let m = φ in (c1)
stable x = φ in con , disjunction over all B ✷

• Proof of (cp2), p, x = i, φ �→ p, x = i+ 1, in[i] in con [] prd:
From (p2 and c3) using con for F . ✷

• Proof of (p3), 〈∀ n : n �= φ : stable x = n in prd〉 :
〈∀ i, n : n �= φ : stable p, x = i, n in prd〉

, setting m to n and n �= φ in (p1)
〈∀ n : n �= φ : stable x = n in prd〉

, disjunction over i ✷

• Proof of (cp3), x, out = m,B �→ x, out = φ,B ++ m in con [] prd :
From (c2 and p3) using prd for G. ✷

• Proof of (cp4), p, x, out = i,m,B co
p, x, out = i,m,B ∨ (m = φ ∧ p, x, out = i+ 1, in[i], B) ∨
p, x, out = i, φ,B ++ m in con [] prd :

From the union theorem, the above co-property has to be proved in each
component, con and prd. We leave the proof as an exercise; note that p is
constant in con and out in prd. ✷

• Proof of (cp5),
p, x, out = i, φ,B �→ p, x, out = i+ 1, in[i], B in con [] prd :

In con [] prd ::
p, x, out = i, φ,B co p, x, out = i, φ,B ∨ p, x, out = i+ 1, in[i], B

, set m to φ in (cp4)

The result follows by applying PSP to above and (cp2). ✷

• Proof of (cp6), For m �= φ,
p, x, out = i,m,B �→ p, x, out = i, φ,B ++ m in con [] prd :

p, x, out = i,m,B co p, x, out = i,m,B ∨ p, x, out = i, φ,B ++ m
, from (cp4) using m �= φ

The result follows by applying PSP to above and (cp3). ✷

We are now ready to prove (cp1). We show that out will eventually equal
the prefix of in up to position j, for any natural number j,
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• • •• • •
xixi+1xN−1xN

yiyi+1yN−1yN

fN fifi+1
x0

y0
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Figure 9.1: The structure of a network to compute factorials

• Proof of (cp1), p, x, out = 0, φ, 〈 〉 �→ out = inj in con [] prd :
The following proof is over con [] prd; i is any natural number:

p, x, out = i, φ, ini �→ p, x, out = i+ 1, in[i], ini

, set B to ini in (cp5)
p, x, out = i+ 1, in[i], ini �→ p, x, out = i+ 1, φ, ini+1

, set i,m,B to i+ 1, in[i], ini in (cp6)
p, x, out = i, φ, ini �→ p, x, out = i+ 1, φ, ini+1

, transitivity on above two
p, x, out = 0, φ, 〈 〉 �→ p, x, out = j, φ, inj

, induction over i ✷

9.2.4 Example: factorial network
This example, from Misra and Chandy [142], illustrates the application of
the linear network rule of section 9.2.2. The proof given here is significantly
shorter than the original.
A network to compute factorials of a sequence of natural numbers is

shown in Fig. 9.1. Here, each program fi receives a sequence of natural
numbers in global variable xi. The program produces the sequence of their
factorials (maintaining the proper order) in yi. The computation strategy
is as follows. If fi+1, 0 ≤ i < N , receives a positive number n, it sends n−1
to fi, by appending it to xi. Assuming that fi delivers (n− 1)! eventually
in yi, fi+1 then computes n! = n × (n − 1)! and appends n! to yi+1. To
maintain the proper order of outputs, fi+1 uses the following strategy: it
stores the sequence of all received numbers whose factorials are yet to be
computed; if the head of the sequence is 0, a 1 is appended to yi+1 (and the
0 discarded); if the head of the sequence is nonzero, it is multiplied with
the next received number from yi and the result is appended to yi+1 (and
the head item of the stored sequence is discarded). The last program, f0,
computes the factorial of each received number and appends it to y0. If the
numbers sent to fN are at most N , the numbers sent to f0 are zeroes, so
their factorials are easily computed.
Data flow in the network is in both directions, from fi+1 to fi and back.

Yet the network can be regarded as linear because the correctness of fi

depends only on the correctness of fj , j < i, as shown below.

Notation For a sequence of natural numbers u, let u! be the sequence of
their factorials. Let u � v denote that u is a prefix of v. ✷
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Consider the following specification in which each predicate is an invari-
ant of the appropriate program. Variable xi is the sequence of all numbers
sent along the corresponding channel; similarly yi. The conditional prop-
erty, below, states that fi+1 works appropriately: if it receives a prefix of
xi! in yi, it produces a prefix of xi+1! in yi+1.

y0 � x0! in f0
〈∀ i : 0 ≤ i < N :
〈∀ G : yi � xi! in G : yi+1 � xi+1! in fi+1 [] G〉

〉
Then applying the linear network rule we get

yN � xN ! in 〈[] i : 0 ≤ i ≤ N : fi〉
Next, assume the following progress properties: (1) f0 responds to each

input along x0 by sending an output along y0 and (2) if eventually there
is an output in yi for each input in xi, 0 ≤ i < N , eventually there is an
output in yi+1 for each input in xi+1. Here, m and n are arbitrary natural
numbers, and |xi| is the length of sequence xi.

|x0| = m �→ |y0| = m in f0
〈∀ i : 0 ≤ i < N :
〈∀ G : |xi| = m �→ |yi| = m in G :

|xi+1| = n �→ |yi+1| = n in fi+1 [] G〉
〉

By applying the linear network rule, we derive for any m, m ≥ 0,
|xN | = m �→ |yN | = m in 〈[] i : 0 ≤ i ≤ N : fi〉

9.2.5 Example: concurrent bag
An object, as in object-oriented programming or Seuss, may be regarded
as a global variable that is shared among a number of programs. A queue,
for instance, is shared among producers and consumers; a producer adds
to the queue and a consumer removes from it. The accesses to the object
are sequential if each operation on the object terminates before the next
one can begin. For the queue problem, a consumer, for instance, has to
receive a response to each of its requests: either an item from the queue or
an indication that the queue is empty. It is not possible to defer the request
until the queue becomes nonempty.
A major advantage of sequential access is that a data object can be

specified succinctly by writing a set of equations that relate the effects of
the various operations on this object, see Guttag [81]. For instance, let 〈〉
denote an empty queue, add(q, x) is the queue obtained by appending item
x to q and remove(q) is the queue obtained by removing the first item of q
if q is nonempty. Then we have
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remove(add(〈〉, x)) = 〈〉 and,
remove(add(q, x)) = add(remove(q), x), for q �= 〈〉

The implicit assumption in such a specification is that each operation
represents a total function. Therefore, the operations have to be deter-
ministic; the unordered channel (section 4.1.3) where the message delivery
order is arbitrary cannot be expressed in this formalism. Further, each op-
eration has to terminate; the fact that a producer has to wait for the queue
to become nonfull (so it may wait forever) is difficult to state. Finally, this
formalism assumes that the operations are performed in a strict order, i.e.,
the durations of the two operations, add and remove, may not overlap.
This eliminates the possibility of the operations being concurrent.
Now consider the shared variable x in the producer-consumer example of

section 9.2.3. This is a one-place queue (also called a word in section 4.1.2).
A producer can add only if x = φ and consumer can remove only if x �= φ.
Therefore, it is possible for either program to wait forever. Additionally,
for a queue that can hold more than one item, it is possible for add and
remove to be executed concurrently (i.e., an operation may start while the
other one is deferred).
The purpose of this section is to specify a bounded bag on which the

operations are nondeterministic, possibly concurrent, and potentially non-
terminating. We view this object as a program. Its specification includes
conditional properties that specify the protocol for access and also its guar-
antees about the system. The major portion of this example is devoted to
proving that finite concatenations of bags is a bag.

Specification of concurrent bag
A concurrent bag is shared among a group of producers and consumers.
The schematic of the interaction between the programs is given in Fig. 9.2.
Program B represents the bag. The producers and consumers, collectively,
constitute program F , which is the environment of B. Producers add items
to the bag by successively storing them in r; consumers remove successive
items from w. There may be several producers and consumers, or even
a single program that is both the producer and the consumer; the exact
number is irrelevant for the specification. We have seen such an interac-
tion topology for client servers in section 8.3.5; here B is analogous to the
program BUFF .
We postulate a special value φ for a variable to denote that it contains

no useful data. The protocol for reading and writing is as follows. Program
F writes into r only if r = φ; program B reads from r only if r �= φ and
sets r to φ after reading the value. Program B stores a value in w only if
w = φ; program F reads from w and then sets w to φ, signaling that it is
ready to consume the next data item. Thus, the accesses of F and B are
symmetric with respect to r and w.
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B

F

r w

Figure 9.2: B is a concurrent bag that reads from r and writes into w. The
environment F of B writes into r and reads from w.

Convention All bags are finite. We treat r and w also as bags that con-
tain at most one item; φ is an empty bag. Let u + v denote the union u
and v. Write |u| for the size of u. Note that |u+ v| = |u|+ |v|. ✷

Introduce an order relation ≺ over all data values and φ, as follows:

x ≺ y ≡ x = φ ∧ y �= φ

The following specification is of a bag B that can internally hold at most
N items, N ≥ 0. (A bag of size 0 merely moves data from r to w.) Let  
denote the types of the elements of bag; free variables R and W are of type
 .
————————————
Specification B

local bag( ) b;
global ( ∪ {φ}) r, w;
initially b+ w = φ in B (B0)
stable r $ R in B (B1)
stable W $ w in B (B2)
invariant |b| ≤ N in B (B3)
constant r + b+ w in B (B4)
〈∀ F : stable R $ r in F , stable w $W in F :

|b+ w| ≤ N �→ r = φ in B [] F , (B5)
|b+ r| > 0 �→ w �= φ in B [] F (B6)

〉
end {B}
————————————

Variable b is the bag of data items internally stored by B. Property (B0)
says that both b and w are initially empty. Property (B1) states that B can
set r only to φ; similarly, (B2) says that B can write only non-φ values into
w provided that w = φ. Observe that (B2) prevents B from overwriting
a non-φ value in w by either φ or another non-φ value. Property (B3)
specifies the size constraint on b. (B4) is a conservation law: program B
can neither create nor destroy any data in r+b+w. This allows B to freely
move data between r, b, and w; in particular, the order in which items are
received in r may be different from the order in which they are sent via w.
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F
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size Nsize M

BNBMr w

Figure 9.3: Concatenation of bags BM,BN of sizes M,N

Note that (B4) is symmetric in r, b, and w, allowing data movement from
w to b or r, for instance. However, (B1, B2) constrain the directions of data
movement. The conditional progress properties (B5, B6) assume that the
environment obeys the access protocols for r and w; property (B5) states
that if there is room in b or if w is empty, the data in r, if any, will be
eventually removed; property (B6) is the counterpart (B5) for writing into
w.
From the locality of b, environment F has the property

stable |b| ≤ N in F

so using (B3) and the union theorem

〈∀ F :: invariant |b| ≤ N in B [] F 〉 (B7)

Bag concatenation
We show that concatenation of two bags of sizes M and N and variable v,
as shown in Fig. 9.3, implements a bag of size M +N + 1. This result can
be used to implement a bag of any size k, k > 0, by concatenating (k + 1)
bags of size 0.
Let BM and BN be programs that implement bags of size M and N ,

respectively. These two programs can be “concatenated” provided that the
output global variable of one is the input of the other. Fig. 9.3 shows the
concatenation where r and v are the input/output variables of BM and
v and w are the corresponding variables of BN . Therefore, variable v is
local to BM [] BN . Henceforth, we write BMN as an abbreviation for
BM [] BN . Our proof obligation is that BMN satisfies the specification B,
with N replaced by M +N + 1.
The proof strategy is as follows. First, construct the specifications of

BM and BN . These are obtained from specification B by substituting
the appropriate input, output variables and size constraints: for BM we
substitute bm,BM, v, V , and M for b,B,w,W , and N , respectively. For
BN we substitute bn,BN, v, and V for b,B, r, and R, respectively. Next,
we combine these properties, using the union theorem, to establish the
properties of BMN .
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————————————
Specification BM

local bag( ) bm;
global ( ∪ {φ}) r, v;
initially bm+ v = φ in BM (BM0)
stable r $ R in BM (BM1)
stable V $ v in BM (BM2)
invariant |bm| ≤M in BM (BM3)
constant r + bm+ v in BM (BM4)
〈∀ G : stable R $ r in G, stable v $ V in G:

|bm+ v| ≤M �→ r = φ in BM [] G (BM5)
|bm+ r| > 0 �→ v �= φ in BM [] G (BM6)

〉
end {BM}
Specification BN

local bag( ) bn;
global ( ∪ {φ}) v, w;
initially bn+ w = φ in BN (BN0)
stable v $ V in BN (BN1)
stable W $ w in BN (BN2)
invariant |bn| ≤ N in BN (BN3)
constant v + bn+ w in BN (BN4)
〈∀ H : stable V $ v in H, stable w $W in H:

|bn+ w| ≤ N �→ v = φ in BN [] H (BN5)
|bn+ v| > 0 �→ w �= φ in BN [] H (BN6)

〉
end {BN}
————————————

Similar to (B7), we have the following invariants.

〈∀ G :: invariant |bm| ≤M in BM [] G〉 (BM7)
〈∀ H :: invariant |bn| ≤ N in BN [] H〉 (BN7)

We have to show that BMN satisfies specification B, with N replaced by
M +N + 1 (in B3 and B6). The local variable b of BMN is defined by

b = bm+ v + bn (D)

• Proof of (B0) initially b+ w = φ in BMN :
initially bm+ v = φ in BM , from BM0
initially bn+ w = φ in BN , from BN0
initially bm+ v + bn+ w = φ in BMN

, union theorem on above two
initially b+ w = φ in BMN , definition of b from (D) ✷
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• Proof of (B1) stable r $ R in BMN :
constant r in BN , locality
stable r $ R in BN , from above
stable r $ R in BM , BM1
stable r $ R in BMN , union theorem (above two) ✷

• Proof of (B2) stable W $ w in BMN : similar to the proof of B1. ✷

• Proof of (B3) invariant |b| ≤M +N + 1 in BMN :
invariant |bm| ≤M in BM [] BN, from BM7 with BN for G
invariant |bn| ≤ N in BM [] BN , from BN7 with BM for H
invariant |b| ≤M +N + 1 in B , using (D) ✷

• Proof of (B4) constant r + b+ w in BMN :
constant r + bm+ v in BM , BM4
constant bn+ w in BM , locality
constant r + b+ w in BM , from above two using (D)
constant r + b+ w in BN , similarly
constant r + b+ w in BMN , union theorem on above two ✷

• Proof of (B5) 〈∀ F : stable R $ r in F , stable w $W in F :
|b+ w| ≤M +N + 1 �→ r = φ in BMN [] F 〉:

Consider any F that satisfies the assumptions of (B5).

stable R $ r in F , assumption
stable R $ r in BN , locality
stable R $ r in BN [] F , union theorem
stable v $ V in BN [] F , (BN1) and the locality of v
stable V $ v in BM [] F , similarly
stable w $W in BM [] F , similarly

Thus,

BN [] F meets the assumptions for G in (BM5, BM6)
BM [] F meets the assumptions for H in (BN5, BN6)

In the following proof all properties are in BM [] BN [] F .

|b+ w| ≤M +N + 1
⇒ {from (D), b = bm+ v + bn}
|bm+ v + bn+ w| ≤M +N + 1

⇒ {arithmetic}
|bm+ v| ≤M ∨ |bn+ w| ≤ N

�→ {from BN5, using BM [] F for H, |bn+ w| ≤ N �→ v = φ}
|bm+ v| ≤M ∨ v = φ

⇒ {v = φ ⇒ {from BM7} (|bm+ v| = |bM | ≤M)}
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|bm+ v| ≤M
�→ {from BM5, using BN [] F for G}
r = φ ✷

• Proof of (B6) : similar to that of (B5). ✷

Data refinement
Here, we propose a refinement of Specification B. We prove the correctness
of the refinement by showing that the original specification can be derived
from the refined specification. We restrict attention to the case where the
bag size N is zero. (As we have noted, any finite bag can be implemented
by concatenating several zero-size bags.) The refined specification, given
below, permits movement of data from r to w provided that w = φ; further,
r �= φ ∧ w = φ cannot persist forever. (Such a specification for a buffer
is given in the solution to exercise 9 of chapter 8.) In this specification, X
and Y are free variables of the same type as r and w.

————————————
Specification Ref

global ( ∪ {φ}) r, w;
initially w = φ in B (R0)
r, w = X,Y co r, w = X,Y ∨ (Y = φ ∧ r, w = φ,X) in B (R1)
transient r �= φ ∧ w = φ in B (R2)

end {Ref}
————————————

We have to prove (B0–B6) given N = 0 (i.e., b = φ) and (R0–R2). Proof
of (B0) from (R0) and b = φ is trivial. Proofs of (B1, B2, B4) follow from
(R1) by employing the elimination theorem. We show one proof.

• Proof of (B4) constant r + w: {note: b = φ}
For any z, a bag of type  ,

r + w = z
co {elimination theorem on R1}
〈∃ X,Y : X + Y = z : r, w = X,Y ∨ (Y = φ ∧ r, w = φ,X)〉

⇒ {predicate calculus}
〈∃ X,Y :: X + Y = z ∧ r, w = X,Y 〉

∨ 〈∃ X,Y :: X + Y = z ∧ Y = φ ∧ r, w = φ,X〉
⇒ {predicate calculus}

r + w = z
Therefore, constant r + w. ✷

Proofs of (B5, B6) appear as solutions to exercise 9 of chapter 8.
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Discussion
Equational notation, as in Guttag [81], is attractive for specifying data ob-
jects because it separates the concern of implementation from deductions
of properties of the object. Concurrently accessed objects do not seem
amenable to equational specification. We specify such objects using tradi-
tional safety and progress properties. The specification of a bag, (B0–B6),
is concise, and it supports concurrent access. We have used this specifica-
tion to deduce properties of the object and carry out refinements.
The specification of a bag includes the declarations of the global variables

—r and w— through which this program communicates with its environ-
ment. If multiple producers/consumers interact with the bag, they have to
interleave their accesses to r and w. As we showed in section 8.3.5, a client
manager, CM , and a service manager, SM , can be introduced to merge the
various requests from producers into r and distribute the output from w
to the consumers. Programs CM and SM can be specified independently.

9.3 Closure Properties

Conditional properties are rich in expressive power. The examples given in
sections 9.2.3, 9.2.4 and 9.2.5 show the effectiveness of conditional proper-
ties in specifying programs that are composed with environments of known
characteristics. However, manipulations of conditional properties are more
difficult than their unconditional counterparts; for instance, we had to in-
stantiate program G by BN [] F and H by BM [] F in the proof of (B5)
for bag concatenation (see section 9.2.5), and we had to reason about the
properties of an ensemble of programs. Specifications and proofs can be
considerably simplified if we can encode the assumptions about an envi-
ronment in a program’s text (or specification). Then, we can deduce prop-
erties of any system of which this program is a component from the text
(or specification) of the program alone.
It is possible to include arbitrary safety and progress properties of the

environment as part of a program specification. However, we impose a
constraint: given programs F and G, it should be decidable if F is a possible
environment of G and G of F , i.e., if F [] G is defined. This constraint
permits an automatic linker to form the union of component programs
(or reject them when a union cannot be formed because the appropriate
assumptions are not met). Moreover, such a constraint simplifies reasoning
about compositions of programs, as we show in this section.
We constrain the environment of a program by attaching appropriate

type information to the global variables. Specifically, we declare a global
variable in a program with an internal type and an external type; the in-
ternal type describes the permissible values and operations on this variable
inside the given program, whereas the external type describes this informa-
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tion for the environment. It is then possible to deduce properties of F [] G
from the text of F alone, where G is any program that satisfies the external
type constraints specified for the global variables in F ; i.e., G is a possible
environment of F .
Traditionally, type declarations have simplified specification and verifica-

tion by delegating their decidable aspects to a compiler. We find that type
checking across programs (by a linker) can play an equally crucial role in
the study of program composition.

9.3.1 Types of global variables
So far in the treatment of program composition, we have associated a single
type with every variable including every global variable. This form of type
declaration may be interpreted as follows: any operation on a global variable
that is permissible in one box of a program is also permissible in any other
box (where this variable is declared). Thus, the boxes are symmetric in
their accesses to global variables. (The only possible source of asymmetry
is that a global variable is accessible in one box but not in another, because
it is declared only in the former box.)
Usually, boxes in a system access and manipulate global variables asym-

metrically. For instance, senders and receivers that communicate over uni-
directional channels have asymmetric accesses to the channels. Similarly,
for the bag example of section 9.2.5, variables r and w are accessed asym-
metrically by B and F . As an extreme case, a local variable of box F may
be regarded as a global variable that can be accessed by F alone.
Motivated by these observations, we propose to declare a global vari-

able in a program with a base type (integer, for instance) and internal and
external types that specify the access rights, i.e., which operations are per-
missible internally and externally on the variable. For instance, a global
integer variable x may have permissible operations {read, write} inside F
and operation {read} outside F . It follows that x can be written only in
F ; i.e., x is constant in every program G other than F .

Types and subtypes
We refrain from constructing an elaborate theory of types; we merely re-
quire that the types form a lattice under a subtype (⊆) relation. Henceforth,
we regard a type as consisting of a base type —such as integer, boolean,
string, lists of pairs of reals, functions from strings to integers, etc.— and
a set of operations on that base type. We say

integer : {read}
for instance, to denote a base-type integer on which read is the only per-
missible operation. Let S ⊆ T denote that S is a subtype of T , given that
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S and T have the same base type and the set of permissible operations in
S is a subset of the corresponding operations in T . Thus,

(integer : ∅) ⊆ (integer : {read}) ⊆ integer

Here, the last occurrence of “integer” denotes the full integer type on which
all available operations on integers are allowed.
The relation ⊆ is a partial order and the set of types formed from a given

base type is a lattice with respect to ⊆. For S and T having the same base
type, we write S ∪ T , S ∩ T for the least upper bound and the greatest
lower bound of S and T ; these are obtained from S and T by taking union
and intersection, respectively, of the associated operation sets. In a base
type, say integer,

integer : ∅ is the bottom element of the corresponding lattice
integer is the top element.

Syntactic conventions for type declarations
The following example illustrates typical declarations of global variables.

global integer x : (intl: read, increment; extl: read)
global integer y : (intl: read, increment)
global integer z : (intl: read; extl : ∅)
global seq(integer) c : (intl: receive; extl: send)

In this example, variable x can be “read” or “incremented” in F , but it
can only be “read” outside F . Variable y is accessed similarly to x within
F ; however, it is not restricted in any way in the external programs (an
unspecified field denotes that all operations are permissible). Variable z has
no permissible external operations, so it is a local variable of F . Variable c
can be used to represent a channel for which F is the unique receiver.
Let F.x.intl, F.x.extl denote the internal and external type of x in F ,

respectively. If x is not declared in F and the base type of x is T , then take

F.x.intl to be T : ∅
F.x.extl to be T

Note We often omit the base type, T , for F.x.intl and F.x.extl, when it
is clear from the context. ✷

Link constraint
“Type check” usually refers to a compiler determining the consistency of
the internal type declarations. We propose that the linker of the boxes of
a program also perform a type check, as follows. For every global variable
x declared in 〈[] i :: Fi〉, program composition has to satisfy



298 9. Conditional and Closure Properties

Link Constraint 〈∀ i, j : i �= j : Fi.x.intl ⊆ Fj .x.extl〉

That is, for any j, the external type declaration of x in Fj is satisfied by
internal declaration in every Fi. If x is not declared in Fi, then the link
constraint is trivially satisfied by Fi; see syntactic conventions above.
In chapter 8, union of programs F and G was defined provided that

the initial conditions and the declarations in F and G were consistent.
Now we have generalized the notion of variable declaration; consistency of
declarations means satisfaction of the link constraint.

Type declaration in a composite program
The internal and external types of a global variable x in 〈[] i :: Fi〉 are
given by

〈[] i :: Fi〉.x.intl = 〈∪ i :: Fi.x.intl〉
〈[] i :: Fi〉.x.extl = 〈∩ i :: Fi.x.extl〉

That is, the internal operations on x in 〈[] i :: Fi〉 are the ones that are
internal to some Fi and an operation is externally allowable in 〈[] i :: Fi〉
iff it is allowable in every Fi.
Let H be an abstraction of the program 〈[] i :: Fi〉 (see section 8.2.2).

The type of a global variable x in H may be redefined as long as

H.x.intl ⊇ 〈[] i :: Fi〉.x.intl
H.x.extl ⊆ 〈[] i :: Fi〉.x.extl

That is, the internal type of x in H supports the operations in all the
components, and the external type meets the restrictions imposed by all
the components.

Localizing a variable
A variable may be declared local to components F and G by constructing
a program that includes F and G as components in which the variable
is declared to be local, as in section 8.2.2. An alternative is to use the
following implicit mechanism that we illustrate with an example.
Suppose that only the operations {α, β, γ} can be applied to variable x.

If we declare

F.x.extl = {β, γ}, G.x.extl = {α, γ}, H.x.extl = {α, β}
then

(F [] G [] H).x.extl
= F.x.extl ∩ G.x.extl ∩ H.x.extl
= ∅

Thus, no program other than F,G, and H can access x.
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This mechanism can be used to declare that a channel c between a sender
and a receiver is local to these two programs, as shown below.

sender.c.extl = {receive} , declare
receiver.c.extl = {send} , declare
(sender [] receiver).c.extl = ∅ , definition of extl

Axioms of union
We proposed three axioms for union in section 8.5.1. The definition of union
has become more restrictive with the adoption of link constraint. Yet we
have the same set of axioms, and it can be shown that the union theorem
and its corollaries from section 8.2.3 are still valid.

9.3.2 Definitions of closure properties
For a property Π—where Π is a co, en, �→ , stable, invariant, transient,
or constant— define its closure, cΠ, as follows. In the following, G is quan-
tified over all programs such that F [] G is defined.

cΠ in F ≡ 〈∀ G :: Π in F [] G〉
Thus, for example

cstable p in F ≡ 〈∀ G :: stable p in F [] G〉
p c �→ q in F ≡ 〈∀ G :: p �→ q in F [] G〉

9.3.3 Closure theorem

Closure theorem In the following, G is quantified over all programs
where F [] G is defined.

1. p cco q in F ≡ p co q in F ∧ 〈∀ G :: p co q in G〉

2. ctransient p in F ≡ transient p in F

3. p cen q in F ≡ p en q in F ∧ 〈∀ G :: p ∧ ¬q co p ∨ q in G〉

4. cinvariant p in F ≡ invariant p in F ∧ 〈∀ G :: stable p in G〉

5. cstable p in F ≡ stable p in F ∧ 〈∀ G :: stable p in G〉

6. cconstant e in F ≡ constant e in F ∧ 〈∀ G :: constant e in G〉
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Proof:

1. p cco q in F
≡ {definition of cco}
〈∀ G :: p co q in F [] G〉

≡ {union theorem}
〈∀ G :: p co q in F ∧ p co q in G〉

≡ {range of quantification is nonempty because of id}
p co q in F ∧ 〈∀ G :: p co q in G〉

2. ctransient p in F
≡ {definition of ctransient}
〈∀ G :: transient p in F [] G〉

≡ {instantiating G by id and using F [] id = F}
〈∀ G :: transient p in F ∧ transient p in F [] G〉

≡ {union theorem}
〈∀ G :: transient p in F ∧ (transient p in F ∨ transient p in G)〉

≡ {simplify}
transient p in F

3. p cen q in F
≡ {definition of cen}
〈∀ G :: p en q in F [] G〉

≡ {instantiating G by id and using F [] id = F}
〈∀ G :: p en q in F ∧ p en q in F [] G〉

≡ {expanding p en q in F [] G using the union theorem corollary}
〈∀ G :: (p en q in F ) ∧ (p ∧ ¬q co p ∨ q in F ) ∧
(p ∧ ¬q co p ∨ q in G) ∧ (p en q in F ∨ p en q in G)〉

≡ {simplify using: p en q in F ⇒ p ∧ ¬q co p ∨ q in F}
〈∀ G :: (p en q in F ) ∧ (p ∧ ¬q co p ∨ q in G)〉

≡ {Rewrite. The range of quantification is nonempty.}
p en q in F ∧ 〈∀ G :: p ∧ ¬q co p ∨ q in G〉

4. cinvariant p in F
≡ {definition of cinvariant}
〈∀ G :: invariant p in F [] G〉

≡ {instantiating G by id and using F [] id = F}
〈∀ G :: invariant p in F, invariant p in F [] G〉

≡ {invariant p in F ⇒ (F.ic ⇒ p),
invariant p in F [] G ≡ ((F [] G).ic⇒ p) ∧ (stable p in F [] G))}

〈∀ G :: F.ic ⇒ p, invariant p in F ,
(F [] G).ic ⇒ p, stable p in F [] G〉

≡ {union theorem: (F [] G).ic = F.ic ∧ G.ic.
Hence, (F.ic ⇒ p) ⇒ ((F [] G).ic ⇒ p)}

〈∀ G :: F.ic ⇒ p, invariant p in F, stable p in F [] G〉
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≡ {(invariant p in F ) ⇒ (F.ic ⇒ p)}
〈∀ G :: invariant p in F, stable p in F [] G〉

≡ {union theorem}
〈∀ G :: invariant p in F, stable p in F, stable p in G〉

≡ {(invariant p in F ) ⇒ (stable p in F )}
〈∀ G :: invariant p in F, stable p in G〉

≡ {Rewrite. Range of quantification is nonempty because of id }
invariant p in F ∧ 〈∀ G :: stable p in G〉

We leave the proofs of (5) and (6) as exercises. ✷

Corollaries

It is easy to deduce the following corollaries from the proofs of (3,4) in the
closure theorem. As before, G is quantified over all programs where F [] G
is defined.

(3′) p cen q in F ≡
(transient p ∧ ¬q in F ) ∧ (p ∧ ¬q cco p ∨ q in F )

(4′) cinvariant p in F ≡ initially p in F ∧ cstable p in F

The closure theorem is the basis for establishing closure properties, anal-
ogous to the union theorem for compositional properties. Most cases in
the closure theorem require us to prove a certain property in G whenever
F [] G is defined. This is where type declarations play a role. From the
external declarations of a global variable x in F , we can often establish
that the variable value is not changed externally; then x is constant in G.
Similarly, if an integer variable y can be only read or incremented exter-
nally, stable y ≥ m in G, for anym. The following corollary exploits these
possibilities.

Corollary For a program F , let stable p in G and constant e in G
hold for all G whenever F [] G is defined.

p cco q in F ≡ p co q in F (1)
p cen q in F ≡ p en q in F (2)
cinvariant p in F ≡ invariant p in F (3)
cstable p in F ≡ stable p in F (4)
cconstant e in F ≡ constant e in F (5)

Proof: Note that

(stable p in G ∧ p ⇒ q) ⇒ (p co q in G)

Also, by strengthening the lhs and weakening the rhs,

(stable p in G) ⇒ (p ∧ ¬q co p ∨ q in G)

The corollaries then follow from the closure theorem. ✷
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9.3.4 Derived rules
There is a closure operator corresponding to every safety and progress
operator; this suggests a large number of derived rules using different com-
binations of these operators. Fortunately, the following three meta-rules
suffice. As before, Π is any property and cΠ its closure.

• (inflation) cΠ in F
Π in F

• (lifting) cΠ in F
cΠ in F [] G provided that F [] G is defined.

• (coercion) Any inference rule remains valid if each operator is re-
placed by its closure.

The inflation rule allows us to prove/implement a property Π by prov-
ing/implementing cΠ. The lifting rule says that a closure property of a
component is inherited by the system; this allows modular construction
of a system by partitioning the implementations of the closure properties
among the components. The coercion rule allows us to manipulate the
closure operators in exactly the same manner as the original safety and
progress operators.

Proofs of the derived rules
Proof of inflation

cΠ in F
≡ {definition of closure}
〈∀ G :: Π in F [] G〉

⇒ {setting G to id}
Π in F [] id

≡ {F [] id = F}
Π in F ✷

Proof of lifting
cΠ in F

≡ {definition of closure}
〈∀ F ′ :: Π in F [] F ′〉

⇒ {instantiate F ′ by G [] H, for the given G and any H such that
F [] (G [] H) is defined}

〈∀ H :: Π in F [] (G [] H)〉
≡ {associativity of []}
〈∀ H :: Π in (F [] G) [] H〉

≡ {definition of closure}
cΠ in F [] G ✷
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Proof of coercion

Consider an inference rule of the form Π
Π′ . We show

cΠ
cΠ′ .

cΠ in F
≡ {definition of closure}
〈∀ G :: Π in F [] G〉

⇒ {from the given inference rule, Π ⇒ Π′}
〈∀ G :: Π′ in F [] G〉

≡ {definition of closure}
cΠ′ in F ✷

As an application of coercion, consider the transitivity rule for leads-to:
p �→ q, q �→ r

p �→ r

Coercion permits us to assert
p c �→ q, q c �→ r

p c �→ r

Substitution axiom
In chapters 5 and 6, we freely used the substitution axiom to replace any
invariant by true and vice versa in any property of a program. The sub-
stitution axiom does not apply to union of two programs if properties are
derived in the components using the invariants of those components; see
section 8.4. Fortunately, we can now formulate a substitution axiom that
applies to program union, and it reduces to the simpler version (of chap-
ters 5 and 6).

Statement of the substitution axiom:

Predicate I can be replaced by true and vice versa in any property of a
component Fi provided that

cinvariant I in 〈[] i :: Fi〉

Discussion
Closure permits us to ignore the identity of the program for which a prop-
erty has been derived because, using lifting, the closure property is a prop-
erty of any system of which the given program is a component. Therefore,
much of the reasoning can be done for a single program, in a manner sim-
ilar to what we did in chapters 5 and 6. As an added bonus, the coercion
rule permits us to apply the same inference rules. We illustrate the power
of this approach by redoing some of the examples of the earlier chapters.
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9.3.5 Example: handshake protocol
In this section we consider the handshake-protocol from section 8.3.2, which
is also treated in section 9.2.1. Box send sends messages; a subsequent
message is sent only on receiving an acknowledgment to the last message.
Let ns and nr denote the number of messages sent and acknowledged. We
write the code for send with the appropriate declarations for the global
variables ns and nr. The operation increment on an integer increases it
by 1.

————————————
box send
global integer ns = 0 (intl: read, increment; extl: read);
global integer nr = 0 (intl: read; extl: read, increment);

nr ≥ ns → increment.ns
end {send}
————————————

We prove below the following closure properties of send . Henceforth, m
and n are arbitrary integers.

cstable m ≤ nr in send , and
cstable n ≤ ns in send (S1)
cinvariant 0 ≤ nr in send , and
cinvariant ns ≤ nr + 1 in send (S2)
nr ≥ ns ∧ ns = n c �→ ns = n+ 1 in send (S3)

Note The informal description makes it clear that the environment of send
increases nr only once after receiving a message, i.e., if nr < ns. However,
our type declaration mechanism is not strong enough to express this fact.
The external type declaration of nr in send permits send ’s environment to
increase nr arbitrarily. Hence, we cannot establish nr ≤ ns for the system
from send ’s text alone. ✷

Proofs of (S1–S3)
From the type declarations in send , we deduce the following properties for
send and for any G, where send [] G is defined.

constant ns in G
stable m ≤ nr in G
constant nr in send
stable n ≤ ns in send

We leave the proof of property (S1) to the reader; it is easily established
from the above properties using the corollary of the union theorem.
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• Proof of (S2), cinvariant ns ≤ nr + 1 in send :
stable m ≤ nr in G , from type declaration in send
stable ns− 1 ≤ nr in G , constant (ns− 1) in G; replace

m by (ns− 1) above
invariant ns− 1 ≤ nr in send , text of send
cinvariant ns− 1 ≤ nr in send , closure theorem on above two
cinvariant ns ≤ nr + 1 in send , rewrite

The remaining part of (S2) can be proved similarly. ✷

• Proof of (S3), nr ≥ ns ∧ ns = n c �→ ns = n+ 1 in send :
For any G where send [] G is defined

stable nr ≥ n in G , type declaration in send
stable ns = n in G , type declaration in send
stable nr ≥ n ∧ ns = n in G , stable conjunction
nr ≥ n ∧ ns = n en ns = n+ 1 in send

, text of send
nr ≥ ns ∧ ns = n cen ns = n+ 1 in send
, closure theorem corollary on above two, rewrite lhs

nr ≥ ns ∧ ns = n c �→ ns = n+ 1 in send
, apply coercion on above ✷

The receive program
————————————
box receive
global integer ns = 0 (intl: read; extl: read, increment);
global integer nr = 0 (intl: read, increment; extl: read);

nr < ns → increment.nr
end {receive}
————————————

It is easy to see that send [] receive is defined, because the following link
constraints are satisfied.

send .ns.intl ⊆ receive.ns.extl
send .nr.intl ⊆ receive.nr.extl
receive.ns.intl ⊆ send .ns.extl
receive.nr.intl ⊆ send .nr.extl

We have the following properties for receive, analogous to those for send .
We leave their proofs to the reader.

cinvariant nr ≤ ns in receive (R1)
nr < ns ∧ nr = m c �→ nr = m+ 1 in receive (R2)
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Deriving properties of send [] receive
Applying lifting, each of the properties (S1–S3) and (R1–R2) is a property
in send [] receive. Therefore,

cstable m ≤ nr, cstable n ≤ ns , from (S1) (SR1)
cinvariant 0 ≤ nr ≤ ns ≤ nr + 1 , from (S2, R1) (SR2)
nr ≥ ns ∧ ns = n c �→ ns = n+ 1 , from (S3) (SR3)
nr < ns ∧ nr = m c �→ nr = m+ 1 , from (R2) (SR4)

Note that only parts of (SR2) is proved in each of send and receive.

• true c �→ nr > m in send [] receive: (SR5)
Proof: In the following proof, all properties are in send [] receive.

nr = n
⇒ {use SR2}
nr, ns = n, n ∨ nr, ns = n, n+ 1

c �→ {use SR3 on the first disjunct}
ns = n+ 1 ∨ nr, ns = n, n+ 1

⇒ {use SR2 to expand the first disjunct}
nr, ns = n+ 1, n+ 1 ∨ nr, ns = n, n+ 1

c �→ {use SR4 on the second disjunct}
nr, ns = n+ 1, n+ 1 ∨ nr = n+ 1

⇒ {simplify}
nr > n

From above, conclude true c �→ nr > m using induction. ✷

9.3.6 Example: concurrent bag
We consider the example of concurrent bag from section 9.2.5. The following
is a specification of a bag B of size N,N ≥ 0, using closure operators.
————————————
Specification B

local bag( ) b;
global ( ∪ {φ}) r (intl: read; extl: write);
global ( ∪ {φ}) w (intl: write; extl: read);

{The following properties are in B}
initially b+ w = φ (B0)
cinvariant |b| ≤ N (B1)
constant r + b+ w (B2)
|b+ w| ≤ N c �→ r = φ (B3)
|b+ r| > 0 c �→ w �= φ (B4)

end {B}
————————————
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The semantics of read and write are as follows. The operation read on x
has the post-condition x = φ, and write on x has the pre-condition x = φ
and post-condition x �= φ.
Note the following differences from the specification of section 9.2.5. The

specification does not include

stable r $ R , stable W $ w in B

because these can be deduced from the internal type declaration of r and
w. Similarly, the assumptions about the environment have been eliminated
and all the properties, except (B2), are replaced by closures.

Bag concatenation
We redo the proof of bag concatenation to illustrate the advantages of work-
ing with closure properties. First, we rewrite the specifications of BM and
BN (see page 292) using closure properties. For BM , we have a bag of size
M , with input and output variables r and v, respectively. Its specification
is same as that of B with bm, v, and M replacing b, w, and N .
Observe from the specifications that BM [] BN is defined because BM

and BN satisfy the link constraints, and their initial conditions are com-
patible. It is interesting to note that

(BM [] BN).v.extl
= BM.v.extl ∩ BN.v.extl
= ∅

Therefore, v cannot be accessed outside BM [] BN ; effectively, it is a local
variable of BM [] BN .

————————————
Specification BM

local bag( ) bm;
global ( ∪ {φ}) r (intl: read; extl: write);
global ( ∪ {φ}) v (intl: write; extl: read);

{The following properties are in BM}
initially bm+ v = φ (BM0)
cinvariant |bm| ≤M (BM1)
constant r + bm+ v (BM2)
|bm+ v| ≤M c �→ r = φ (BM3)
|bm+ r| > 0 c �→ v �= φ (BM4)

end {BM}
————————————

Similarly, BN is a bag of size N , with input and output variables v and
w. Its specification may be obtained from that of B by replacing b and r
by bn and v, respectively.
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————————————
Specification BN

local bag( ) bn;
global ( ∪ {φ}) v (intl: read; extl: write);
global ( ∪ {φ}) w (intl: write; extl: read);

{The following properties are in BN}
initially bn+ w = φ (BN0)
cinvariant |bn| ≤ N (BN1)
constant v + bn+ w (BN2)
|bn+ w| ≤ N c �→ v = φ (BN3)
|bn+ v| > 0 c �→ w �= φ (BN4)

end {BN}
————————————

Now we show that BM [] BN satisfies the specification B (with N re-
placed by M +N + 1). As before, we define b by

b = bm+ v + bn (D)

All properties in these proofs are in BM [] BN , except where shown.

• Proof of (B0) initially b+ w = φ:
initially bm+ v = φ , (BM0) by lifting
initially bn+ w = φ , (BN0) by lifting
initially b+ w = φ , above two and (D) ✷

• Proof of (B1) |b| ≤M +N + 1:
|b|

= {from (D), b = bm+ v + bn}
|bm|+ |v|+ |bn|

≤ {from BM1 by lifting, and |v| = 1}
M + 1 + |bn|

≤ {from BN1 by lifting}
M +N + 1 ✷

• Proof of (B2) constant r + b+ w:
The proof is similar to the corresponding proof in section 9.2.5.
constant r + bm+ v in BM , BM2
constant bn+ w in BM , locality
constant r + b+ w in BM , above two and (D)
constant r + b+ w in BN , similarly
constant r + b+ w in BM [] BN , union theorem corollary

Note This proof cannot exploit the closure theorem because BM2 and
BN2 are not closure properties. ✷
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• Proof of (B3) |b+ w| ≤M +N + 1 c �→ r = φ:
|b+ w| ≤M +N + 1

⇒ {from (D), b = bm+ v + bn}
|bm+ v| ≤M ∨ |bn+ w| ≤ N
c �→{(BN3) by lifting on the second disjunct}
|bm+ v| ≤M ∨ v = φ

⇒ {from (BM1) by lifting |bm| ≤M . So, v = φ ⇒ |bm+ v| ≤M}
|bm+ v| ≤M
c �→{(BM3) by lifting}
r = φ ✷

• Proof of (B4), |b+ r| > 0 c �→ w �= φ:
Proof is similar to that of (B3). ✷

It is instructive to compare the length of the proof of (B3) with the anal-
ogous result, (B5), proved on page 293 with conditional properties. Use of
coercion and lifting simplifies the proof considerably.

9.3.7 Example: token ring
We have considered this example in sections 5.5.3 and 6.5.3. Previously, we
started by postulating certain properties for the entire token ring, shown as
(TR0–TR7) below, from which we derived mutual exclusion and absence
of starvation. Now, we start with simpler properties of the individual com-
ponents in the ring and show that (TR0–TR7) are satisfied. The properties
of the components are simple enough that they are easily implemented; see
Refinement of the Specification on page 312.

Specification of the token ring
Let R be a finite ring of N processes of which box i is Ri, 0 ≤ i < N . The
entire ring R is 〈[] i : 0 ≤ i < N : Ri〉, for some N , N ≥ 0. Each box Ri

has a local state that takes on three possible values: h, e, and t, for hungry,
eating, and thinking. Let the predicates hi, ei, and ti mean that the state
of Ri is hungry, eating, thinking, respectively. Clearly, these predicates
are pairwise disjoint and hi ∨ ei ∨ ti holds.

There is a single global variable p whose value is the index of the token
holder. The properties of R that we had postulated in the earlier chapters
are given below. Here, i ranges over 0 ≤ i < N , and i′ is the index of the
right neighbor of process i in the ring. All the properties (TR0–TR7) are
in R.

initially 〈∀ j :: ej ⇒ p = j〉 (TR0)
ei co ei ∨ ti (TR1)
ti co ti ∨ hi (TR2)
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hi co hi ∨ ei (TR3)
hi ∧ p �= i co hi (TR4)
p = i co p = i ∨ ¬ei (TR5)
hi ∧ p = i �→ ei (TR6)
p = i �→ p = i′ (TR7)

We had proved earlier that for all i and j, 0 ≤ i < N and 0 ≤ j < N ,

(mutual exclusion) ei ∧ ej ⇒ i = j in R (in section 5.5.3 )
(absence of starvation) hj �→ ej in R (in section 6.5.3)

Specifications of processes
We propose specifications for boxes Ri and prove all the properties of R,
(TR0–TR7), from these specifications. Since only a token holder can modify
the token’s position, p can be modified in Ri only if p = i. Thus, the only
operations that modify p are, for all i, 0 ≤ i < N ,

increment.i :: p = i → p := (p+ 1) mod N

It follows that stable p = i in Rj , j �= i.

————————————
Specification Ri (0 ≤ i < N) {All properties below are in Ri}

global enum (0..N − 1) p
(intl: read, increment.i; extl: read, increment.j, j �= i);

local boolean hi, ei, ti;

initially 〈∀ j :: ej ⇒ p = j〉 (R0)
ei co ei ∨ ti (R1)
ti co ti ∨ hi (R2)
hi co hi ∨ ei (R3)
stable hi ∧ p �= i (R4)
p = i co p = i ∨ ¬ei (R5)
hi ∧ p = i c �→ ei (R6)
ti ∧ p = i c �→ (hi ∧ p = i) ∨ p = i′ (R7)
ei c �→ p = i′ (R8)

end {Ri}
————————————

Observe that R = 〈[] i : 0 ≤ i < N : Ri〉 is well defined because

Ri.p.intl ⊆ Rj .p.extl

for all i and j, i �= j, and the initial conditions of the Ri’s are consistent.
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Proofs of (TR0–TR7)
We prove that properties (TR0–TR7) hold in R given that Ri, 0 ≤ i < N ,
has the properties (R0–R8). The initial condition, (R0), and the safety
properties, (R1–R5), are the counterparts of (TR0–TR5); we establish each
of the latter from the corresponding property of Ri using the type declara-
tion of p. The progress property, (R6), appears similar to (TR6), but the
former is a property of a component whereas the latter is a property of
the entire system; we prove (TR6) from (R6) using lifting and inflation.
Progress properties (R6, R7, R8) are used to prove (TR7).

• Proof of (TR0), initially 〈∀ i :: ei ⇒ p = i〉:
From (R0) and the union theorem. ✷

Let G be a program such that Ri [] G is defined. We have, from locality,

stable hi in G, stable ei in G, stable ti in G (R9)

From the external type declaration of p

stable p = i in G (R10)

Forming stable conjunction of (R10) with the individual properties in
(R9), we get in G:

stable (hi ∧ p = i) , stable (ei ∧ p = i) , stable (ti ∧ p = i) (R11)

• Proof of (TR1), ei co ei ∨ ti in R:

ei co ei ∨ ti in Ri , from (R1)
stable ei in G , from (R9)
ei cco ei ∨ ti in Ri , closure theorem corollary
ei cco ei ∨ ti in R , lifting
ei co ei ∨ ti in R , inflation ✷

• Proofs of (TR2, TR3):
Similar to (TR1); use (R2, R9) for (TR2) and (R3, R9) for (TR3). ✷

• Proof of (TR4), hi ∧ p �= i co hi in R:

stable hi in G , from (R9)
hi ∧ p �= i co hi in G , strengthen lhs
stable hi ∧ p �= i in Ri , from (R4)
hi ∧ p �= i co hi in Ri [] G , union theorem corollary
hi ∧ p �= i cco hi in Ri , definition of cco
hi ∧ p �= i co hi in R , lifting; inflation ✷
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• Proof of (TR5): similar to that of (TR1) using (R5, R10). ✷

• Proof of (TR6) hi ∧ p = i �→ ei in R:
From (R6), using lifting and inflation. ✷

• Proof of (TR7), p = i �→ p = i′ in R:
In Ri

p = i
≡ {ti ∨ hi ∨ ei ≡ true}
(ti ∧ p = i) ∨ (hi ∧ p = i) ∨ (ei ∧ p = i)
c �→{(R7): replace (ti ∧ p = i) above by (hi ∧ p = i) ∨ p = i′}
(hi ∧ p = i) ∨ p = i′ ∨ (ei ∧ p = i)
c �→{(R6): replace (hi ∧ p = i) above by ei}
ei ∨ p = i′

c �→{(R8): replace ei above by p = i′}
p = i′

From p = i c �→ p = i′ in Ri, we can derive (TR7) by lifting and
inflation.

✷

Refinement of the specification
The safety properties (R1–R5) in the specification of Ri are easily imple-
mented. But how do we implement the closure properties (R6–R8)? We
propose that an implementation be derived through successive refinements
of the specifications. A simple refinement is to replace c �→ in (R6–R8) by
cen to obtain (R6′–R8′), given below.

In Ri ::
hi ∧ p = i cen ei (R6′)
ti ∧ p = i cen (hi ∧ p = i) ∨ p = i′ (R7′)
ei cen p = i′ (R8′)

The correctness of this refinement is straightforward: (R6–R8) follow from
(R6′–R8′) by coercion. Next, we claim that each of (R6′–R8′) can be refined
to an ensures property. We show the proof for R6′; proofs for R7′ and R8′

are similar.

• Proof of (R6′), hi ∧ p = i cen ei:

hi ∧ p = i en ei , postulate
stable hi ∧ p = i in G , from R11
hi ∧ p = i cen ei , closure theorem corollary
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9.4 Combining Closure and Conditional Properties

Closure properties may appear in the assumption or guarantee part of a
conditional property. This is useful when the type definition is not strong
enough to specify all possible changes in a shared variable. For example, in
the program send of the handshake protocol (see page 304), type declara-
tions specify that nr can only be incremented by the environment of send .
It cannot be specified that nr can increase only up to ns in the environ-
ment; our type mechanism is not strong enough to permit such assertions.
That is why it is not possible to prove that |nr−ns| ≤ 1 is an invariant —
actually, a cinvariant— of the composite program from the text of send .
However, we can prove the following conditional property of send :

〈∀F :
cinvariant nr ≤ ns in F

:
cinvariant |nr − ns| ≤ 1 in F [] send

〉
This kind of specification is particularly useful for stating facts about shared
variables, such as nr and ns, that are local to a subsystem —send [] receive,
in this case— of a larger system.
The linear network rule of section 9.2.2 has a nice counterpart with clo-

sure properties. If each property in that rule is a closure property, then all
properties hold for the entire network; previously, only ΠN was a property
of the network.

Linear network rule

cΠ0 in f0 and
〈∀ i : 0 ≤ i < N :

〈∀ g : cΠi in g : cΠi+1 in fi+1 [] g〉
〉

〈∀ j : 0 ≤ j ≤ N : cΠj in 〈[] i : 0 ≤ i ≤ N : fi〉〉
The proof is simple. In the linear network rule of section 9.2.2, replace Πi

by cΠi and N by j, 0 ≤ j ≤ N , to conclude that

cΠj in 〈[] i : 0 ≤ i ≤ j : fi〉 , above argument
cΠj in 〈[] i : 0 ≤ i ≤ N : fi〉 , lifting

9.5 Concluding Remarks

Conditional and closure properties simplify specifications and verifications
of composite programs. We believe that programmers intuitively employ
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some such reasoning for constructing programs in practice. Whenever a
component of a program is designed to provide a service —exception han-
dling or message delivery, for instance— it is implicitly assumed that other
components of the system do not interfere, and the components provide
specific services no matter what system they are embedded in. If accesses
to shared variables are not disciplined, program design will have to rely on
the general and expensive methods of chapter 8 to make such guarantees.
Closure properties can often replace conditional properties, as we have

seen in the example of the handshake protocol (compare the specifications
on page 283 and section 9.3.5) and concurrent bag (see page 290 and sec-
tion 9.3.6). Whenever such a replacement is possible, the accompanying
proofs become much shorter. Therefore, specifications using closure prop-
erties are always to be preferred. The shortcoming of closure, though, is
that assumed properties of the environment have to be expressed within a
type system. We could have permitted program texts to include arbitrary
assumptions about the environment, but that is no better than writing a
conditional property of the program. The restrictions we have imposed al-
low an automatic linker to decide if two programs can be composed through
union. The type mechanism also imposes a discipline on programming.
The type mechanism motivates an object-oriented style of programming

like Seuss. We can imagine that nr and ns in the handshake protocol are
objects on which read and increment are the only applicable methods.
The type declaration specifies the access rights to a shared object by a
component and its environment. Though we do not pursue the topic of
access rights any further in this book, we believe that it has the potential
to simplify the programming and possibly security aspects of system design.

9.6 Bibliographic Notes

The notion of conditional property is inherent in Misra and Chandy [142]
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Collette and Knapp [47] contain treatment of composition of rely-guarantee
style specifications. Also see de Roever et al. [53] for a comprehensive survey
of both compositional and noncompositional verifications, in particular for
the verification of network protocols. Results similar to the linear network
rule have appeared elsewhere; see, for instance, Lam and Shankar [112].
The factorial network is from [142], and the concurrent bag example is
from Misra [136].



10
Reduction Theorem

10.1 Introduction

The operational semantics of the programming model —action systems in
chapter 2 and object-oriented systems in chapter 3— is based on tight ex-
ecutions, where each action execution is completed before another one is
started. This is a convenient model for understanding a program and rea-
soning about its properties, because an action represents an indivisible unit
whose execution cannot be preempted by another. We applied induction on
the number of actions in a tight execution to deduce invariant properties
in chapter 5, for instance. We developed a logic to reason about tight exe-
cutions in chapters 5, 6, 8, and 9, and we extend the logic for the general
programming model in chapter 12.
In actual implementations, we would expect the boxes to be partitioned

for executions on multiple processors, which may be distributed over a wide-
area network. The processors execute the associated actions concurrently;
we call such executions loose. A typical loose execution of a program will
interleave the steps of the individual actions of its components.
It is well known that the net effect of an interleaved execution may be

quite different from the sequential executions of its component actions. To
see this, consider two boxes α and β, each of which has one action. The
actions in α and β (we also call these actions α and β) consist of a sequence
of elementary steps αi and βi, for 1 ≤ i ≤ 3, as shown below.

α:: α1; α2; α3 and
β:: β1; β2; β3 .
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The loose execution α1 β1 α2 β2 α3 β3 interleaves the executions of actions
α and β. In this example, suppose α1 and β1 are calls on a procedure to
read the value of variable x, α2 and β2 are local steps to increment the
value read and α3 and β3 are calls on a procedure to store the incremented
value in x. Then the given loose execution increases the value of x by 1,
whereas any tight execution of these two actions increases x by 2.
As this example shows, unrestricted concurrent executions may produce

results that cannot be produced by tight executions. In this chapter, we
develop a set of conditions under which loose executions mimic tight exe-
cutions. We require that the actions that are concurrently executed satisfy
certain compatibility conditions, described in section 10.3. Obviously, inde-
pendent actions that affect states of different boxes may be executed con-
currently. Our definition of compatibility is more general, allowing greater
potential for concurrency. Roughly, two procedures are compatible if their
interleaved execution may be simulated by executing them one after the
other in some order. We give an exact definition and show how compat-
ibility of procedures may be proved. We prove a reduction theorem that
establishes that if a loose execution of some finite set of actions starting in
state u terminates in state v, there is a tight execution that has the same
effect.
For a fifo channel on which there is a single sender and a receiver, the

sender and the receiver are compatible; see page 325. Thus, all actions in
which communication is point-to-point can be executed concurrently, with-
out the need for a scheduler. We discuss this in more detail in section 10.7.
Compatibility information cannot be deduced automatically. Yet it is

unrealistic to expect the user to provide this information for all pairs of
actions; in most cases, different boxes will be coded by different users, and
no user may even know which other actions will be executing. Therefore, we
have developed a theory whereby compatibility of procedures in different
boxes may be deduced automatically from the compatibility information
about procedures that belong to the same box: users simply specify which
procedures in a box are compatible and an algorithm then determines which
pairs of actions are compatible, so that they may be executed concurrently.
The user need not provide complete compatibility information for proce-
dures in a box. If no two procedures are declared compatible, the actions
of the program can still be executed concurrently —by having independent
actions be executed simultaneously, for instance— but some safe concurrent
executions may not be permitted.

Overview of the chapter

In the next section, an abstract model of Seuss programs is given and the
model is justified. The model is based on relational calculus; each elemen-
tary step of an action is viewed as a binary relation over the program states
and an execution of an action is their relational product. In section 10.2.3
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we rewrite the restrictions on programs described in section 3.2.6 in terms
of the model of this chapter. We show in section 10.2.4 that each procedure
can be regarded as a binary relation over the program states. The defini-
tion of compatibility appears in section 10.3. Loose executions are defined
in section 10.4. A statement of the reduction theorem and its proof are
given in section 10.5.
We use some elementary results from relational calculus in this chapter;

see appendix A.5 for a brief introduction to this topic.

10.2 A Model of Seuss Programs

In this section, we formalize the notion of box, procedure and executions
of procedures (program execution is treated in section 10.5). The cats of
Seuss are not modeled because they have no relevance at run time. Also,
we do not distinguish between action and method because this distinction
is unnecessary for the proof of the theorem.

10.2.1 Basic concepts
• A box is a pair (S, P ) where

S is a set of states
P is a set of procedures

Each procedure has a unique name and is designated either partial
or total.

• A procedure is a tuple (T,N,E) where:

T is a set of terminal symbols;
each symbol in T is a binary relation over its box states.

N is a set of nonterminal symbols;
each symbol in N is the name of a procedure of another box.

E is a nonempty set of executions;
each execution is a finite string over T ∪N .

An execution of a total procedure is a sequence where each element
of the sequence is either a terminal or a total procedure of another
box. An execution of a partial procedure is of the form b h e, where b
is a terminal, h —which is optional— is a nonterminal that names a
partial procedure of another box, and e is a sequence in which each
element is either a terminal or a total procedure of another box.
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• A program is a finite set of boxes. Program state is given by the box
states. (Therefore, each terminal symbol may be viewed as a binary
relation over the program states.)

• An expanded execution of procedure p is a string of terminals, ob-
tained from an execution of p by replacing each nonterminal q by an
expanded execution of q.

We show in section 10.4.2 that this definition is well-grounded.

Conventions:

1. Terminal symbols of different procedures are distinct.

2. Each execution of procedure p begins with a beginp symbol and ends
with a endp symbol. Both of these are terminal symbols of procedure
p.

3. For terminal s, s.box is the box of which s is a symbol. Similarly,
p.box is defined for procedure p.

Note We have not specified the initial states of the boxes, because we do
not need the initial states to prove the main theorem. ✷

10.2.2 Justification of the model
A terminal symbol of a procedure denotes a local step within the procedure.
A local step can affect only the state of the corresponding box, and we allow
a step to have a nondeterministic outcome. Hence, each terminal is modeled
as a binary relation over box states.
In the formal model, procedures are parameter-less. Although this would

be an absurd assumption in practice, it simplifies mathematical modeling
considerably. We justify this assumption as follows. First, we can remove
a value parameter from a procedure by creating a set of procedures, one
for each possible value of the parameter, and the caller can decide which
procedure to call based on the parameter value. Thus, all value parameters
may be removed at the expense of increasing the set of procedures. Next,
consider a procedure with result parameters; to be specific, let read(w)
return a boolean value in w. The caller of read cannot decide a priori what
the returned value will be. However, we can remove parameter w as follows.
First, model read by two different procedures, readt and readf , which
return the values true and false, respectively. Now we have two different
execution fragments modeling the call on read(w):

readt; w := true
readf ; w := false
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An execution that calls read(w) is represented by two executions in our
model, one for each possible value returned by read for w. Thus, we can
remove all parameters from procedures.
Next, we justify the model of procedure execution. An execution is a

sequence of steps taken by a procedure and the procedures it calls. For the
moment, assume that each procedure has a single alternative; the general
case is treated below, though we do not consider negative alternatives at
all in this chapter. To motivate further discussion, consider a procedure
P that calls read(w), described above, twice in succession. The terminal
symbols of P are α and β where

α denotes w := true, and β denotes w := false

The nonterminals of P are readt and readf , as described above.
An execution of P does the following steps twice: call read and then as-

sign the value returned to w. If P is executed alone, the possible executions
are

beginP readt α readt α endP

beginP readf β readf β endP

However, if other procedures are executed concurrently with P , the value
being read can change in between the two read operations (being written by
other concurrently executing procedures). Therefore, the loose executions
of P are

beginP readt α readt α endP

beginP readf β readf β endP

beginP readt α readf β endP

beginP readf β readt α endP

In particular, the execution beginP readt α readf β endP denotes that the
boolean value is changed from true to false by another procedure during
the two calls to read by P . Our goal is to model concurrent executions;
therefore, we admit all four executions shown above as possible executions
of P .

Treatment of alternatives

Each alternative of a procedure is akin to a procedure. Associated with
an alternative is a nonempty set of executions, and the executions of a
procedure —assuming that all its alternatives are positive— is the union
of the executions of its alternatives.
The treatment of negative alternatives is more involved and we have not

developed the necessary theory. The following example illustrates how such
a theory may be developed. Let procedure f have two alternatives:

f :: p; g → s
� | q; h → t
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Procedure f is replaced by two procedures, f+ and f−, corresponding
to its accepting and rejecting executions. Procedure f+ has the following
execution (disregarding the begin and end symbols): p g+ s. Note that
g+ has to be used instead of g in this execution. An execution of f rejects
because (1) both p and q are false, or (2) p holds but g rejects, or (3) q holds
but h rejects, or (4) q holds and h accepts. The corresponding executions
are ¬p ∧ ¬q, p g−, q h−, and q h+ t.

10.2.3 Partial order on boxes
We restate the following restriction on programs described in section 3.2.6.
For each procedure, there is a partial order over the boxes of the program
such that during execution of that procedure, a procedure may call another
only if the former belongs to a higher box than the latter. Different pro-
cedures may impose different partial orders on the boxes. It was shown in
section 3.4.4 why a static partial order —i.e., one that is the same for all
procedures— is inadequate in practice.

Definition For procedures p and q, we write p calls q to mean that p
has q as a nonterminal. Let calls+ be the transitive closure of calls, and
calls∗ the reflexive transitive closure of calls. Define a relation callsp over
procedures where

(x callsp y) ≡ (p calls∗ x) ∧ (x calls y) ✷

In operational terms, x callsp y means procedure x may call procedure y
in some execution of procedure p.
Each program is required to satisfy the following condition (PB). For

every procedure p, there is a partial order ≥p over the boxes such that

x callsp y ⇒ x.box >p y.box (PB)

Note Let b >p c be b ≥p c ∧ b �= c. Relation ≥p is reflexive and >p is
irreflexive. ✷

Observation 1

p calls∗ x ⇒ p.box ≥p x.box
p calls+ x ⇒ p.box >p x.box

Proof: Define callsi, for i ≥ 0, as follows.
p calls0 p ,
p callsi+1 q ≡ 〈∃r :: p callsi r ∧ r calls q〉

We prove the following results using induction over i,

p calls0 x ⇒ p.box ≥p x.box
p callsi+1 x ⇒ p.box >p x.box , for all i, i ≥ 0
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For i = 0:

p calls0 x
≡ {definition of calls0}

p = x
⇒ {predicate calculus}

p.box ≥p x.box

For i+ 1, i ≥ 0:

p callsi+1 x
≡ {definition of callsi+1}

〈∃r :: p callsi r ∧ r calls x〉
≡ {from the definition of calls∗: p callsi r ⇒ p calls∗ r}

〈∃r :: p callsi r ∧ p calls∗ r ∧ r calls x〉
⇒ {induction on p callsi r}

〈∃r :: (p.box ≥p r.box) ∧ (p calls∗ r ∧ r calls x)〉
≡ {definition of r callsp x}

〈∃r :: (p.box ≥p r.box) ∧ r callsp x〉
⇒ {partial order condition, (PB), on the second conjunct}

〈∃r :: (p.box ≥p r.box) ∧ (r.box >p x.box)〉
⇒ {>p is a partial order}

p.box >p x.box

The claims in observation 1 follow from

p calls∗ x ≡ 〈∃i : i ≥ 0 : p callsi x〉
p calls+ x ≡ 〈∃i : i > 0 : p callsi x〉 ✷

From observation 1,

p calls+ q ⇒ (p.box >p q.box)

Therefore, p and q are in different boxes. It follows that in a tight execution
no call is made on a box when one of its procedures has started but not
completed its execution.

Observation 2 calls+ is an acyclic (i.e., irreflexive, asymmetric, and
transitive) relation over the procedures.
Proof: From its definition calls+ is transitive. Also,

p calls+ p
⇒ {from observation 1}

p.box >p p.box

a contradiction. Therefore, calls+ is irreflexive. Asymmetry of calls+ fol-
lows similarly. ✷
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10.2.4 Procedures as relations
With each terminal symbol we have associated a binary relation over pro-
gram states. Next, we associate such a relation with each procedure and
each execution of a procedure; to simplify notation, we use the same symbol
for an execution (or a procedure) and its associated relation. For execution
e, (u, v) ∈ e means that if e is started in state u, it is possible for it to end
in state v. For procedure p, (u, v) ∈ p means that there is an execution e
of p such that (u, v) ∈ e. Formally,

• The relation for a procedure is the union of relations of all its execu-
tions.

• The relation for an execution x0, . . . , xn is the relational product of
the sequence of relations corresponding to the xi’s.

Observe that symbol xi in an execution may be a terminal, so the relation
for it has already been defined or a nonterminal for which the relation has to
be computed recursively using this definition. We show in lemma 1 that the
rules given above define unique relations for each execution and procedure;
the key to the proof is the acyclicity of calls+.

Definition The height of a procedure is a natural number; height is 0 if
the procedure has no nonterminal. Otherwise,

p calls q ⇒ p.height > q.height

This definition of height is well-grounded because calls+ induces an acyclic
relation on the procedures. ✷

Lemma 1 There is a unique relation for each procedure and for each ex-
ecution.

Proof: We prove the result by induction on n, the height of a procedure.

Case n = 0: The procedure has only terminals in all its executions.
The relation associated with any execution of the procedure is the rela-
tional product of its terminals. The relation associated with the procedure
is the union of all its executions; therefore, these relations are uniquely
determined.

Case n > 0: The relations for the terminals in an execution are given.
The nonterminals have heights smaller than n; therefore, from the induction
hypothesis, relations for these nonterminals can be computed. Hence, the
relation for an execution —which is the relational product of the sequence
of relations of its terminals and nonterminals— can also be computed. The
relation for a procedure is the union of the relations of its executions; there-
fore, it is uniquely determined. ✷
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Note that an execution may have the empty relation associated with it,
which denotes that the steps of the execution never appear contiguously in
a program execution. Consider the following execution from the example
on page 319: beginP readt α readf β endP . Here two successive reads of
the same variable yield different values. Such a sequence may appear only
as a noncontiguous subsequence in a program execution where interleaved
steps of another procedure’s execution alter the value of the variable in
between the two read operations.

Notation Henceforth, each symbol —terminal and nonterminal— has an
associated binary relation over program states. Concatenation of symbols
corresponds to their relational product. For strings x and y, we write x ⊆ y
to denote that the relation corresponding to x is a subset of the relation
for y. ✷

Observation 3 For terminal symbols s and t of different boxes, st = ts
(i.e., the executions st and ts have the same effect on the program state).
Also, if s and t are sequences of terminals, and all symbols in s and t are
from different boxes, then st = ts. ✷

10.3 Compatibility

Procedures p and q are compatible, denoted by p ∼ q, iff all of the following
conditions hold. Observe that ∼ is a symmetric relation.

C0. p calls p′ ⇒ p′ ∼ q and q calls q′ ⇒ p ∼ q′.

C1. If p and q are in the same box,

(p is total ⇒ qp ⊆ pq)
(q is total ⇒ pq ⊆ qp)

C2. If p and q are in different boxes, the transitive closure of the relation
(≥p ∪ ≥q) is a partial order over the boxes.

Condition (C0) says that procedures that are called by compatible pro-
cedures are compatible. Condition (C1) says that for p and q in the same
box, the effect of executing a partial procedure and then a total procedure
can be simulated by executing them in the reverse order. Condition (C2)
says that compatible procedures impose similar (i.e., nonconflicting) partial
orders on boxes.

Notes

1. If partial procedures p and q of the same box call no other procedure,
they are compatible because the given conditions hold vacuously.
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2. Total procedures p and q of the same box are compatible only if
pq = qp, applying (C1) twice.

3. Condition (C0) is well-grounded because if p calls p′, the height of p
exceeds that of p′.

4. For procedures with parameters (as is the case in Seuss) compatibility
has to be established by checking the given conditions, (C0, C1, C2),
with all possible values of parameters; see the channels example in
section 10.3.1. ✷

Automatic derivation of compatibility relation
Compatibility condition (C1) cannot be checked by a traditional compiler,
because a proof is required to establish this condition (see examples in
section 10.3.1, below, for such proofs). Therefore we expect a programmer
to declare that certain pairs of procedures in each box are compatible,
by proving the corresponding (C1) condition. Once the declarations are
available, a compiler can generate the compatibility relation among all
procedures (across different boxes), employing conditions (C0) and (C2),
as follows.
First, the calls relation of the program (p calls q) is generated from

the program text. Then calls∗ and callsp relations are computed (see sec-
tion 10.2.3 for definitions of these relations). These determine the partial
order over boxes, according to (PB) in that section. Hence, for each pair of
procedures p and q, condition (C2) can be checked.
Next, (C0) can be checked as follows. For all pairs of procedures p and

q, computation proceeds in the order of increasing sum of their heights.
Since the compatibility information is available through declarations of
procedures in the same box, assume that p and q belong to different boxes.
If their heights are both 0, they call no other procedure; hence, (C0) is
satisfied and they are compatible. Otherwise, let p and q have a combined
height n, n > 0. The compatibility of p′, q and p, q′ —where p calls p′ and
q calls q′— have already been determined because each pair has a combined
height lower than n; hence, p ∼ q can be computed using (C0).

10.3.1 Examples of compatibility

Semaphore
Consider a general semaphore as given by the program Semaphore of sec-
tion 3.2.3. We show that V ∼ V and P ∼ V , i.e., from (C1),

V V = V V
PV ⊆ V P
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The first identity is trivial. For the second identity, we compute the
relations corresponding to P and V as follows. Below, ◦ denotes relational
product.

P
= {from the program text}

(n > 0) ◦ (n := n− 1)
= {definitions of predicate and assignment; see appendix A.5}

{(x, x)| x > 0} ◦ {(x, x− 1)| x > 0}
= {simplify}

{(x, x− 1)| x > 0}
Similarly,

V = {(x, x+ 1)| x ≥ 0}
Taking their relational product,

PV = {(x, x)| x > 0}
and

V P = {(x, x)| x ≥ 0}
Therefore, PV ⊆ V P .
For a binary semaphore (see section 4.9.1) P , V are not compatible.

Here, the V operation fails if it is executed when the semaphore value is 1.
We define a failed state ! from which all further executions remain in the
same state. Then

P = {(1, 0), (!, !)}
V = {(0, 1), (1, !), (!, !)}

Taking their relational products

PV = {(1, 1), (!, !)}
V P = {(0, 0), (1, !), (!, !)}

This establishes PV �⊆ V P .

Channels
Consider the unbounded fifo channel of section 4.1.1. We show get ∼ put;
i.e., for any x and y,

get(x) put(y) ⊆ put(y) get(x)

Hence, any state reachable by executing get(x) put(y) is also reachable by
executing put(y) get(x) starting from the same initial state.
Given (u, v) ∈ get(x) put(y), we show that (u, v) ∈ put(y) get(x). From

(u, v) ∈ get(x) put(y) and the definition of relational product, conclude
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that there is a state w such that (u,w) ∈ get(x) and (w, v) ∈ put(y). Since
(u,w) ∈ get(x), from the implementation of get, the channel is nonempty
in state u; i.e., the channel state s is of the form a ++ S for some item a
and a sequence of items S. Then, we have

{s = a ++ S} put(y) {s = a ++ S ++ y} get(x) {x ++ s = a ++ S ++ y}
{s = a ++ S} get(x) {x ++ s = a ++ S} put(y) {x ++ s = a ++ S ++ y}

The final states, given by the values of x and s, are identical. This completes
the proof.
The preceding argument shows that two procedures from different boxes

that call put and get (i.e., a sender and a receiver) may be executed concur-
rently. Further, since get ∼ get by definition, multiple receivers may also
be executed concurrently. However, put ∼ put does not hold; for arbitrary
x and y,

put(x) put(y) �= put(y) put(x)

because a fifo channel is a sequence, and appending a pair of items in
different orders results in different sequences. Since put is not compatible
with put, multiple senders should not be executed concurrently.
In a client–server type of interaction, it is often required that multiple

senders (clients) and receivers (servers) be executed concurrently, send-
ing and receiving over a single channel. As shown above, a fifo channel is
inadequate for this purpose. Therefore, we use the unordered channel of
section 4.1.3. We show that put ∼ put and put ∼ get for the unordered
channel; i.e., for all x and y

put(x) put(y) = put(y) put(x)
get(x) put(y) ⊆ put(y) get(x)

The proof of the first identity is trivial because put is implemented as a bag
union. The proof of the second result is similar to that for the fifo channel.
We need consider the initial states where the bag b is nonempty. In the
following, x ∪ b is an abbreviation for {x} ∪ b.

{b = B,B �= ∅} get(x) {x ∪ b = B} put(y) {x ∈ B, x ∪ b = B ∪ y} (1)
{b = B,B �= ∅} put(y) {b = B ∪ y} get(x) {x ∈ (B ∪ y), x ∪ b = B ∪ y}(2)

If the post-condition of (1) holds, the post-condition of (2) also holds
because x ∈ B ⇒ x ∈ (B ∪ y). Hence, any final state of get(x) put(y) is
also a final state of put(y) get(x).

10.3.2 Semicommutativity of compatible procedures
In lemma 2, below, we prove a result analogous to condition (C1) on
page 323 for compatible procedures. This result applies to any pair of com-
patible procedures, not necessarily those in the same box.
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Lemma 2 Let p be a total procedure and p ∼ q. Then, qp ⊆ pq.

Proof: We apply induction on n, the sum of the heights of p and q. The
result holds from the definition of ∼ if p and q are in the same box. Assume,
therefore, that p and q are in different boxes.

Case n = 0: Both p and q are at height 0; hence, p and q have only
terminals in all their executions. Since, p, q are from different boxes, the
result follows by application of observation 3 (see page 323).

Case n > 0: From (C2), the transitive closure of (≥p ∪ ≥q) is a partial
order over the boxes; we abbreviate this relation by ≥. We prove the result
for the case where ¬(q.box > p.box). By symmetry, a similar argument
applies for the remaining case, ¬(p.box > q.box).
The proof is based on the following sublemmas. Sublemma 3 completes

the proof.

sublemma 1: For symbol x in any execution of p, qx ⊆ xq.
sublemma 2: For any execution e of p, qe ⊆ eq.
sublemma 3: qp ⊆ pq.

• Proof of sublemma 1: We consider two cases: x is a terminal, and x is
a nonterminal.

• x is a terminal: Consider any expanded execution of q. A terminal t in
this expanded execution is a symbol of procedure r where q calls∗ r.

x.box = t.box
⇒ {x and t are terminals of p and r, respectively}

x.box = t.box ∧ x.box = p.box ∧ t.box = r.box
⇒ {predicate calculus}

p.box = r.box
⇒ {q calls∗ r; observation 1 on page 320}

p.box = r.box ∧ q.box ≥q r.box
⇒ {predicate calculus}

q.box ≥q p.box
⇒ {≥ is the transitive closure of (≥p ∪ ≥q)}

q.box ≥ p.box
⇒ {by assumption, p and q are from different boxes}

q.box > p.box
⇒ {assumption: ¬(q.box > p.box)}

false

Thus, x and t belong to different boxes, so applying observation 3,
xt = tx. Applying this argument for all terminals t in every expanded
execution of q, we have qx = xq.



328 10. Reduction Theorem

• x is a nonterminal: Since p ∼ q and p calls x, from (C0), x ∼ q. The
combined heights of x and q is less than n. Also, x is total, since it
is a nonterminal of p and p is total. From the induction hypothesis,
qx ⊆ xq. (End of sublemma 1 proof) ✷

• Proof of sublemma 2: We have to show that for any execution e of p,
qe ⊆ eq. Proof is by induction on the length of e. If the length of e is 1, the
result follows from qx ⊆ xq (sublemma 1). For e of the form fx, where f
is a string and x is a symbol:

qfx
⊆ {Induction: qf ⊆ fq; monotonicity of relational product}

fqx
⊆ {from sublemma 1, qx ⊆ xq; monotonicity of product}

fxq (End of sublemma 2 proof) ✷

• Proof of sublemma 3, qp ⊆ pq:

qp
= {definition of p}

q(∪e∈p e)
= {distributivity of relational product over union}

(∪e∈p qe)
⊆ {from sublemma 2, qe ⊆ eq; monotonicity of ∪}

(∪e∈p eq)
= {distributivity of relational product over union}

(∪e∈p e)q
= {definition of p}

pq (End of sublemma 3 proof) ✷

Lemma 3 (p ∼ q ∧ p calls∗ p′ ∧ q calls∗ q′) ⇒ (p′ ∼ q′).

Proof: First, prove

(p ∼ q ∧ p callsi p′ ∧ q callsj q′) ⇒ (p′ ∼ q′)

by induction on i+ j, i, j ≥ 0. Lemma 3 follows from this proposition. ✷

10.4 Loose Execution

A loose execution of a program allows concurrent executions of its proce-
dures (i.e., in an interleaved fashion). Henceforth, we consider executions
in which only a finite number of procedures are executed to completion;
that is, the loose executions are finite. Concurrency in a loose execution
is restricted as follows: (1) only compatible procedures may be executed
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concurrently, and (2) two procedures from the same box are never exe-
cuted concurrently. An implementation that obeys (1) and (2) is given in
chapter 11.
Now we show how to eliminate condition (2) above, by imposing a simple

requirement on the terminals of a box.

10.4.1 Box condition
The condition that at most one procedure from a box is executed at any
time can be encoded in our model by making it impossible for procedure q
to start if procedure p of the same box has started and not yet completed.

Definition Let σ be a sequence of terminals and nonterminals. Procedure
p is incomplete after σ if σ contains fewer endp’s than beginp’s. ✷

Box condition Let p and q be procedures of the same box, and p be in-
complete after σ. Then σ beginq = ε, where ε denotes the empty relation. ✷

The following lemma shows that under certain conditions a terminal
symbol can be transposed with an adjacent nonterminal.

Lemma 4 Let p and q be procedures, t a terminal of p, and σ any sequence
of symbols.
1. If p is incomplete after σ, then σqt ⊆ σtq.
2. If p is incomplete after σt, then σtq ⊆ σqt.

Proof: We prove the first part; the other part is left to the reader.

σqt
= {q is the union of all its expanded executions, g}

〈∪g(σgt)〉
= {partition g into e and f : each execution in e

has a terminal from p.box, and f does not}
〈∪e(σet)〉 ∪ 〈∪f (σft)〉

= {e is of the form σ′ beginr σ
′′, where:

σ′ has no terminal from p.box;
r is some procedure from p.box}
〈∪(σσ′ beginr σ

′′ t)〉 ∪ 〈∪f (σft)〉
= {σσ′ beginr = ε, from Box condition, because

p is incomplete after σ; therefore, after σσ′ too.
Also, r.box = p.box}
〈∪f (σft)〉

= {f has no terminal from p.box, t is a terminal of p.box;
apply observation 3 on page 323}
〈∪f (σtf)〉

⊆ {f is a subset of the (expanded) executions of q}
σtq
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10.4.2 Execution tree

Definition An execution tree of procedure p is an ordered tree such that
(1) the root is labeled p, (2) every non-leaf node is labeled with a nonter-
minal symbol, and (3) the sequence of labels of the children of a non-leaf
node q is an execution of q. A full execution tree is an execution tree in
which each leaf node is labeled with a terminal symbol. ✷

An execution tree of procedure p is constructed by taking an execution
of p and possibly expanding some of the nonterminals in a similar fashion;
see the example given later in this section. Any execution tree is finite. This
is because if procedure q is a parent of procedure r in a tree for p, then
q callsp r; from partial order on boxes (PB), q.box >p r.box. Therefore, the
boxes along a path are distinct. Since the program has a finite number of
boxes, each path in the tree is finite. Also, the degree of each node is finite
because each execution is finite in length. From Koenig’s lemma, the tree
is finite.

Definition The frontier of an execution tree is the ordered sequence of
symbols in the leaf nodes of the tree. An expanded execution of procedure
p is the frontier of some full execution tree of p. Hence, an expanded exe-
cution consists of terminals only. ✷

A loose execution is given by (1) a finite set of full execution trees (of
some of the procedures), and (2) a finite sequence of terminals called a
run. The run describes the steps (i.e., the terminals) of the interleaved
execution. Each execution tree shows the entire history (of all procedures
called) during the execution of a procedure in that run. The trees and the
run satisfy conditions (M0, M1), given below.
Condition (M0) states that each symbol of the run can be uniquely iden-

tified with a leaf node of some tree and vice versa. Additionally, the run
contains the procedure executions (the frontiers of the corresponding trees)
as subsequences. Since each symbol of the run belongs to a unique tree we
write x.root for the root of the tree that symbol x belongs to.
Condition (M1) states that if two procedures are incomplete at any point

in the run, they either belong to the same tree (i.e., they are both part of
the execution of the same procedure) or they are compatible.

• (M0) There is a 1–1 correspondence between the symbols in the run
and the leaf nodes of the trees. The subsequence of the run corre-
sponding to symbols from a tree T is the frontier of T .

• (M1) Suppose procedure p is incomplete before symbol s in the run.
Then either (p.root = s.root) or (p.root ∼ s.root).
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A tight execution is a loose execution in which (M1) is modified as follows:
suppose procedure p is incomplete before symbol s in the run; then p.root =
s.root. Therefore, there is no interleaving of procedure executions.

Example

We show a loose execution that is an interleaving of two procedure execu-
tions. The two execution trees are shown in Fig. 10.1. The nonterminals are
given in uppercase, terminals in lowercase. We use [P as an abbreviation
for beginP and P ] for endP . The following run prescribes the interleaving:
[P p [Q [T q r Q] [U [R [S s u S] U ] R] P ] T ]. Clearly, P ∼ T for this to be an
acceptable loose execution. We can derive this result using (M1) at the point
preceding s in the run: since P is incomplete there, either (P.root = s.root)
or (P.root ∼ s.root). From the execution trees, P.root = P and s.root = T ,
so (P.root �= s.root). Therefore, (P.root ∼ s.root) or P ∼ T .

[T U T]

[U u U]

p Q R

q r S

s

P T

[Q [R R]

[P P]

Q]

[S S]

Figure 10.1: Execution trees in a loose execution

10.5 Reduction Theorem and Its Proof

Reduction theorem For any loose execution E there is a finite sequence
of procedures F such that E ⊆ F (here, F denotes the relational product
of the corresponding procedures).

10.5.1 Proof of the reduction theorem
Suppose R is the run of some loose execution. We transform run R and
the execution trees in stages; let R′ denote the transformed run. The trans-
formed run may consist of terminals as well as nonterminals, and its exe-
cution trees need not be full (i.e., leaf nodes may have nonterminal labels).
We show how to transform the execution trees and the run so that the
following invariants are maintained. Note the similarity of (N0, N1) with
(M0, M1).
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• (N0) There is a 1–1 correspondence between the symbols in the run
and the leaf nodes of the trees. The subsequence of the run corre-
sponding to symbols from a tree T is the frontier of T .

• (N1) Suppose procedure p is incomplete before symbol s in the run.
Then either (p.root = s.root) or (p.root ∼ s.root).

• (N2) R ⊆ R′.

Conditions (N0, N1, N2) are satisfied initially by the given run and the
execution trees: (N0, N1) follow from (M0, M1), and (N2) holds because
R = R′.
The reduction process terminates when there are no end symbols in the

run; then all symbols are the roots of the trees. Hence, this run corresponds
to a sequence of nonterminals, and according to (N2), it establishes the
reduction theorem. The resulting sequence of nonterminals can simulate
the original loose execution: if the original execution starting in state u can
end in state v, there exists a tight execution of the sequence of nonterminals
that transforms the program state from u to v.
For a run that contains an end symbol, we apply either a replacement

step or a transposition step. Let the first end symbol appearing in the run
belong to procedure q.

Replacement step If a contiguous subsequence of the run corresponds
to the frontier of a subtree rooted at q (then the subsequence is an exe-
cution of q), replace the subsequence by symbol q and delete the subtree
rooted at q (retaining q as a leaf node). ✷

This step preserves (N0). (N1) also holds because, for any symbol x in the
execution that is replaced by q, p.root ∼ x.root holds prior to replacement,
and x.root = q.root. Hence, p.root ∼ q.root after the replacement. The
relation for a procedure is weaker than for any of its executions; therefore,
the replacement step preserves (N2).

Transposition step If a run has an end symbol, and a replacement step
is not applicable, then execution of some procedure q is noncontiguous.
We then apply a transposition step to transpose two adjacent symbols in
the run (leaving the execution trees unchanged) that makes the symbols
of q more contiguous. Continued transposition make it possible to apply a
replacement step eventually. ✷

Suppose q is a partial procedure (similar arguments apply to partial pro-
cedures that have no pre-procedures and to total procedures). An execution
of q is of the form (beginq b h . . . x . . . endq), where h is the pre-procedure
of q and x is either a terminal symbol or a nonterminal, designating a total
procedure of q. All procedures that complete before q have already been
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replaced by nonterminals, because the first end symbol appearing in the
run belongs to q. Note that h is a procedure that completes before q.
Suppose x is preceded immediately by y in this run. Then, y is not part

of the execution of q. We show that x and y can be transposed, bringing x
closer to h. Transposing x and y preserves (N0, N1). We show below that
transposition preserves (N2) as well.

Case 0 (both x and y are terminals): Let y be a terminal of procedure p.
Procedure q is incomplete before y because its endq symbol comes later. For
p and q in the same box, the relation corresponding to prefix σ of the run
up to (and including) y is ε, from the box condition. Hence, σyx = ε ⊆ σxy.
If p and q belong to different boxes, from observation 3, symbols x and y
can be transposed.

Case 1 (both x and y are nonterminals): Symbol x is part of q’s execu-
tion; therefore, q.root calls∗ x. It is given that symbol y is not part of q’s
execution. Also, y cannot be part of the execution of any procedure that
calls q because q is incomplete before y; therefore, q.root �= y.root.

q is incomplete just before y
⇒ {(N1)}

q.root = y.root ∨ q.root ∼ y.root
⇒ {q.root �= y.root (see explanation above)}

q.root ∼ y.root
⇒ {q.root calls∗ x ∧ y.root calls∗ y; lemma 3}

x ∼ y
⇒ {x is total; lemma 2}

yx ⊆ xy

Case 2 (x is a terminal, y a nonterminal): q is incomplete just before y.
Applying lemma 4 (part 1), x and y may be transposed.

Case 3 (x is a nonterminal, y is a terminal): Let p be the procedure of
which y is a terminal. Since the first end symbol in the run belongs to q,
endp comes after x. Therefore, p is incomplete before x. Applying lemma 4
(part 2) with p as the incomplete procedure, x and y may be transposed.
Thus, x and y may be transposed in all cases, preserving N3. Hence, all

symbols in the execution of q to the right of h can be brought next to h.
Next, we bring the beginq symbol and the predicate b next to h using an

argument similar to case 3. Thus, all of q’s symbols to the left and right of
h can be made contiguous around h, and a replacement step can then be
applied.
For a total procedure q the reduction is done similarly; beginq serves

the role of h in the above argument. For a procedure q that has no pre-
procedure, the reduction process is similar with b serving the role of h.
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Proof of termination of the reduction scheme:

We show that only a finite number of replacement and transposition steps
can be applied to any loose execution. For a given run, consider the proce-
dure q whose end symbol, endq, is the first end symbol in the run. Define
two quantities, n and c, for each run as follows.

n = the number of end symbols in the run
c = Σ cj

where cj is the number of symbols in the run not belonging to q between
the pre-procedure h of q and symbol j of q, and the sum in c is over all
symbols of q. Value of c is arbitrary if the run has no end symbol.
The pair (n, c) decreases lexicographically with each transposition and

replacement step. This is because a replacement step removes one end sym-
bol from the run, thus decreasing n. A transposition step decreases c while
keeping n unchanged. Therefore, n will become 0; then the run has no end
symbol, so, from (N0), the symbols are the roots of the execution trees.

10.6 A Variation of the Reduction Theorem

The following variation of the reduction theorem may be useful for appli-
cations in a wide-area network, such as the World Wide Web, because it
requires no check for compatibility and no scheduler of any kind (see sec-
tion 11.2 for the role of scheduler in the general case). Consider a Seuss
program in which every procedure calls at most one other procedure. Then
any pair of actions may be taken to be compatible, and any concurrent
execution is a loose execution.
The proof of the reduction theorem in this case is similar to the earlier

proof. If procedures p and q call p′ and q′, respectively, then the concurrent
executions of p and q are serialized in the order in which p′ and q′ are
called; the entire execution of p is made contiguous around p′ and similarly
for q. As before, we reduce the procedure whose end symbol is the first end
symbol in the run. If this procedure calls no other procedure, all its symbols
are terminals and, by applying case (0) and case (2) of the transposition
step, we can bring all its symbols together next to its first symbol. If the
procedure calls another procedure, according to the reduction scheme, the
called procedure has already been reduced, and we bring all the symbols
next to the called procedure symbol in a similar fashion.
The major simplification in the reduction scheme for this special case is

due to the fact that it is never necessary to transpose two nonterminals.
Therefore, case (1) of the transposition step never arises. Consequently,
the condition for compatibility of two procedures (page 323) is irrelevant
in this case.
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10.7 Concluding Remarks

Concurrent programming is possible because most components do not in-
terfere with each other. Large systems are easier to build out of non-
interfering components, because each component can be designed indepen-
dently. Whenever there is interference, a scheduler or some such controlling
mechanism is required for arbitration. Typically, non-interference is taken
to mean that the components work on different parts of the data space. In
this chapter, we have given a more general definition using compatibility.
How general is the notion of compatibility? We have shown that senders

and receivers that communicate over point-to-point fifo channels are com-
patible; see page 325. This means that if all actions in a program employ
only point-to-point channels for communication, then the actions can be
executed concurrently; all pairs of actions are compatible and there is no
need for a scheduler. If there are multiple senders on a fifo channel, the
senders are not compatible. In this case, we have to use unordered channels
to regain compatibility.
We surmise that message-based communication is popular in practice

because it permits unrestrained concurrent execution. Contrast this with
a shared variable program (reads and writes on shared variables are not
compatible) where the actions have to be scheduled carefully to achieve
the appropriate loose executions. The definition of compatibility proposed
in this chapter may be used to define a “generalized channel”, a shared
variable for which its appropriate methods are compatible. Actions that
access only these generalized channels are compatible and may be executed
concurrently without intervention by a scheduler.
One of the distinctions between partial and total procedures is moti-

vated by the requirements of the reduction theorem. It is possible to treat
a partial procedure as a total procedure where a return code —“accept”
or “reject”— notifies the caller of the status of procedure execution. If all
procedures are total, compatibility reduces to commutativity: two proce-
dures from the same box are compatible if they commute, and procedures
from different boxes are compatible if the procedures they call are compat-
ible. Unfortunately, commutativity is a strong requirement that is rarely
met in practice; P and V on a semaphore do not commute, nor do put
and get on a channel. Having partial procedures permits a richer class of
concurrent executions, because a pair of partial procedures that call no
other procedures are always compatible, and a partial procedure need only
semicommute with a total procedure.

What the reduction theorem does not say
The reduction theorem merely says that a finite loose execution is equiv-
alent to sequential executions of some of the actions. The theorem does
not imply a similar result for an infinite loose execution (which can be de-
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fined analogously to its finite counterpart). Consequently, no assertions can
be made about the progress properties of loose executions; Adams [5] has
derived a number of results for progress properties under more restrictive
definitions of compatibility.
A reasonable additional restriction on loose executions ensures that in-

variant and stable properties and some progress properties of tight exe-
cutions hold in loose executions as well. Valiant [166] has introduced the
concept of bulk synchrony. Applied to our model, it means that every loose
execution eventually reaches a point where there are no incomplete actions.
This requirement can be enforced by a scheduler —see chapter 11— that
periodically stops scheduling any action until all executing actions com-
plete. Let a milestone be a point in a loose execution where there are no
incomplete actions. Every infinite loose execution has an infinite number
of milestones; henceforth, consider only infinite loose executions. It can be
shown that every invariant of a tight execution holds at each milestone, and
if p is stable in tight executions and p holds at some milestone in a loose
execution, then p holds at all subsequent milestones. A progress property
p �→ q of tight executions, where q is stable, also holds in a loose execution
in the following sense: if p holds at a milestone, q holds at that or some
subsequent milestone.

10.8 Bibliographic Notes

The notion of reduction can be traced back to Church and Rosser (see [38])
in connection with reduction of terms in λ-calculus. Reduction of concur-
rent executions to sequential ones was pioneered by Lipton [123]. Lipton
develops certain conditions under which the steps of a component may be
considered indivisible (i.e., occurring sequentially) in a concurrent execu-
tion. A step f in a component is a right mover if for any step h of another
component, whenever fh is defined, then so is hf and they yield the same
result (i.e., their executions result in the same final state). Similarly, g is
a left mover if for any h of another component hg is defined implies gh
is defined, and hg = gh. Lipton shows that a sequence of steps of a com-
ponent, r0 r1 . . . rn c l0 l1 . . . lm, may be considered indivisible if each
ri is a right mover, lj a left mover and c is unconstrained. This charac-
terization permits proofs of absence of deadlock. Doeppner [65], Back [13],
and Lamport and Schneider [120] generalize this work to allow proofs of
general safety properties. Cohen [43] gives a beautiful treatment of several
reduction theorems, using Kleene algebra to compare their relative merits.
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in database transactions [67]. Each transaction acquires all its locks for the
items that it accesses before it unlocks any item. It can be shown that
interleaved executions of such transactions is equivalent to executing them
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sequentially in some order. In this case, lock acquisition is a right mover
and unlock is a left mover.
For reductions that deal with progress properties, see Misra [137] and

Cohen and Lamport [44]. Cohen [42] has introduced the notion of “de-
coupling” of program components, which permits them to be executed
concurrently. Cohen and later Rao [155] establish a number of important
results, including the connection between commutativity and decoupling.
Joshi [99] proposes a concept called “immediacy”, based on the earlier
work of Cohen [42]. It combines the underlying assumptions of fairness and
commutativity, and permits certain sequence of actions (such as sending
and receiving on a channel) to be considered simultaneous; hence, a simple
rendezvous can replace asynchronous communication. Immediacy proper-
ties obey many algebraic laws, and may be used as a basis for developing
a Hoare-like logic for progress proofs. Cohen [43] has shown how similar
proofs can be carried out within Kleene algebra.
The work in this chapter is developed to a far greater depth in the Ph.D.

thesis of Adams [5]. He defines weak and strong compatibility, which are ap-
propriate for studying safety and progress properties, respectively. He also
identifies intermediate classes of compatibility suitable for studying specific
progress properties. The notion of bulk synchrony is due to Valiant [166].
The original model of bulk synchrony was applicable to systems in which
message-passing was the primary means of communication; see Ramachan-
dran, Grayson, and Dahlin [154] for a comparative study of three bulk
synchrony models, one of which deals with shared-memory interactions.
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11
Distributed Implementation

11.1 Introduction

In this chapter, we develop algorithms for implementing Seuss programs
on multiprocessor architectures in which the processors communicate using
messages. The implementation strategy is to partition the boxes over a set
of processors and have a scheduler that instructs each processor which ac-
tion to execute next. The scheduler can be centralized or distributed among
the processors. In the next section, we describe the scheduler in abstract
terms that permits either type of implementation; specific implementations
are described in section 11.5.
The role of a scheduler is to orchestrate concurrent executions of actions.

Crucial to concurrent execution is the notion of compatibility, defined in sec-
tion 10.3: if a set of actions are pairwise compatible, their executions are
non-interfering, and their concurrent execution is equivalent to some serial
executions of these actions. The precise definition of compatibility and the
central theorem that establishes the correspondence between concurrent
and serial executions are given in chapter 10. In this chapter, we assume
that the compatibility relation among the actions is given, and we devise
a scheduling strategy that allows concurrent executions of compatible ac-
tions. Additionally, we guarantee fairness in execution: each action of each
box is eventually executed.
The scheduler is completely unnecessary if all pairs of actions in a pro-

gram are compatible. Such is the case, for instance, if communication is
through fifo channels, and each channel has a single sender (see page 325).
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Also, if each action calls at most one procedure (see section 10.6), all pairs
of actions are compatible, and the scheduler can be eliminated. If only a
few pairs of actions are incompatible, a distributed scheduler can be used
that lets the processors run autonomously for executions of most actions,
and the processors consult the scheduler only when there is possibility of
concurrent executions of incompatible actions.

Overview of the chapter

We give a brief overview of the implementation strategy in section 11.2. In
section 11.3, the scheduling problem is specified and an abstract scheduler
designed. The scheduler is proved to be maximal in section 11.4. We re-
fine the maximal scheduler in section 11.5 for centralized and distributed
implementations. Section 11.6 shows how processors actually execute the
actions. Section 11.7 contains strategies for optimizations that let a sched-
uler predict that certain action executions will be rejected; hence, it does
not ask the processors to execute them. A tight execution often involves
busy waiting —a rejected call is typically attempted over and over— which
can mostly be avoided using such optimizations.

11.2 Outline of the Implementation Strategy

The implementation consists of (1) a scheduler that decides which action
may next be scheduled for execution (see section 11.3), and (2) processors
that carry out the actual executions of the actions (see section 11.6). The
boxes of a program are partitioned among the processors. Each processor,
thus, manages a set of boxes and is responsible for the executions of the
actions of those boxes. The boxes may be partitioned in any manner over
the processors. An implementation may choose a partition to optimize a
specific performance measure, such as workload at the processors or the
network traffic. It should be understood that the scheduler and the pro-
cessors are logical entities in our discussion; they may be implemented on
one or more physical processors. The outline of the implementation is as
follows.

• The scheduler repeatedly chooses some action for execution. The
choice is constrained by the requirement that only compatible proce-
dures may be executed concurrently and by the fairness requirement.
The scheduler sends a message to the corresponding processor to start
execution of this action.

• A processor starts executing an action on receiving a message from
the scheduler. It may call on methods of the other processors by send-
ing messages and waiting for responses. Each call includes argument
values, if any, as part of the message. It is guaranteed that each call
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elicits a response, which is either accept or reject. The accept response
is sent when the call is accepted (which is always the case for calls
on total methods), and values of result-parameters, if any, are re-
turned with the response. A reject response is possible for calls only
on partial methods; no parameter values accompany such a response.

11.3 Design of the Scheduler

11.3.1 An abstraction of the scheduling problem
We are given a finite number of actions and a compatibility relation among
the actions. Two actions may be concurrently executed provided that they
are compatible. It is given that each executing action terminates eventually.
The goal is to design a task scheduler that repeatedly selects actions for
execution so that (1) only compatible actions are executed concurrently,
and (2) each action is executed infinitely often.
The following abstraction captures the essence of the scheduling prob-

lem. Given is a finite undirected graph in which there are no self-loops; the
graph need not be connected. Each node in the graph is black or white;
all nodes are initially white. In this abstraction, a node denotes an action
and a black node an executing action. Two nodes are neighbors if they are
incompatible, i.e., not compatible. It is given that every black node even-
tually becomes white, i.e., each action execution terminates. It is required
to devise a coloring (scheduling) strategy so that the following conditions
hold.

• No two neighbors are simultaneously black (i.e., only compatible ac-
tions may be executed simultaneously).

• Every node becomes black infinitely often.

Note that the scheduler can only blacken nodes; it may not whiten a node.
A simple scheduling strategy is to blacken a single node, wait until it is

whitened, and then blacken another node. Such a strategy implements the
first requirement trivially because there is at most one black node at any
time. The second requirement may be ensured by blackening the nodes in
some fixed order, say, round-robin. However, such a protocol defeats the
goal of concurrent execution. So we impose the additional requirement that
the scheduling strategy be maximal (see chapter 7): any valid concurrent
executions of the actions is a possible execution of the scheduler. A maximal
scheduler is a most general scheduler, because any execution of another
scheduler is a possible execution of the maximal scheduler. By suitable
refinement of the maximal scheduler, we derive a centralized scheduler and
a distributed scheduler (section 11.5).
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11.3.2 Specification
The specification of the scheduler is written using a variable b, which is the
set of black nodes at any stage in the execution.
For sets x, y and a node v, x = y + v denotes that v /∈ y ∧ x = y ∪ {v}.
————————————
Specification Scheduler
initially b = ∅ (S0)
〈∀u, v : u neighbor v : ¬(u ∈ b ∧ v ∈ b)〉 (S1)
b = B co b = B ∨ 〈∃v :: b = B + v ∨ B = b+ v〉, for any B (S2)
For all v, true �→ v ∈ b and true �→ v /∈ b (S3)
end {Scheduler}
————————————

Condition (S0) states that no action is executing initially; (S1) states
that neighbors are never simultaneously black; (S2) says that in a step at
most one node changes color. In (S3), the second property, true �→ v /∈ b, is
established by the actions themselves (each action terminates, so eventually
becomes white), and the scheduler has to implement the remaining progress
property, true �→ v ∈ b.

11.3.3 A scheduling strategy
The following strategy is reminiscent of the strategy used to implement a
fair unordered channel; see section 7.5.1. Assign a natural number, called
height, to each node; let H[u] denote the height of node u. Predicate u.low
holds if the height of u is smaller than all of its neighbors; i.e.,

u.low ≡ 〈∀v : u neighbor v : H[u] < H[v]〉
The scheduling strategy is to set b to ∅ initially, and the node heights in
such a way that neighbors have different heights. Then, the following steps
are repeated.

• (Blackening rule) Eventually consider each node v for blackening; if
v /∈ b ∧ v.low holds, then blacken v.

• (Whitening rule) Simultaneous with the whitening of a node v, in-
crease H[v] to a value that differs from H[u], for all neighbors u of
v.

Formally, the coloring strategy is described by the following program.
There is an action add(v) for each node v that adds v to b provided that
v /∈ b∧v.low. The termination of action v is simulated by remove(v), which
removes v from b and increases H[v] to a value that differs from H[u] for
all neighbors u of v.
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————————————
program Scheduler
node u, v;
set(node) b = ∅;
array[node](nat) H

{initially 〈∀u, v : u neighbor v : H[u] �= H[v]〉};

〈∀v::
add(v):: v /∈ b ∧ v.low → b := b ∪ {v}

remove(v):: v ∈ b → b := b− {v};
H[v] :=? st
H[v] > ′H[v] ∧ 〈∀u : u neighbor v : H[u] �= H[v]〉

〉
end {Scheduler}
————————————

Note ′H[v] is the value of H[v] before the assignment. ✷

11.3.4 Correctness of the scheduling strategy
We show that neighbors have different heights at all times, i.e.,

invariant 〈∀ : x, y : x neighbor y : H[x] �= H[y]〉. (P0)

Proposition (P0) holds initially. If (P0) holds prior to execution of add(v),
it holds following the execution, because add(v) does not affect heights. If
(P0) holds prior to execution of remove(v), it holds afterward because
only H[v] changes, and H[v] �= H[u], for any neighbor u of v following
remove(v).

Proof of (S0)

Follows from the initialization.

Proof of (S1)

The coloring strategy described above maintains the following invariant:
for all v, v ∈ b ⇒ v.low. Observe that this proposition holds initially since
all nodes are then white. A blackening step (add) preserves the proposition
because v.low is a pre-condition for blackening. A whitening step (remove)
preserves the proposition because the antecedent of the proposition be-
comes false.
From this invariant, if u and v are both black, they are both low, and,

from the definition of low, u and v are not neighbors. Therefore, neighbors
are not simultaneously black.
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Proof of (S2)

In add(v), the assignment b := b ∪ {v} has the pre-condition v /∈ b. In
remove(v), the assignment b := b−{v} has the pre-condition v ∈ b. Hence,
S2 is satisfied.

Proof of (S3)

We show that every node becomes black infinitely often in every execution.
First, we give an informal operational argument, and later, we give a proof
in the style of chapter 6.
Suppose that there is a node x that becomes black only a finite number

of times in a given execution. Each blackening and the subsequent whiten-
ing increases the height of a node. Therefore, if some neighbor y of x be-
comes black infinitely often, its height eventually exceeds H[x], establishing
¬y.low, and y is never blackened subsequently. Hence, every neighbor of x
is blackened finitely often.
Applying this argument repeatedly, no node connected to x by a path

can become black infinitely often. Therefore, beyond some point q in an
execution, all nodes in the component of the graph to which x belongs
remain white forever. Let v be a node with the smallest height in this
component at point q in the execution; since all nodes remain white beyond
q, their heights do not change and v remains a node with the smallest
height. Whenever v is considered for blackening beyond q, v is white and
v.low holds; therefore, v will be blackened, contradicting the conclusion
that v remains white forever beyond q.
Now we give the outline of a formal proof for true �→ x ∈ b for all x.

Define the relative height of node x, x.rh, to be the sum of the height
differences of x and all its neighbors of lower heights, i.e.,

x.rh = 〈+y : x neighbor y ∧ H[x] > H[y] : H[x]−H[y]〉
We assert the following properties without proof; they can be proved

directly from the program text; each �→ property is indeed an ensures
property.
For all x, y, n,

1. x.low �→ x ∈ b
2. x.rh = n ∧ (x neighbor y) ∧ y.low

�→ (x.rh = n) ∧ (x neighbor y) ∧ y ∈ b
3. x.rh = n ∧ (x neighbor y) ∧ y ∈ b �→ x.rh < n

We give informal arguments for the validity of these three properties.
Validity of (1): the height of a node does not change as long as it re-

mains white. Therefore, if x is low and white, it remains low (because
its neighbors’ heights can only increase) and white, until it is blackened.
Eventually, x is considered for blackening and then blackened, establishing
property (1).
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Validity of (2) is similar: node y of the lowest height among the neighbors
of x will eventually be black, and until then x.rh is unchanged.
Property (3) follows from the observation that node y, as described

above, will eventually become white; then x.rh will be decreased because
the height of y is increased.
We prove true �→ x ∈ b, based on (1,2,3) as follows.

• Proof of true �→ x ∈ b:

x.rh = n ∧ (x neighbor y) ∧ y.low
�→ (x.rh = n) ∧ (x neighbor y) ∧ y ∈ b

, from (2)
x.rh = n ∧ (x neighbor y) ∧ y.low �→ x.rh < n

, transitivity with (3)
x.rh = n ∧ 〈∃y :: (x neighbor y) ∧ y.low〉 �→ x.rh < n

, disjunction over all y
x.rh = n ∧ ¬x.low �→ x.rh < n

, use invariant (P0), definition of low
x.rh = n ∧ x.low �→ x ∈ b , strengthen left side of (1)
x.rh = n �→ x.rh < n ∨ x ∈ b

, disjunction of the above two
true �→ x ∈ b , induction on the above

11.4 Proof of Maximality of the Scheduler

We use the techniques of chapter 7 to prove the maximality of the Scheduler .
Let z be a sequence of sets, which denotes a possible sequence of values
of b in an execution; assume that z is stutter-free, i.e., successive values in
z are distinct. Let z satisfy the specification (S0, S1, S2, S3), that is, the
following properties, (S0′, S1′, S2′, S3′), hold.

————————————
z0 = ∅ (S0′)
For all i, 〈∀u, v : u neighbor v : ¬(u ∈ zi ∧ v ∈ zi)〉 (S1′)
For all i, 〈∃v :: zi+1 = zi + v ∨ zi = zi+1 + v〉 (S2′)
For all v,
〈∀i :: (∃j : i ≤ j : v ∈ zj)〉 and 〈∀i :: (∃j : i ≤ j : v /∈ zj)〉 (S3′)

————————————

We create the following constrained program that includes a variable
t, which denotes the current point of computation. Variable u.next is an
abbreviation for the next value j above t, where u is in zj . Formally,

u.next = 〈min j : j > t ∧ u ∈ zj : j〉
Note that u.next is always defined, on account of (S3′).
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————————————
program Scheduler ′

node u, v;
set(node) b = ∅;
integer t = 0;
array[node](nat) H {initially 〈∀v :: H[v] = v.next〉};

〈∀v::
add′(v):: zt+1 = zt + v →

v /∈ b ∧ v.low → b := b ∪ {v}; t := t+ 1

remove′(v):: zt = zt+1 + v →
v ∈ b → b := b− {v}; H[v] := v.next; t := t+ 1

〉
end {Scheduler ′}
————————————

11.4.1 Invariants of the constrained program
The following invariants hold for Scheduler ′. For all nodes v,

b = zt (P1)
zvh = zvh−1 + v where vh is H[v] (P2)
〈∀u, v : u neighbor v : H[u] �= H[v]〉 (P3)
(v.next ≥ H[v]) ∧ (v.next > t) (P4)
(H[v] = v.next) ≡ (v /∈ b) (P5)

Proof of (P1)

Initially, b = ∅ and t = 0, and from (S0′), z0 = ∅. Stability of b = zt follows
from the text of Scheduler ′.

Proof of (P2)

This follows from the text of Scheduler ′ and (S2′).

Proof of (P3)

This property is similar to invariant (P0) proved for Scheduler . However,
first we have to show that the random assignment is correctly implemented
before we can assert that this property is inherited by Scheduler ′. Let uh
and vh be abbreviations for H[u] and H[v], respectively. We show below
that (uh = vh) ⇒ (u = v).

uh = vh
⇒ {apply (P2) for nodes u and v}

(uh = vh) ∧ zvh = zvh−1 + v ∧ zuh = zuh−1 + u
⇒ {replace uh by vh in the second disjunct}
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zuh = zuh−1 + v ∧ zuh = zuh−1 + u
⇒ {Set theory}

u = v

Thus, for distinct nodes u and v, H[u] �= H[v]. Hence, the same result
applies for neighbors u and v.

Proof of (P4)

To see the first conjunct, note that

initially 〈∀v :: H[v] = v.next〉.
The only assignment to H[v] is in remove′(v):

H[v] := v.next;

so v.next ≥ H[v] is preserved by this assignment. Also, v.next is mono-
tonic in t; therefore v.next never decreases in Scheduler ′ because t never
decreases.
The second conjunct follows from the definition of v.next.

Proof of (P5)

Initially (P5) holds because b is ∅ and 〈∀v :: H[v] = v.next〉.
Now we show that (P5) is preserved by the execution of add′(v); it can

be shown that (P5) is unaffected by the execution of add′(u), v �= u. Define

v.next.i = 〈min j : j > i ∧ v ∈ zj : j〉
Thus, v.next = v.next.t. Rewrite condition (P5) as

(H[v] = v.next.t) ≡ (v /∈ b)

This holds as a post-condition of the assignments

b := b ∪ {v}; t := t+ 1

provided thatH[v] �= v.next.(t+1) holds as a pre-condition, from the axiom
of assignment (see section A.4.1). We show below that the pre-condition of
add′(v), zt+1 = zt+ v ∧ v /∈ b ∧ v.low, and condition (P5) together imply
that H[v] �= v.next.(t+ 1).

zt+1 = zt + v ∧ v /∈ b
⇒ {from definition of v.next, (zt+1 = zt + v) ⇒ (v.next = t+ 1)}

v.next = t+ 1 ∧ v /∈ b
⇒ {(P5): (H[v] = v.next) ≡ (v /∈ b)}

H[v] = t+ 1
⇒ {from definition, v.next.(t+ 1) > t+ 1}

H[v] �= v.next.(t+ 1)

Observe from the text of remove′(v) that (v /∈ b) ∧ (H[v] = v.next) is
established; hence, (P5) is preserved.
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Rewriting the guard of add′(v)
We show from the given invariants that the augmenting guard of add′(v),
zt+1 = zt+v, implies the original guard, v /∈ b ∧ v.low. Hence, the original
guard may be dropped in the constrained program. This result is needed
for the proof of progress in chronicle correspondence; see section 11.4.3.
From b = zt (see P1) and zt+1 = zt + v, we have v /∈ b. We show that

v.low holds; i.e., for neighboring nodes u and v, H[v] < H[u].

zt+1 = zt + v
⇒ {b = zt from (P1)}

v /∈ b ∧ v /∈ zt ∧ v ∈ zt+1
⇒ {definition of v.next}

v /∈ b ∧ v.next = t+ 1 ∧ v /∈ zt ∧ v ∈ zt+1
⇒ {from (P5), (H[v] = v.next) ≡ (v /∈ b)}

H[v] = t+ 1 ∧ v /∈ zt ∧ v ∈ zt+1
⇒ {given u, v are neighbors, v ∈ zt+1 ⇒ u /∈ zt+1, from (S1′)}

H[v] = t+ 1 ∧ v /∈ zt ∧ v ∈ zt+1 ∧ u /∈ zt+1
⇒ {given v /∈ zt ∧ v ∈ zt+1 ∧ u /∈ zt+1, from (S2′) u /∈ zt}

H[v] = t+ 1 ∧ v /∈ zt ∧ v ∈ zt+1 ∧ u /∈ zt ∧ u /∈ zt+1
⇒ {from (P1): b = zt;

from (P5): (H[u] = u.next) ≡ (u /∈ b);
from (P4): u.next > t}
H[v] = t+ 1 ∧ H[u] = u.next ∧ u.next > t

⇒ {H[v] = t+ 1 ∧ H[u] > t. Apply (P3)}
H[v] < H[u]

11.4.2 Correctness of random assignment implementation
The random assignment

H[v] :=? st H[v] > ′H[v] ∧ 〈∀u : u neighbor v : H[u] �= H[v]〉

is implemented in the constrained program by

H[v] := v.next

The pre-condition of the assignment, zt = zt+1+v, and (from P1) b = zt;
these predicates together imply that v ∈ b. Hence, from (P4) and (P5),
H[v] < v.next holds prior to the assignment. Now, H[v] = v.next holds
after the assignment, thus establishing H[v] > ′H[v]. The condition

〈∀u : u neighbor v : H[u] �= H[v]〉

follows from (P3).
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11.4.3 Proof of chronicle and execution correspondence

Proof of chronicle correspondence
1. (Safety) b = zt follows from (P1).

2. (Progress) t = N �→ t = N +1, for any natural N : exactly one guard
of Scheduler ′ holds at any stage in the computation, because the
guards are disjoint and their disjunction is true. Effective execution
of either action increments t.

Proof of execution correspondence
1. (Safety) Guards of all the actions are disjoint.

2. (Progress) We have to show

true �→ zt+1 = zt + v
true �→ zt = zt+1 + v

We sketch a proof. From (S3′) we deduce that

〈∀i :: (∃j : i ≤ j : zj+1 = zj + v)〉
〈∀i :: (∃j : i ≤ j : zj = zj+1 + v)〉

From the progress condition in chronicle correspondence of this sec-
tion, t assumes values of successive natural numbers. Therefore, even-
tually zt+1 = zt + v and also eventually zt = zt+1 + v.

11.5 Refining the Scheduling Strategy

We consider the situation where each action (node) is executed on a sepa-
rate processor. First, we show how a centralized scheduler may schedule the
actions given the compatibility relation. Next, we show how the scheduling
may be distributed over the processors.

11.5.1 Centralized scheduler
A centralized scheduler maintains a list of nodes and their current colors
and heights. Periodically, it scans through the nodes and blackens a node
v provided that v.low ∧ v /∈ b holds. Whenever it blackens a node it sends
a message to the appropriate processor specifying that the selected action
may be executed. Upon termination of the action, the processor sends a
message to the scheduler; the scheduler whitens the corresponding node
and increases its height, ensuring that no two neighbors have the same
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height. The scheduler may scan the nodes in any order, but every node
must be considered eventually.
This implementation may be improved by having a set L of nodes that

are both white and low; i.e., L contains all nodes v for which v /∈ b ∧ v.low
holds. The scheduler blackens a node of L and removes it from L. Whenever
a node x is whitened and its height increased, the scheduler checks x and
all its neighbors to determine if any of these nodes qualify for inclusion in
L; if some node y qualifies, y is added to L. It has to be guaranteed that
every node in L is eventually scanned and removed; one possibility is to
keep L as a queue in which additions are made at the rear and deletions
from the front. Observe that once a node is in L it remains white and low
until it is blackened.

11.5.2 Distributed scheduler
The proposed scheduling strategy can be distributed so that each node
eventually blackens itself if it is white and low. The nodes communicate by
messages of a special form, called tokens. Associated with each edge (x, y)
is a token that is held by either x or y, whichever has the smaller height.
Each token has a value, a positive integer equal to H[y] −H[x] when the
token for edge (x, y) is held by x.
It follows that a node that holds all incident tokens has height smaller

than all of its neighbors; if such a node is white, it may color itself black.
A node, upon becoming white, increases its height by a positive amount d,
effectively reducing the value of each incident token by d (note that such a
node holds all its incident tokens, so it can alter their values). The quantity
d should be different from all token values so that neighbors do not have
the same height, i.e., no token value becomes zero after a node’s height
is increased. If the value of token (x, y) becomes negative as a result of
reducing it by d, which indicates that the holder x now has greater height
than y, x resets the token value to its absolute value and sends the token
to y.
Observe that the nodes need not query each other for their heights,

because a token is eventually sent to a node of a lower height. Also, since
the token value is the difference in heights between neighbors, it is possible
to bound the token values, whereas the node heights are unbounded over
the course of a computation. Initially, token values have to be computed
and the tokens have to be placed appropriately based on the heights of the
nodes. There is no need to keep the node heights explicitly from then on.
We have left open the question of how a node’s height is to be increased

when it is whitened. The only requirement is that neighbors should never
have the same height. A particularly interesting scheme is to increase a
node’s height beyond all its neighbors’ heights whenever it is whitened;
this amounts to sending all incident tokens to the neighbors when a node
is whitened. Under this strategy, the token values are immaterial: a white
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node is blackened if it holds all incident tokens and upon being whitened,
a node sends all incident tokens to the neighbors. Assuming that each edge
(x, y) is directed from the token holder x to y, the graph is initially acyclic,
and each blackening and whitening move preserves acyclicity. This is the
strategy that was employed in solving the distributed dining philosophers
problem in Chandy and Misra [29]; a black node is eating and a white
node is hungry; constraint (S1) is the well-known requirement that neigh-
boring philosophers do not eat simultaneously. The current problem has
no counterpart of the thinking state, which added a slight complication to
the solution in [29]. The tokens are called forks in that solution.

11.6 Designs of the Processors

In section 11.2, we described the operations of the processors as follows.
A processor starts executing an action on receiving a message from the
scheduler. It may call on methods of the other processors by sending mes-
sages and waiting for responses. Each call includes argument values, if any,
as part of the message. It is guaranteed that each call elicits a response,
which is either accept or reject. The accept response is sent when the call
is accepted (which is always the case for calls upon total methods), and
values of result-parameters, if any, are returned with the response. A reject
response is possible for calls only on partial methods; no parameter values
accompany such a response.
The description of the implementation can be simplified if we imagine

that the scheduler is also a processor. It calls other processors for execu-
tions of their actions in the same way that processors call each other for
executions of their methods. Thus, we treat actions and methods similarly
in the implementation, except that only the former may be called from the
scheduler.
Each processor has a buffer reqq (request queue) into which all requests

sent to it are deposited and a buffer resq (response queue) into which all
responses to its requests are deposited. In the following description, we
assume that reqq is a fifo channel, though it can be implemented as a
fair bag (see section 4.1.3). All we require is that every item from reqq is
removed eventually if items are removed arbitrarily often, independent of
the number of items added to reqq.
An entry in reqq is a triple (c,m, r), where c is the caller’s id, m is the

procedure to be executed, and r is the list of arguments of the call. On
completion of execution of m, the processor stores its response in resq of
caller c; an entry in resq is of the form (s, r), where s is the status (accept or
reject) and r is the list of argument values returned if the status is accept.
A response is guaranteed for each request. A processor with id i executes
the following steps for each entry (c,m, r) of reqq.
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• m is a total procedure:

execute m; during its execution
if procedure m′ at c′ is to be called with arguments r′ then
send (i,m′, r′) to c′;
on receiving a response (accept,r′′) in resq,
substitute the received argument values, r′′, into i’s state;

endif
on completion of m, send (accept,r) to c.

• m is a partial procedure:

(Case 1) m has no alternative whose pre-condition holds:
send (reject,–) to c.

(Case 2) there is an alternative of the form (p → S) where p holds:

execute S as in the case of a total procedure;
on completion of execution of the body:

if this is a positive alternative then
send (accept,r) to c, where r is the parameter list

else {this is a negative alternative} send (reject,–) to c
endif

(Case 3) there is an alternative of the form (p;h → S) where p
holds:

send (i, h, r′) to c′ where r′ is the parameter list for h and
c′ is the id of the processor where action h is located;

on receiving (reject,–) in resq, send (reject,–) to c;
on receiving (accept,r′) in resq,
do the body of (Case 2), above.

11.7 Optimizations

We propose certain optimizations in this section that permit the scheduler
to skip execution of an action because it can guarantee that the execution
will be ineffective. This is particularly useful for Seuss because a tight
execution typically introduces a busy form of waiting: if an action calls
method P of a semaphore and is rejected, it calls P repeatedly as long as its
pre-condition remains true. Similarly, a receiver from a channel repeatedly
“polls” the channel for incoming messages. It is often more efficient for a
caller to be queued; the semaphore box may queue all callers of P and serve
them in order, and a channel may notify a receiver only when a message is
ready to be delivered. Queue-based implementations can be encoded within
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Seuss: instead of calling P , a different total method is called in order for the
caller to be placed in a queue; when the semaphore is available the caller
at the head of the queue is notified. Such an encoding makes programming
cumbersome, so we have chosen tight execution as the basis for operational
understanding of programs.
We can implement a tight execution in a way that mimics the more

efficient scheme outlined above. We show how a scheduler can select actions
for execution in such a way that a rejected call is not reattempted until
there is some chance for its success. For example, if a pipeline is empty none
of the actions that operate on its data can be executed effectively until some
action introduces data into it. In this case, an action that fails to execute
effectively is not chosen for execution until the pipeline is nonempty.

Note In the rest of this section we assume that each partial procedure has
a single (positive) alternative. The changes that are needed to handle pro-
cedures with multiple alternatives and negative alternatives are sketched
in section 11.7.4. ✷

Effective execution of an action depends on a set of predicates, the pre-
conditions of all the partial methods that are called during its execution.
For each action these pre-conditions can be determined from a static anal-
ysis of the program. If the scheduler has the exact values of these pre-
conditions, it can decide which action will be executed effectively. However,
ascertaining the exact values of the pre-conditions may be costly, requiring
evaluations of (some of) these predicates after each effective execution of
an action. We propose a strategy in which the scheduler knows only that
some pre-conditions are definitely false. A pre-condition that is not known
to be false may or may not be false.
The scheduler attempts execution of an action only when none of its

pre-conditions is known to be false. The execution may still be ineffective,
but the scheduler then learns that a certain pre-condition is false, and the
call is not repeated until that pre-condition changes state (so that it is not
known to be false).
Just like compatibility, we expect the user to declare the effects of actions

on pre-conditions. We show that two forms of declarations —an action is
guaranteed to establish a predicate, and guaranteed to preserve its truth—
are sufficient to develop the optimization strategy. As before, the user is not
required to make the declarations; they affect performance, not correctness.

11.7.1 Data structures for optimization
From a static analysis of a program we construct a needs graph. This is
a bipartite graph in which the actions are one set of nodes and the pre-
conditions of the partial procedures form the other set. There is an edge
(f, p) where f is an action and p a pre-condition of some procedure that may
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be called during an execution of f . More formally, using the terminology
of chapter 10, there is an edge (f, p) if and only if

〈∃g :: f calls∗ g ∧ (p is the pre-condition of g)〉
In this formulation, g is a partial procedure (because total procedures have
no pre-conditions). Note that g could be f itself since calls∗ is reflexive.
We say f needs p if there is an edge (f, p). Execution of f is effective iff all
pre-conditions p hold, where f needs p.
With each pre-condition p in the needs graph associate a boolean variable

ps, the shadow of p. The shadow1 ps gives some information about the value
of p through the following invariant:

Shadow invariant: p ⇒ ps

The shadow invariant is equivalent to ¬ps ⇒ ¬p; that is, if ps is false,
then so is p. However, the truth of ps tells us nothing about p’s value. If
f needs p and ¬ps holds, the execution of f will be ineffective.

11.7.2 Operation of the scheduler
We describe a centralized scheduler here; an outline of a distributed sched-
uler is given on page 357.
In the earlier sections of this chapter, we have described the operation of

the scheduler as follows: choose an action for execution, send a message to
the appropriate processor, receive a message on completion of the execution,
and then update the internal data structures (for heights). These steps are
now augmented as follows.

• on choosing an action f for execution:
if there is an edge (f, p) and ¬ps holds

then skip
else send a message to the appropriate processor

endif

• on receiving a message from a processor (on completion of execution):
update the shadow variables so that the shadow invariant holds; see
section 11.7.3.

The first operation can be implemented efficiently by keeping a count
of the number of (f, p) edges for which ¬ps holds, for each action f . This
count can be updated efficiently, and only an action with zero count is
selected for execution.
The correctness of these operations is obvious from the preceding discus-

sion. Next, we show how the shadow invariant is maintained.

1We ought to write p.s for the shadow; we have dropped the “.” for readability.
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11.7.3 Maintaining the shadow invariant
The simplest strategy for maintaining the shadow invariant is to strengthen
the invariant to p ≡ ps and require that each processor inform the scheduler
of the changes in pre-condition values following execution of an action.
This strategy has the benefit that the scheduler can decide exactly if an
action execution will be effective. Therefore, calls to processors result in
only effective executions. However, performance may suffer since the pre-
condition of each partial procedure may have to be evaluated following the
execution of a procedure in that box. Therefore, we suggest an alternative
strategy based on the original shadow invariant, p⇒ ps.
We ask that a processor return the following information to the scheduler

upon completion of each action execution.

1. If the execution is ineffective, the identity of the pre-condition that
was found to be false.

2. If the execution is effective, the names of the executed procedures.
The sequence in which the procedures are executed is immaterial.

One-way scheme
We ask that the user declare a set of procedures p.np for each pre-condition
p, as follows. Procedure g is in p.np only if the following conditions hold.

(1) g and p are from the same box.
(2) g preserves ¬p, i.e., {¬p} g {¬p} holds.

(The mnemonic np in p.np stands for negation preserver.) Note that, if g’s
execution is ineffective whenever ¬p holds, it preserves ¬p.
The scheduler updates the shadow variables after receiving a message

from a processor, as follows.

• If the execution is rejected because pre-condition p is false,
ps := false

• If the execution is accepted, for each executed procedure g,
〈∀p : p in g’s box : g /∈ p.np → ps := true〉

It is obvious that the step corresponding to rejection preserves the in-
variant, p ⇒ ps, since both predicates are false. The acceptance step also
preserves the invariant because setting ps to true preserves p ⇒ ps. For
performance reasons, we would like to set ps to true only if it is essential.
In the accepting execution case, if g ∈ p.np then g preserves ¬p, so it is
safe to leave ps at false. If g /∈ p.np, we do not know if ¬p is true or false;
so we set ps to true to maintain the shadow invariant.
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Note A shadow variable ps may be assigned several times because more
than one procedure that affects p may have been executed during an effec-
tive execution. However, there is no conflict because the only value assigned
is true. We call this scheme one-way because ps is set only to true following
an effective execution. ✷

For the optimizations to be effective, ps should be made false as often
as possible, so that the scheduler can reject an action without executing it.
Hence p.np should be as large a set as possible. However, the user is not
required to list all the procedures g, which meet the conditions for p.np, but
the bigger the set, the better is the potential for performance improvement.

Example Consider the fifo channel described in section 4.1.1. The pre-
condition p for procedure get is r �= 〈〉. Negation of this predicate, r = 〈〉, is
preserved only by get. Therefore, whenever put is executed —put �∈ p.np—
ps is set to true. Once get is rejected, ps is set to false and no further
attempt is made to execute an action that calls get until another put has
been executed. ✷

Two-way scheme
We sketch a generalization of the one-way scheme where ps is set to either
true or false after effective execution of an action. In the one-way scheme,
ps could only be set to true. Setting ps to false avoids executions of actions
which are guaranteed to be ineffective.
Clearly, we need more information from the user; we ask the user to

declare a set p.ne, analogous to p.np, for each pre-condition p. Informally,
procedure g is in p.ne if its execution is guaranteed to result in a state
where ¬p holds; i.e., g is in p.ne only if the following conditions hold.

(1) g and p are from the same box.
(2) g establishes ¬p, i.e., {true} g {¬p} holds.

(The mnemonic ne in p.ne stands for negation establisher.) As before, p.ne
may be a subset of the procedures that satisfy these conditions. Note that
p.np can be augmented with all procedures in p.ne because the conditions
for the latter are stricter than for the former. Henceforth, assume that
g ∈ p.ne ⇒ g ∈ p.np . Note that the first condition in the definition of
p.ne is superfluous, because ¬p can be established only by a procedure in
p’s box.
In the one-way scheme, the processor returns the set of executed proce-

dures to the scheduler in case an action accepted. The order of execution
of the procedures does not matter to the scheduler since ps is set only to
true. In the two-way scheme, ps can be set to true or false, and the order
of execution does matter. Therefore, the processors return the sequence in
which the procedures are executed.
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The operation of the scheduler is as follows.

• If execution is rejected because a pre-condition p is false :
ps := false

• If execution is accepted, scan the sequence of accepted procedures in
order. Let g be the next procedure in the sequence.

〈∀p : p in g’s box :
g /∈ p.np → ps := true

[] g ∈ p.ne → ps := false
〉

The guards shown above, g /∈ p.np and g ∈ p.ne, are disjoint because
g ∈ p.ne ⇒ g ∈ p.np. The argument that the shadow invariant is preserved
in case of rejected calls and g /∈ p.np is as before. For the case of g ∈ p.ne,
execution of g establishes ¬p, from {true} g {¬p}. Therefore, setting ps
to false satisfies p⇒ ps.

Example Consider the one-item buffer, called word , from page 60. There
are two pre-conditions, full and ¬full , for procedures get and put.

full.ne = {get}, ¬full.ne = {put}
full.np = {get}, ¬full.np = {put}

Once put (or get) is rejected another call is not attempted until an ef-
fective execution of get (put). ✷

11.7.4 Notes on the optimization scheme
More elaborate shadow variables

The scheduler can have a more accurate estimate of the value of a pre-
condition p by having more possible values for ps and more user directives
about how p is changed. For instance, let ps take on three possible values
denoting that p is definitely true, definitely false, and unknown. Then the
user may classify the procedures into those that (1) preserve p, (2) preserve
¬p, (3) establish p, (4) establish ¬p, (5) flip p to ¬p, (6) flip ¬p to p, and (7)
none of the above. The value of ps is transformed depending on the kind of
procedure that has been executed. Such elaborate methods are appropriate
only when the cost of communication and action rejection are high.

Distributing the scheduler

The scheduler can be distributed by dividing the needs graph so that each
individual scheduler is assigned a portion of the graph for a subset of the
actions. The nodes corresponding to a pre-condition p may be duplicated
at several schedulers if actions at those schedulers need p. Also, updates of
ps have to be synchronized.
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Effect of concurrent execution on shadow invariant

The argument about the preservation of the shadow invariant is valid when
there is at most one executing action; the action completes and the shadow
variables are then updated. When actions are executed concurrently there
seems to be a possibility that a pre-condition p is set to different values
by two concurrently executing actions. Suppose one of them completes and
causes the scheduler to set ps to false while the other one has set it to
true in the meantime. Then the scheduler may decide against starting an
action that needs p based on the value of ps, which is false. Fortunately, this
possibility does not actually arise because concurrently executing actions
are compatible; therefore, they do not ultimately assign conflicting values
to p.

Dead Actions

The scheduler can identify certain actions that will never again be executed
effectively. Let A be a set of actions and P a set of pre-conditions that
actions in A need (effective execution of each action in A requires some
pre-condition in P to hold). Let p be a pre-condition in P . Suppose every
action whose execution can make p true is in A. Then all predicates in P
remain false once they are false because no action in A can be executed
effectively and set some p to true. Action f can set p to true only if it calls∗

some procedure g in p’s box that is not known to preserve ¬p. Formally,
all actions in A are dead if all members of P are false and

〈∀p: p ∈ P :
(∀f : f is an action ∧ 〈∃g :: g in p’s box, f calls∗ g, g /∈ p.np〉 :

f ∈ A
)

〉
Multiple Alternatives

A partial procedure with multiple alternatives is executed effectively if one
of the alternatives has a true pre-condition. Also, the system state can
change even though the call is rejected, because a negative alternative may
reject the call. The needs graph then becomes more elaborate.
Represent each alternative of each partial procedure as a node. Call an

alternative disabled if the corresponding shadow variable is false or its pre-
procedure is disabled. A procedure is disabled if all its alternatives are
disabled. A disabled action’s execution is ineffective.
With negative alternatives, a processor has to inform the scheduler if

the rejection comes from a positive alternative because its pre-condition
was false or from a negative alternative, in which case the sequence of
executed procedures is returned by the processor. The first case is handled
in the same way rejections were handled earlier; the second case is treated
similarly to an effective execution.
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11.8 Concluding Remarks

We expect the components of most concurrent programs to be loosely cou-
pled, in the sense that they interact only occasionally and in a way that
satisfies the compatibility requirements of chapter 10. Such programs —
which include programs in which communications are over channels with
one sender— are easily distributed over several processors. There is no need
for arbitration among conflicting actions; therefore, the processors can op-
erate autonomously. A scheduler has to be introduced only when there are
incompatible actions and the scheduler’s role is to decide which of the in-
compatible actions should be selected for execution. We surmise that most
incompatibilities are localized, so distributed schedulers will be quite effec-
tive. One reason for developing a maximal scheduler is to have the option
of customizing the scheduler for specific problems.
The wait and signal primitives in a monitor [90] are quite similar to the

declarations p.np and p.ne that we have suggested for optimization. In a
monitor for a one-word buffer, for instance, the put operation issues a wait
for the pre-condition of put and a signal for the pre-condition of get; the
get operation issues the opposite wait and signal. The declarations in the
example on page 357 are the exact equivalents of these waits and signals.
Optimization is meaningful when there are choices. Seuss programs pro-

vide choice in the order of selection of actions for execution. This flexibility
and the structure of an action —its dependence on the conjunction of a set
of pre-conditions— have been exploited for optimizations in this chapter.
The optimization scheme may be viewed as a program that executes on
an abstraction of the original program’s data space to gain some informa-
tion about the program state at a low cost. The suggested optimizations
look promising, but no honest assessment can be made without extensive
empirical investigations.
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in Krüger [109], and with Java as the host language appears in Joshi [98]
and Alvisi et al. [8]. The latter implementation includes a module construct
to allow hierarchical structures of boxes and a declaration mechanism to
specify the link constraints of section 9.3.1.
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12
A Logic for Seuss

12.1 Introduction

The logic of action systems, developed in chapters 5 and 6, allowed us to
specify safety and progress properties of a single box; the logic is extended
in chapters 8 and 9 for specifications of ensembles of boxes. Properties
such as co and leads-to specify the collective effect of the executions of the
actions of a box or a set of boxes; the individual actions are not identi-
fied in a specification. Therefore, it is not possible to deduce from earlier
specifications how a specific action affects the program state.
The earlier specifications are inadequate for Seuss programs. Because

methods can be called from other boxes, the callers have to know the se-
mantics of each method they call. A semaphore box, for instance, has to
specify the meanings of P and V procedures. In this chapter, we develop
the machinery for such specifications. As is traditional, we describe the
meaning of a procedure by a pair of predicates, its pre-condition and post-
condition; see Gries [79, chapter 12]. The semantics of a procedure depends
on the semantics of the procedures it calls; additionally, for Seuss, we have
to distinguish between the accepting and rejecting executions of a proce-
dure, and specify the semantics for each.
In wide-area systems it is difficult to identify all the components (boxes),

because the components are added and removed on a regular basis. Yet we
would like to assert properties of a system without complete knowledge of
all its components. Closure properties, introduced in section 9.3, form an
ideal vehicle for such specifications. As long as each component obeys cer-
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tain systemwide constraints, we can derive closure properties of individual
components and assert that such properties are inherited by the system.
For instance, a strong semaphore box may assume that each process that
is granted the semaphore relinquishes it eventually and then assert that
each persistent caller is granted the semaphore; see section 12.5 for such a
specification and its proof. This is a closure property that is inherited by
any system in which the strong semaphore is embedded.

Restrictions In this chapter, we restrict the Seuss model by requiring
that procedures have only value parameters. This restriction simplifies the
exposition. The general case is not fundamentally different; it merely adds
complexity to the inference rules. Also, we restrict the discussion to partial
procedures only. Total procedures have no rejecting executions. Therefore,
they may be specified by pre-condition, post-condition pairs using standard
techniques; see Gries [79, chapter 12] or Martin [129]. ✷

Overview of the chapter

In section 12.2, we show how to specify procedures that have no pre-
procedures. We show proof of a progress property using such specifications
for the readers-writers program of section 4.8.1. In section 12.3, we develop
proof rules for partial procedures in the general form. Quite often a pro-
cedure is called again following a rejection; we term this form of calling
persistence and develop inference rules in section 12.4 for persistence. A
strong semaphore whose P method is called persistently is specified and
proved in section 12.5. A resource allocation algorithm from section 4.10
is proved in section 12.6; the algorithm calls a strong semaphore, and the
proof makes use of the specification of strong semaphore.

12.2 Specifications of Simple Procedures

We define a procedure by a pre-condition and post-condition. Our approach
is slightly more elaborate than the traditional ones [79, chapter 12] or [129],
because a procedure may accept or reject a call. In this section, we consider
simple procedures, ones that have a single alternative and no pre-procedure.
The specification scheme is extended to general procedures in section 12.3.

Definition: A state in which predicate p holds is called a p-state. For a
procedure g,

{p} g+ {q}
denotes that any accepting execution of g starting in a p-state ends in a
q-state. Similarly,

{p} g− {q}
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denotes that any rejecting execution of g starting in a p-state ends in a
q-state. We write

{p} g {q} for {p} g+ {q} and {p} g− {q}
That is, {p} g {q} stands for “any execution of g starting in a p-state
ends in a q-state”, because each execution is either accepting or rejecting. ✷

A procedure execution may affect the states of several boxes. Therefore,
there is no restriction on the variables named in p and q, above. In practice,
the variables are often limited to a single box.
The specification of a box is given by (1) a set of variables and their

initial values, (2) the semantics of each procedure (given by a pre-condition,
post-condition pair), and (3) a set of box properties, which are usually
conditional and/or closure properties.

Auxiliary variables: number of procedure calls
For procedure g, let #g, #g+, #g− denote, respectively, the number of
calls to g in an execution, and the number of accepted and rejected calls in
that execution. Each of these are auxiliary variables; they may be defined
by adding the appropriate code to the text of g. Note that each variable is
nondecreasing and #g = #g+ +#g−. We write #g(x) for the number of
calls to g with argument x; #g+(x) and #g−(x) are similarly defined.

Deriving properties from a specification
The safety and progress properties of a box can be deduced from the spec-
ifications of its procedures. We need to apply the definitions from chap-
ters 5 and 6 in such deductions. More importantly, closure properties of
section 9.3 can also be deduced from the code of a single box. This is possi-
ble because the state of a box can be altered only by the procedures of that
box. Therefore, it is possible to derive certain properties of a box indepen-
dent of its environment. But the environment can dictate which methods
of a box do get executed and when; therefore, the deduction is not entirely
straightforward.
To illustrate the derivation of properties and some of the difficulties

associated with it, consider the following example.

————————————
box simple
integer n = 0;
total method inc :: n := n+ 1
partial method dec :: n > 0 → n := n− 1

end {simple}
————————————
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For any positive integer k,

n = k co k − 1 ≤ n ≤ k + 1 in simple

can be proved easily. However, the corresponding closure property does
not hold; an external action may call inc twice during an invocation, thus
increasing n by two. Hence, we cannot deduce some closure properties with-
out knowledge of the external procedures. However, some closure properties
can still be deduced from a single box, as shown next. In particular, we show
that

n = k cco k − 1 ≤ n in simple

and using lifting —see section 9.3.4— the property holds in any system in
which simple is embedded.
Now we show how p cco q can be established for a box F , where p and

q are predicates over the states of F and p⇒ q. Suppose,

{q} g {q}, for every total method g in F , and
{p} h {q}, for every other procedure h in F .

Then p cco q in F .
We justify this claim as follows. Execution of an action h of F , partial

or total, establishes a q-state starting in a p-state, from {p} h {q}. Next,
consider execution of an action external to F starting in a p-state. Any such
execution invokes a partial method of F at most once and total methods
of F any finite number of times (including zero). Execution of any partial
method of F establishes q, from {p} h {q}, and non-execution of any
partial method also establishes q, from p ⇒ q. From then on, executions
of total methods of F preserve q, from {q} g {q}. Therefore, the state
following the execution of this action satisfies q.
Let p be n = k and q be k − 1 ≤ n for any k, k > 0, for box simple.

{n = k} dec− {n = k}
{n = k} dec+ {n = k − 1}

Hence
{n = k} dec {k − 1 ≤ n}

Also
{k − 1 ≤ n} inc {k − 1 ≤ n}

Therefore, n = k cco k − 1 ≤ n in simple.
The cstable and cinvariant properties are proved similarly. For cen

properties, the closure theorem corollary (from page 301) is

p cen q in F ≡ (transient p∧¬q in F ) ∧ (p∧¬q cco p∨ q in F )

The cco property in this formula can be established as explained above,
and the progress property, transient p ∧ ¬q in F , can be established by
demonstrating an action of F that falsifies p ∧ ¬q, a proof that is entirely
local to F .
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12.2.1 readers-writers with progress for writers
Consider the readers-writers program of section 4.8.1. The solution guaran-
tees that readers do not permanently overtake writers: if there is a waiting
writer , some writer gains access to the resource eventually. The strategy
is to reject calls upon StartRead if there is some writer attempting to ex-
ecute StartWrite. A boolean variable, WriteWait , is set to true whenever
a call upon StartWrite is rejected because there are active readers. Once
WriteWait holds, further calls to StartRead are rejected, preventing new
readers from commencing execution. Eventually, all executing readers com-
plete their executions; then the next call to StartWrite is accepted. The
informal argument shows that if each rejected call on StartWrite is fol-
lowed by a later call —i.e., writers are persistent— then not all writers are
permanently blocked; i.e., some call on StartWrite will eventually succeed.
We give a formal proof of this fact in this section.
We reproduce the program from section 4.8.1, using the following abbre-

viations: StartRead , StartWrite, EndRead , EndWrite, and WriteWait by
sr, sw, er, ew, and ww, respectively.

————————————
box ReaderWriter1
integer nr, nw = 0, 0;
boolean ww = false;

partial method sr ::
nw = 0 ∧ ¬ww → nr := nr + 1

partial method sw ::
nr = 0 ∧ nw = 0 → nw := 1; ww := false

� | nr �= 0 → ww := true

total method er :: nr := nr − 1

total method ew :: nw := 0
end {ReaderWriter1}
————————————

Specification of ReaderWriter1
In the following specification, variables nr and nw have the same meaning
as in the program: nr is the number of active readers and nw the number
of active writers. We assume that er and ew are called by readers and
writers that are executing; these procedures have no effect if nr = 0 and
nw = 0, respectively. In the following, free variable k ranges over natural
numbers.
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————————————
Specification ReaderWriter1
integer nr, nw = 0, 0;
boolean ww = false;

{nr = k ∧ nw = 0 ∧ ¬ww} sr+ {nr = k + 1}

{nr = 0 ∧ nw = 0} sw+ {nw = 1 ∧ ¬ww}

{nr �= 0} sw− {ww}

{nr = k} er {nr = k % 1}
{k % 1 is 0 if k is 0, and k − 1 otherwise}

{true} ew {nw = 0}

end {ReaderWriter1}
————————————

We use the convention that variables that are not mentioned in a post-
condition are unchanged by the execution of the corresponding proce-
dure. This specification is consistent with the code ReaderWriter1 of sec-
tion 4.8.1; prove this fact using standard techniques for sequential pro-
grams.

Derived properties of ReaderWriter1
All the properties of ReaderWriter1 derived below are closure properties
(see section 9.3.2). Therefore, each of these properties holds in any pro-
gram of which ReaderWriter1 is a component. Below, i and k are arbitrary
natural numbers.

(P0) cinvariant nr ≥ 0 ∧ nw ≥ 0
(P1) cinvariant (nr = 0 ∨ nw = 0) ∧ (0 ≤ nw ≤ 1)
(P2) ww ∧ nr = k cco nr ≤ k

(P3) ww∧nr, nw = 0, 0∧#sw = i cco (nr, nw = 0, 0∧#sw = i) ∨ ¬ww
(P4) If

(readers complete) nr = k c �→ nr �= k
(writers complete) true c �→ nw = 0
(writers are persistent) ww ∧ #sw = i c �→ #sw �= i

then
(writers progress) ww c �→ ¬ww
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Properties (P0, P1) are intuitively obvious. (P2) says that no new reader
is allowed to start reading if ww holds. (P3) asserts that an effective ex-
ecution of StartWrite falsifies ww. (P4) specifies that persistent calling
by the writers eventually succeeds, provided that each reader and writer
completes its execution.

Proofs of the derived properties
(P0) By inspection of the specification.

(P1) By inspection of the initial condition and pre- and post-conditions
of each procedure.

(P2) The only methods that change nr are sr+ and er. In a state where
ww ∧ nr = k holds, sr+ is not executed effectively; hence, it satisfies
nr ≤ k. Total method er preserves nr ≤ k, from its specification.

(P3) In a state where ww ∧ nr, nw = 0, 0 holds, only sw+, er, or ew
may be executed effectively. The result follows by inspecting the post-
conditions of each of these actions.

(P4) The given progress property is quite nontrivial. So we give a consid-
erably more formal proof than for (P0–P3).

ww c �→ (ww ∧ nr = 0) ∨ ¬ww, see lemma 1
ww ∧ nr = 0 c �→ (ww ∧ nr, nw = 0, 0) ∨ ¬ww

, see lemma 2
ww ∧ nr, nw = 0, 0 c �→ ¬ww , see lemma 3
ww c �→ ¬ww , cancellation on above three

Lemma 1 ww c �→ (ww ∧ nr = 0) ∨ ¬ww
Proof: In the following, k is any natural number. We assume that nr and
nw are natural numbers (see P0).

ww ∧ nr = k cco nr ≤ k , (P2)
nr = k c �→ nr �= k , from the hypothesis of (P4)
ww ∧ nr = k c �→ nr < k ∨ ¬ww , PSP and weaken rhs
ww ∧ nr = k c �→ (ww ∧ nr < k) ∨ ¬ww

, rewrite rhs
ww ∧ nr > 0 c �→ (ww ∧ nr = 0) ∨ ¬ww

, induction on positive integers
ww ∧ nr = 0 c �→ ww ∧ nr = 0 , implication
ww ∧ nr ≥ 0 c �→ (ww ∧ nr = 0) ∨ ¬ww

, disjunction
ww c �→ (ww ∧ nr = 0) ∨ ¬ww , from (P0), nr ≥ 0 ≡ true ✷
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Lemma 2 ww ∧ nr = 0 c �→ (ww ∧ nr, nw = 0, 0) ∨ ¬ww
Proof:

ww ∧ nr = 0 cco nr ≤ 0 , replace k by 0 in (P2)
ww ∧ nr = 0 cco nr = 0 , use (P0: nr ≥ 0) in the rhs
true c �→ nw = 0 , from the hypothesis of (P4)
ww ∧ nr = 0 c �→ (ww ∧ nr, nw = 0, 0) ∨ ¬ww

, PSP and weaken rhs ✷

Lemma 3 ww ∧ nr, nw = 0, 0 c �→ ¬ww
Proof:

ww ∧ nr, nw = 0, 0 ∧#sw = i cco (nr, nw = 0, 0 ∧#sw = i) ∨ ¬ww
, (P3)

ww ∧ #sw = i c �→ #sw �= i , from the hypothesis of (P4)
ww ∧ nr, nw = 0, 0 ∧ #sw = i c �→ ¬ww

, PSP and weaken rhs
ww ∧ nr, nw = 0, 0 c �→ ¬ww , disjunction over all i ✷

12.2.2 readers-writers with progress for both
Consider the readers-writers box, ReaderWriter2 , of section 4.8.2; it guar-
antees progress for both readers and writers. An informal argument for
progress was given in that section. Here, we develop a formal proof. The
program from page 76 is given next, using the abbreviations used for
ReaderWriter1 , see page 365. Also, we abbreviate ReadWait to rw.

————————————
box ReaderWriter2
integer nr, nw = 0, 0;
boolean ww , rw = false, false;

partial method sr ::
nw = 0 ∧ ¬ww → nr := nr + 1; rw := false

� | nw �= 0 → rw := true

partial method sw ::
nr = 0 ∧ nw = 0 ∧ ¬rw → nw := 1; ww := false

� | nr �= 0 → ww := true

total method er :: nr := nr − 1

total method rw :: nw := 0
end {ReaderWriter2}
————————————
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Next, we give a specification and prove (P4) of section 12.2.1 as a progress
property for ReaderWriter2 . The specification is analogous to the specifi-
cation of ReaderWriter1 given on page 366.
In the following specification, variable k ranges over natural numbers.

————————————
Specification ReaderWriter2
integer nr, nw = 0, 0;
boolean ww, rw = false, false;

{nr = k ∧ nw = 0 ∧ ¬ww} sr+ {nr = k + 1 ∧ ¬rw}

{nw �= 0} sr− {rw}

{nr = 0 ∧ nw = 0 ∧ ¬rw} sw+ {nw = 1 ∧ ¬ww}

{nr �= 0} sw− {ww}

{nr = k} er {nr = k % 1}
{k % 1 is 0 if k is 0, and k − 1 otherwise}

{true} ew {nw = 0}

end {ReaderWriter2}
————————————

Derived properties of ReaderWriter2
We show that the four safety properties, (P0–P3) on page 366, hold for
ReaderWriter2 . Therefore, (P4) holds as well, because its proof depends
only on (P0–P3).
Additionally, we have the following progress property for readers, anal-

ogous to the progress property (P4) for writers. Its proof is similar to the
proof of (P4); we leave the proof to the (human) reader.

(P5) If
(readers complete) nr = k c �→ nr �= k
(writers complete) true c �→ nw = 0
(readers are persistent) rw ∧ #sr = j c �→ #sr �= j

then
(readers progress) rw c �→ ¬rw

Proofs of properties (P0–P3)
(P0) By inspection.
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(P1) We prove a stronger invariant from which (P1) follows:

Q:: 〈(nr = 0 ∧ ¬ww) ∨ (nw = 0 ∧ ¬rw)〉 ∧ 〈0 ≤ nw ≤ 1〉

Observe from the post-conditions of the procedures that 0 ≤ nw ≤ 1
is established following effective execution of each procedure. For the
remaining term, (nr = 0 ∧ ¬ww) ∨ (nw = 0 ∧ ¬rw), note that:

sr+: establishes ¬rw; preserves pre-condition nw = 0
sr−: nr = 0 ∧ ¬ww is a pre-condition from Q; it is preserved
sw+: establishes ¬ww; preserves pre-condition nr = 0
sw−: nw = 0 ∧ ¬rw is a pre-condition from Q; it is preserved
er: preserves both disjuncts, nr = 0 ∧ ¬ww, nw = 0 ∧ ¬rw
ew: preserves both disjuncts, nr = 0 ∧ ¬ww, nw = 0 ∧ ¬rw

(P2) Analogous to the proof of (P2) on page 367.

(P3) Analogous to the proof of (P3) on page 367.

12.3 Specifications of General Procedures

The procedures considered in the previous section had no alternatives or
pre-procedures. A specification mechanism for general procedures is devel-
oped in this section.
As before, {p} g+ {q} denotes that any accepting execution of g starting

in a p-state ends in a q-state; {p} g− {q} is defined analogously. We define
a procedure pskip, the counterpart of skip, as follows.

pskip :: true → skip

To simplify discussion every partial procedure, except pskip, that has no
pre-procedure is taken to have pskip as its pre-procedure. The semantics
of pskip is given by, for any p and q,

pskip rule

({p} pskip+ {q}) ≡ (p⇒ q)
{p} pskip− {q}

For accepting executions the pskip rule is easy to see: since the effective
execution of pskip has the same effect as skip, they have the same seman-
tics. Since pskip has no rejecting executions, all its rejecting executions
perform “magic”, transforming any state to any state.
In the following rules, g is a partial procedure whose alternatives have

disjoint pre-conditions. Also, assume that the alternatives are exhaustive,
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i.e., that the disjunction of their pre-conditions is true. This condition can
be met by adding a negative alternative, e → skip, to each procedure
where e holds when all other pre-conditions are false (i.e., e ≡ 〈∀i :: ¬ci〉,
where ci is the pre-condition of alternative i and i ranges over all alterna-
tives).

Acceptance rule

〈For every positive alternative c;h → S of g :: {p ∧ c} h+; S {q}〉
{p} g+ {q}

Rejection rule

〈For every negative alternative c;h → S of g :: {p ∧ c} h+; S {q}〉
〈For every alternative c;h → S of g :: {p ∧ c} h−{q}〉

{p} g− {q}
As before,

{p} g {q} is {p} g+ {q} and {p} g− {q}
The acceptance and rejection rules encode the execution strategy of

Seuss. An accepting execution of g entails execution of a positive alter-
native c;h → S, which means h first accepts and then S is executed.
The reasons for g rejecting a call are twofold: (1) a negative alternative
c;h → S is executed where h accepts, or (2) some alternative c;h → S
is executed where h rejects. The first case gives rise to conditions as in the
acceptance rule, and in the second case the body of the alternative, S, is
not executed.

Note It is often convenient to write

{p ∧ c} h+; S {q} as {p ∧ c} h+ {wlp.q.S}
where wlp.q.S is the weakest liberal pre-condition, introduced by Dijk-
stra [55]. Since S is terminating, wlp.q.S and wp.q.S are identical. ✷

12.3.1 Derived rules
The following observations, similar to the ones for co (see page 100), are
immediate from the properties of wlp [61]. We show the rules for g; the
rules apply to g+ and g− as well.

• {false} g {p}
• {p} g {true}

• (conjunction; disjunction) {p} g {q} , {p′} g {q′}
{p ∧ p′} g {q ∧ q′}
{p ∨ p′} g {q ∨ q′}
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The conjunction and disjunction rules follow from the conjunctivity and
monotonicity properties of wlp [61] and of logical implication. These rules
generalize in the obvious manner to any set —finite or infinite— because
wlp and logical implication are universally conjunctive and universally dis-
junctive. As corollaries of conjunction and disjunction we obtain

• (lhs strengthening) {p} g {q}
{p ∧ p′} g {q}

• (rhs weakening) {p} g {q}
{p} g {q ∨ q′}

12.3.2 Simplifications of the derived rules
The following special cases of the inference rules for acceptance and rejec-
tion often simplify the proofs in practice.

Locality
Suppose predicates p and q do not name any variable of h’s box. Then

{p} h+; S {q} ≡ {p} S {q}
We leave the proof of this result to the reader. Its most useful application
is when procedure g has a single alternative, c;h → S, and predicates p
and q name only variables of g’s box. Then the acceptance rule is simplified
to

{p ∧ c} S {q}
{p} g+ {q}

and the rejection rule becomes

p ⇒ q

{p} g− {q}
The locality rule can be applied when a call has no explicit result pa-

rameter: g calls h to receive a signal of some kind —granting of a resource,
for instance— to proceed, and the signal is transmitted by h accepting the
call.

Absence of explicit negative alternative
Suppose g explicitly mentions only positive alternatives,. Let ci be the pre-
condition of alternative i. Then g has a hidden negative alternative

e → skip

where e ≡ 〈∀i :: ¬ci〉.
This alternative contributes the following conditions to the antecedent

of the rejection rule.
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{p ∧ e} pskip+; skip {q}
{p ∧ e} pskip− {q}

These two conditions simplify to p ∧ e ⇒ q. Therefore, the rejection rule
is simplified to

〈For every positive alternative c;h → S of g :: {p ∧ c} h− {q}〉
p ∧ e ⇒ q

{p} g− {q}

12.4 Persistence and Relative Stability

If a procedure is called persistently, then each rejected call on the procedure
is eventually followed by another call. This is the essence of “busy waiting”,
and we formalize this notion in this section. We specify a strong semaphore
in section 12.5 as one that eventually grants the semaphore, i.e., it accepts
calls on its P method, provided that it is called persistently. A persistently-
called procedure may never accept, thus ensuring that calls to it continue
forever. Such is the case with weak semaphore, in which no guarantee can
be given that a particular caller of P is eventually granted the semaphore,
even though it repeats the calls endlessly.
Each action in a Seuss program is called persistently because it is called

infinitely often by a scheduler, independent of whether it accepts or not. A
procedure g :: c;h → S may be called persistently and yet h may not be
called persistently, because pre-condition c may not always hold when g is
being called. We introduce relative stability on page 374 to state that once
c becomes true it remains true at least until g accepts a call.

12.4.1 Persistence
For procedure g the predicate ∂g+ denotes that the most recent call on g
was accepted, and ∂g− denotes that it was rejected. Initially, ∂g+ is true
and ∂g− is false; therefore, ∂g+ and ∂g− are negations of each other. Both
predicates are auxiliary variables like #g+ and #g−.

Predicate p holds whenever g is called is given by, for any m,

#g = m ∧ ¬p cco #g = m

That is, any step that has ¬p as a pre-condition does not change #g, i.e.,
g is not called if ¬p holds.

Procedure g is called persistently if for every integer n, n ≥ 0,
∂g− ∧ #g = n c �→ #g > n
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Eventually g accepts is given by

true c �→ ∂g+

We write p✄ g to denote

if
p holds whenever g is called and
g is called persistently

then
eventually g accepts

Formally, p✄ g stands for

〈∀m,n::
#g = m ∧ ¬p cco #g = m
∂g− ∧ #g = n c �→ #g > n〉

⇒
〈true c �→ ∂g+〉

For procedure g with parameters, g is called persistently means that
each call to g that is rejected is eventually followed by another call with
the same argument values. This is particularly useful when the argument
encodes the identity of the caller. Then, persistent calling means that each
rejected caller calls again. The definition of persistent calling in this case
is, for all possible argument values x,

∂g−(x) ∧ #g(x) = n c �→ #g(x) > n

The other definitions are similarly modified.

Note (p ✄ g) ⇒ (p ∧ q ✄ g). ✷

12.4.2 Relative stability
A predicate is stable if it remains true once it becomes true. We consider a
variation of this notion called relative stability. Predicate p is stable relative
to action g if p can be falsified only by an accepting execution of g. In
practice, p is usually a predicate over g’s box. Then it is sufficient to show
that no procedure of that box, except possibly g+, falsifies p. Since no
method falsifies p —g is an action— no external action can falsify p by
calling a method of g’s box. Therefore, once p holds, it continues to hold
as long as g is not executed.

12.4.3 Inference rules
We show two inference rules that we have found to be useful.
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(PC1) Let g be an action.

(p✄ g), {p} g+ {q}, p stable relative to g
p c �→ q

We justify this inference rule in operational terms. Consider a state in
which p holds. From relative stability of p, it continues to hold at least until
g has an accepting execution. Therefore, p is a pre-condition whenever g is
called, and since g is an action, it is called persistently. Hence, from p✄ g,
eventually g accepts; from {p} g+ {q} it establishes q.
Note The operator c �→ in the consequent of (PC1) may be strengthened
to cen because p remains true until q is established, and g+ establishes
q. ✷

The following corollary of (PC1) is an important generalization. It may
be justified similarly. Recall, from section 5.4.5, that for properties α and
β of program F , we write α ⇒ β to mean that taking α as an additional
premise β can be inferred as a property of F .

Corollary of PC1 Let g be an action and R be a system property.

R ⇒ (p✄ g), {p} g+ {q}, p stable relative to g
R ⇒ (p c �→ q)

Note We note without proof

R ∧ p ⇒ (q ✄ g)
R ⇒ (p ∧ q ✄ g) ✷

The next inference rule defines the effect of persistent calling on a pro-
cedure in terms of persistent calls on its pre-procedure.

(PC2) Suppose procedure g has a positive alternative c; f → S and g
is the only caller of f .

(p✄ f)
(p ∧ c ✄ g)

To justify this rule we start with the consequent, (p ∧ c ✄ g). Assume
that (1) p∧c holds whenever g is called and (2) g is called persistently. The
goal is to show that g accepts eventually. Since c; f → S is an alternative
of g, using (1), f is called each time g is called, and p holds whenever f
is called.1 Hence, from p✄ f , procedure f accepts eventually, and g as the
sole caller of f accepts too.
The condition that g is the sole caller of f does not restrict the applica-

bility of this rule. Whenever a procedure is called with distinct arguments

1Actually, p ∧ c holds whenever f is called, but since c is local to g’s box c has little
relevance for f .
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we regard the calls as being made to distinct procedures. Therefore, pro-
cesses that pass their ids as arguments can claim to be the sole caller of
that procedure with that argument.
Analogous to the corollary of (PC1) we have

Corollary of PC2 Let procedure g have a positive alternative c; f → S,
and g be the only caller of f . Let R be a system property.

R ⇒ (p✄ f)
R ⇒ (p ∧ c ✄ g)

12.5 Strong Semaphore

The example of strong semaphore illustrates various aspects of persistence.
We start with the code from section 4.9.2, propose a specification (that
includes persistent calling) and prove the consistency of the specification
with the code. In section 12.6 we consider a resource allocation algorithm (of
section 4.10) in which the resources are identified with strong semaphores.
We use the specification given in this section to prove absence of starvation
in the resource allocation algorithm.
The following code for strong semaphore is taken from page 81. The only

alteration is to replace the identifier avail by b to shorten the formulae in
the proofs. Variable b is true if the semaphore is available, and q is the
queue of process-ids whose most recent calls on P have been rejected.

————————————
cat StrongSemaphore
seq(id) q = 〈〉;
boolean b = true;

partial method P(i : id) ::
b ∧ i = q.head → b, q := false, q.tail

� | i �∈ q → q := q ++ i {i is appended to q}

total method V :: b := true
end {StrongSemaphore}
————————————

12.5.1 Specification of strong semaphore
The specification is written using variable b only; variable q is not exposed.
Specifications of P

+
, P

−
, and V are straightforward: P

+
falsifies b, P

−

does not disturb b, and V sets b to true. We discuss the progress property
later. In the following, free variable B is boolean and i is quantified over
all process-ids.



12.5 Strong Semaphore 377

————————————
Specification StrongSemaphore
boolean b = true;

{b} P
+
(i) {¬b}

{b = B} P
−
(i) {b = B}

{true} V {b}

〈true c �→ b〉 ⇒ 〈true ✄ P (i)〉

end {StrongSemaphore}
————————————

The progress property, 〈true c �→ b〉 ⇒ 〈true ✄ P (i)〉, says that if b
is infinitely often true —i.e., the semaphore is always eventually available
because every holder of the semaphore releases it eventually— and P is
called persistently, then P will eventually accept a call from every caller,
i.e., every caller eventually holds the semaphore.

Note The specification of P
+
(i) does not say that P

+
(i) accepts if b holds;

it says that if b holds and P (i) accepts, then ¬b holds as a post-condition.
The condition under which P accepts is embedded in the progress property
in the specification.
We remarked toward the end of section 4.9.2 that a strong semaphore

requires every caller to be persistent. It can be proved that there is no im-
plementation of strong semaphore in the presence of even one nonpersistent
caller —which calls P , gets rejected, and never calls again, for instance. ✷

12.5.2 Proof of the specification
The first three properties in the specification, which give the semantics of
P

+
, P

−
, and V , are easy to establish. We show a proof of

〈true c �→ b〉 ⇒ 〈true ✄ P (i)〉
The proof is developed through a series of propositions, (S0–S8).

(S0) Elements in q are distinct:
This proposition is true initially, and an item is added to q, in the
rejecting alternative of P , only if it is not already in q.

(S1) i = q.head cco i = q.head ∨ i /∈ q:
The head item remains in the queue until removed. This is a property
of any queue whose items are all distinct.
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(S2) (i = q.head c �→ i /∈ q) ⇒ (true c �→ i /∈ q):
If the head item of a queue is eventually removed, every item is even-
tually removed. This is a property of any queue.

We derive properties (S3–S5) from the program.

(S3) i ∈ q ≡ ∂P
−
(i).

(S4) i ∈ q cco i ∈ q ∨ ∂P
+
(i).

(S5) b∧i = q.head∧#P (i) = n cco (b∧i = q.head∧#P (i) = n)∨(i /∈ q).

We show only the proof of (S3). The remaining proofs are similar.

• Proof of (S3), i ∈ q ≡ ∂P
−
(i):

This proposition holds initially because q = 〈〉 (i.e., i ∈ q is false) and
∂P

−
(i) is false. We show that the proposition is stable, i.e.,

{i ∈ q ≡ ∂P
−
(i)} P

+
(i) {i ∈ q ≡ ∂P

−
(i)}

{i ∈ q ≡ ∂P
−
(i)} P

−
(i) {i ∈ q ≡ ∂P

−
(i)}

{i ∈ q ≡ ∂P
−
(i)} V {i ∈ q ≡ ∂P

−
(i)}

Execution of P (j), j �= i, does not affect i ∈ q or ∂P
−
(i). That is why we

consider only P (i).
We show only the proof of the first assertion; the remaining two are

similarly proved. For the first proof, add the assignments to the auxiliary
variables explicitly and use (S0) as an additional conjunct —writing qd to
denote that all items in q have distinct values— and show

{(i ∈ q ≡ ∂P
−
(i)) ∧ b ∧ i = q.head ∧ qd}

b, q, ∂P
−
(i), ∂P

+
(i) := false, q.tail, false, true

{i ∈ q ≡ ∂P
−
(i)}

Using the axiom of assignment (see appendix A.4.1), the proof amounts to
showing:

〈(i ∈ q ≡ ∂P
−
(i)) ∧ b ∧ i = q.head ∧ qd〉 ⇒ 〈i /∈ q.tail〉

This follows from (i = q.head ∧ qd) ⇒ (i /∈ q.tail). ✷

We are now ready to prove the progress property in the specification

〈true c �→ b〉 ⇒ 〈true ✄ P (i)〉
We assume the antecedents of this property — true c �→ b, see (S6), and
the antecedent of true ✄ P (i), see (S7)— and prove the consequent of
true ✄ P (i), see (S8).



12.6 Starvation Freedom in a Resource Allocation Algorithm 379

(S6) true c �→ b

(S7) ∂P
−
(i) ∧ #P (i) = n c �→ #P (i) > n

(S8) true c �→ ∂P
+
(i)

• Proof of (S8), true c �→ ∂P
+
(i):

∂P
−
(i) ∧ #P (i) = n c �→ #P (i) > n , (S7)

b ∧ i = q.head ∧ #P (i) = n cco
(b ∧ i = q.head ∧ #P (i) = n) ∨ (i /∈ q)

, (S5)
b ∧ i = q.head ∧ #P (i) = n ∧ ∂P

−
(i) c �→ i /∈ q

, PSP and weaken rhs
b ∧ i = q.head ∧ ∂P

−
(i) c �→ i /∈ q , disjunction over n

i = q.head ⇒ i ∈ q and i ∈ q ≡ ∂P
−
(i) , queue property, S3

b ∧ i = q.head c �→ i /∈ q , from above two (1)
i = q.head cco i = q.head ∨ i /∈ q , (S1)
true c �→ b , (S6)
i = q.head c �→ (b ∧ i = q.head) ∨ i /∈ q , PSP and weaken rhs
i = q.head c �→ i /∈ q , cancellation with (1)
true c �→ i /∈ q , (S2) and above
i ∈ q cco i ∈ q ∨ ∂P

+
(i) , (S4)

i ∈ q c �→ ∂P
+
(i) , PSP and weaken rhs

∂P
−
(i) c �→ ∂P

+
(i) , (S3): i ∈ q ≡ ∂P

−
(i)

∂P
+
(i) c �→ ∂P

+
(i) , implication

true c �→ ∂P
+
(i) , disjunction, above two ✷

12.6 Starvation Freedom in a Resource Allocation
Algorithm

We consider the resource allocation algorithm given in section 4.10. The
program given on page 87 and reproduced in section 12.6.1 is deadlock-
free when each resource is managed by a weak semaphore. We claimed
in section 4.10 that the program is starvation-free when the resources are
managed by strong semaphores. We prove this claim here, using the speci-
fication of strong semaphore from section 12.5.
The proof of absence of starvation is quite subtle. The action acquire in a

user program calls procedure P of semaphore r[d] (that manages resource
numbered d) provided that the user is hungry, needs resource d, and has
already acquired all lower-numbered resources. It has to be shown in the
proof that repeated calls to r[d].P result in the user being granted the
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corresponding semaphore. But from the specification of strong semaphore
(see section 12.5), such a claim can be made only if the semaphore is even-
tually released by its holder; a holder releases a semaphore only after it
eats, i.e., only if the solution is starvation-free. The seeming circularity of
this argument is resolved by having the users acquire the semaphores in a
particular order.
Typical proofs of this algorithm in the literature derive a contradiction if

there is starvation, along the lines sketched in section 4.10. Here, we avoid
proof by contradiction, using induction on resource numbers to establish the
theorem. The theorem says that every holder of a semaphore, j or above,
releases it eventually, and every user that is hungry and has acquired all
resources below j will eventually enter the eating state. The proof uses the
specification of strong semaphore and the inference rules of section 12.4.3.

12.6.1 The resource allocation program
In the following, useri is the box for user with id i; this id appears as an
argument in the call to r[d].P .

————————————
box r[0..N ]: StrongSemaphore

box useri

array[0..N ](boolean) needs = false;
enum (0..N + 1) d = 0;
enum (thinking, hungry, eating) state = thinking;

partial action acquire ::
hungry ∧ d ≤ N ∧ ¬needs[d] → d := d+ 1

| hungry ∧ d ≤ N ∧ needs[d]; r[d].P (i) → d := d+ 1

partial action eat ::
hungry ∧ d > N → state := eating; use resources

partial action release ::
thinking ∧ d > N →

while d �= 0 do
d := d− 1; if needs[d] then r[d].V endif

enddo
end {useri}
————————————

Note As noted in section 4.10, the transition from thinking to hungry
is not shown; it is part of an underlying program that sets the boolean
array needs, where needs[i] holds if the process needs resource i. Also, the
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eating-thinking transition is not shown explicitly in this program. Every
eating process eventually transits to thinking, and needs and d remain
unchanged by the transition. In particular, we assume the following closure
property of useri :

e ∧ needs[k] c �→ t ∧ d > N ∧ needs[k] ✷

12.6.2 Proof of absence of starvation
We prove that every user eats eventually if it is hungry, i.e., with hi and
ei denoting that user i is hungry and eating, respectively, hi c �→ ei (see
corollary to the main theorem of this section).

Notation Henceforth, j and k are integers, 0 ≤ j ≤ N+1 and 0 ≤ k ≤ N .
We employ the following abbreviations in the proof:

bk ≡ r[k].b
Vj ≡ 〈∧k : j ≤ k ≤ N : true c �→ bk〉

Thus, bk says that resource k is available, and Vj says that eventually every
resource numbered j or higher is available. We write t, h, and e instead of
thinking, hungry, and eating. All the variables in the proof —t, h, e, d,
and needs— refer to an arbitrary user program; we add a subscript when
necessary to identify a particular user . ✷

The following lemma says that if all resources numbered j or higher are
eventually available, then a user who has acquired all needed resources
below j and needs j will acquire resource j.

Lemma 4 Vj ⇒ (h ∧ d ≤ N ∧ needs[d] ∧ d ≥ j c �→ h ∧ d > j).

Proof: We apply the corollary of (PC1), see page 375, to establish this
result. Let g be action acquire, and

p ≡ h ∧ d ≤ N ∧ needs[d] ∧ d ≥ j
q ≡ h ∧ d > j
R ≡ Vj

The consequent of the corollary, R ⇒ (p c �→ q), establishes lemma 4.
We have to show the following properties that appear in the antecedent of
that corollary:

1. Vj ⇒ (p✄ g)

2. {p} g+ {q}
3. p stable relative to g

The last two properties are easily established. For (2), note that only the
second alternative of acquire may accept under the given pre-condition p,
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and its acceptance increases the value of d, thus establishing q. For (3), no
action (or alternative) except the second alternative of acquire is executed
effectively under pre-condition p.
Next, we prove (1) by applying the corollary of (PC2). Action g, which

is acquire, has a positive alternative c; f → S , where

c ≡ h ∧ d ≤ N ∧ needs[d]
f is r[d].P (i)

As noted earlier,

p ≡ h ∧ d ≤ N ∧ needs[d] ∧ d ≥ j
R ≡ Vj

First, assume Vj ∧ p.

d ≥ j , from p
true c �→ r[d].b , from Vj and above
true ✄ r[d].P (i) , above and specification of r[d] (section 12.5.1)

Hence,

Vj ∧ p⇒ 〈true ✄ r[d].P (i)〉 , from above proof
Vj ⇒ 〈p ✄ r[d].P (i)〉 , above, note after PC1-corollary
Vj ⇒ 〈p ∧ c ✄ g〉 , corollary of PC2
Vj ⇒ 〈p ✄ g〉 , above, using p ∧ c ≡ p

Lemma 5 h ∧ d ≤ N ∧ ¬needs[d] ∧ d ≥ j c �→ h ∧ d > j

Proof:

h ∧ d ≤ N ∧ ¬needs[d] ∧ d = j cen h ∧ d > j
, with the lhs pre-condition the only effective
execution is for the first alternative of acquire

h ∧ d ≤ N ∧ ¬needs[d] ∧ d = j c �→ h ∧ d > j
, basis rule for c �→

h ∧ d ≤ N ∧ ¬needs[d] ∧ d > j c �→ h ∧ d > j
, implication

h ∧ d ≤ N ∧ ¬needs[d] ∧ d ≥ j c �→ h ∧ d > j
, disjunction ✷

Lemma 6 h ∧ d > N c �→ e

Proof:

h ∧ d > N cen e , under the lhs pre-condition the only
action executed effectively is eat

h ∧ d > N c �→ e , basis rule for c �→ ✷

Next we state two lemmas without proof; they are easily proved from
the program text. The first one says that a thinking process has either
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released all resources or it holds all of the resources used in the previous
eating session. The second invariant says that if semaphore k is unavailable,
some process i needs it (needsi[k]) and has acquired it (di > k).

Lemma 7 t ⇒ (d = 0 ∨ d > N)

Lemma 8 ¬bk ⇒ 〈∃i :: di > k ∧ needsi[k]〉
We are now ready to prove the main theorem from which absence of

starvation follows as a corollary.

Theorem For all j, 0 ≤ j ≤ N + 1: Vj and h ∧ d ≥ j c �→ e .
Proof: By backward induction on j.

Case j = N + 1:

VN+1 ≡ true , definition of VN+1
h ∧ d > N c �→ e , lemma 6

Case j = k, 0 ≤ k ≤ N : We assume

Vk+1 and h ∧ d > k c �→ e

and show

Vk and h ∧ d ≥ k c �→ e

• Proof of Vk :

t ∧ d > N ∧ needs[k] cen bk , consider action release
t ∧ d > N ∧ needs[k] c �→ bk , basis rule for c �→ (1)
e ∧ needs[k] c �→ t ∧ d > N ∧ needs[k]

, see note in section 12.6.1
e ∧ needs[k] c �→ bk , transitivity (above, 1) (2)
e ∧ d > k ∧ needs[k] c �→ bk , strengthen lhs (3)
t ∧ d > k ⇒ t ∧ d > N , from lemma 7
t ∧ d > k ∧ needs[k] ⇒ t ∧ d > N ∧ needs[k]

, above and predicate calculus
t ∧ d > k ∧ needs[k] c �→ bk , strengthen (1) with above (4)
h ∧ d > k c �→ e , induction hypothesis
h ∧ needs[k] cco (h ∨ e) ∧ needs[k]

, program text
h ∧ d > k ∧ needs[k] c �→ e ∧ needs[k]

, PSP on above two
h ∧ d > k ∧ needs[k] c �→ bk , transitivity with (2) (5)
d > k ∧ needs[k] c �→ bk , disjunction of (3,4,5)
〈∃i :: di > k ∧ needsi[k]〉 c �→ bk

, disjunction over all i (6)
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¬bk c �→ bk , strengthen lhs, use lemma 8
true c �→ bk , disjunction with bk c �→ bk
Vk+1 , induction hypothesis
Vk , above two, from definition:

Vk ≡ Vk+1 ∧ (true c �→ bk) ✷

• Proof of h ∧ d ≥ k c �→ e :

h ∧ d ≤ N ∧ needs[d] ∧ d ≥ k c �→ h ∧ d > k
, from Vk and lemma 4

h ∧ d ≤ N ∧ ¬needs[d] ∧ d ≥ k c �→ h ∧ d > k
, from lemma 5

h ∧ d ≤ N ∧ d ≥ k c �→ h ∧ d > k , disjunction of above two
h ∧ d > k c �→ e , induction hypothesis
h ∧ d ≤ N ∧ d ≥ k c �→ e , transitivity on above two
h ∧ d > N ∧ d ≥ k c �→ e , lemma 6: strengthen lhs
h ∧ d ≥ k c �→ e , disjunction of above two ✷

The following corollary concludes the progress proof.

Corollary h c �→ e .
Proof: Set j to 0 in the statement of the above theorem.

h ∧ d ≥ 0 c �→ e
⇒ {Substitution axiom: cinvariant d ≥ 0}

h c �→ e ✷

12.7 Concluding Remarks

The proof rules developed in this chapter allow us to state facts about
specific procedures, unlike the proof rules of chapters 5 and 6 which de-
scribe only program properties. The inference rules for persistence, for in-
stance, name the procedures explicitly. We have also employed auxiliary
variables, like #g, that count the number of procedure executions. We be-
lieve that state-based reasoning in the style of earlier chapters is inadequate
for object-based programming models like Seuss. This chapter represents
a preliminary attempt at integrating state-based and procedure-based rea-
soning.
Mathematical systems often evolve through a long process of experimen-

tation. The right set of axioms in an algebra, constructs in a programming
language, or inference rules of a logic are often arrived at after experiment-
ing with the alternatives. The goal of experimentation is to devise a system
that is elegant and effectively applicable to the problems in its intended do-
main. The logic for action systems, described in chapters 5 and 6, has been
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“engineered” over a long period, and its effectiveness on a variety of prob-
lems has been demonstrated. The material in this chapter has had a much
shorter gestation period. We present it now in the hope that its publication
will inspire other researchers to undertake the necessary experimentation.

12.8 Bibliographic Notes

The notions of pre- and post-conditions are from Floyd [71] and Hoare [89].
The wp-calculus and an elaborate treatment of predicate transformers and
their applications in program semantics are in Dijkstra and Scholten [61].
The notion of persistence was first formulated by Rajeev Joshi. The result
that all callers of P in a strong semaphore must be persistent for a solution
to exist appears in [100]. A promising approach for integrating state-based
and procedure-based reasoning, called “computation calculus”, has been
developed by Rutger Dijkstra [63].
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In Retrospect

The ostensible goal of this book is to propose a methodology and program-
ming constructs for the development of distributed applications. The book
turns out to be more about good programming practices: modularization,
loose coupling of modules, clean interfaces, and the centrality of specifica-
tion in program design. These concepts are not new, and they have been
known to be essential in both sequential and concurrent programming. I
have developed each concept within a concrete programming model and
logic. Modules are codified as boxes, interfaces among boxes are limited
to communication through procedure calls, and specifications are written
as properties in a fragment of linear temporal logic. A module is a wholly
self-contained unit that can be specified, designed, and understood in com-
plete isolation from the other modules, and its properties are inherited by
any system in which it is embedded. The key to this self-containment is to
include the specification of the environment of a module within a module
specification (see conditional and closure properties of chapter 9), and to
eliminate interference among concurrently-executing actions by restricting
such actions to be compatible. The ultimate goal is to develop a software
design methodology in which a system specification is partitioned over its
modules and the modules are then designed independently.
A large portion of this book has been devoted to the development of

a logic. For a researcher, such a development is the ultimate test of the
consistency and simplicity of the ideas. For a practitioner, though, it is
the effectiveness of the logic in problem solving that counts. A program-
mer should use logic to aid the mental process and save time, much as an
engineer uses algebra and calculus in preference to intuitive leaps of imag-
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ination for the most expeditious design. A lot of work has gone into “engi-
neering” the logic in this book so that it is a help rather than a hindrance
in specification and design. A large number of proofs have been analyzed
to ensure that the logic does not force a proof to state any more than the
bare essentials, and that the proof steps can be combined effectively to
deduce new properties. Much of this engineering remains to be done for
the general logic of Seuss (see chapter 12). It is heartening that practicing
engineers have begun to use sophisticated theorem provers [105, 106, 147],
and action-system logics [118, 119], affirmation that “if you build it they
will come”.
This book leaves much for future research. I have remarked in the preface

about the need for empirical confirmation of the programming model, a
necessary first step not only for developing confidence in the model but
for setting the future research direction. A number of enhancements to the
model are required for practical work, among them permitting hierarchy
in the constructions of boxes and dynamic creations of boxes. Some of
the hardest problems have to do with efficient implementations, only a
sketch of which appears in chapter 11. Even though the boxes are designed
for autonomous executions, some form of control (central or distributed)
is essential for efficient task scheduling, enforcement of link constraints
(section 9.3.1) and implementation of a directory look-up service, which
would permit multiple copies of the same box to coexist to speed up accesses
from different parts of the network.
The number and variety of amazing applications that are yet to be de-

signed constitute the enormous potential of the Internet. This book is a
small step toward realizing that potential.



Appendix A
Elementary Logic and Algebra

A.1 Propositional Calculus

We assume that the reader is familiar with propositional logic; we merely
give a short list of propositional identities that have been used in this book;
for a thorough treatment see Dijkstra and Scholten [61, chapter 5] or Gries
and Schneider [80, chapters 3, 4, 5].
We consider the following propositional operators: ∧ (and), ∨ (or), ¬

(not), ≡ (equivalence), and ⇒ (implication). The equality operator (=)
is defined over all domains. Traditionally, it is written as ≡ when applied
to booleans; operator ≡ has the lowest binding power among all logical
operators, whereas operator = has higher binding power than all logical
operators except negation (¬).

• (Commutativity and Associativity) ∧, ∨, ≡ are commutative and
associative.

• (Idempotence) ∧,∨ are idempotent:
p ∨ p ≡ p
p ∧ p ≡ p

• (Distributivity) ∧, ∨ distribute over each other:
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
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• (Absorption)
p ∧ (p ∨ q) ≡ p
p ∨ (p ∧ q) ≡ p

• (Laws with constants)
p ∧ true ≡ p p ∧ false ≡ false
p ∨ true ≡ true p ∨ false ≡ p
p ∨ ¬p ≡ true p ∧ ¬p ≡ false
p ≡ p ≡ true p ≡ ¬p ≡ false

• (Double negation)
¬¬p ≡ p

• (De Morgan)
¬(p ∧ q) ≡ (¬p ∨ ¬q)
¬(p ∨ q) ≡ (¬p ∧ ¬q)

• (Implication operator)
(p⇒ q) ≡ (¬p ∨ q)
(p⇒ q) ≡ (¬q ⇒ ¬p)
If (p⇒ q) and (q ⇒ r), then (p⇒ r), i.e.,
〈(p⇒ q) ∧ (q ⇒ r)〉 ⇒ 〈p⇒ r〉

• (Equivalence)
(p ≡ q) ≡ (p ∧ q) ∨ (¬p ∧ ¬q)
(p ≡ q) ≡ (p⇒ q) ∧ (q ⇒ p)

• (Monotonicity)
Let p⇒ r. Then,
(p ∧ q) ⇒ (r ∧ q)
(p ∨ q) ⇒ (r ∨ q)

Strengthening, Weakening Predicate r strengthens (or, is a strength-
ening of) p if r ⇒ p; therefore, p∧q strengthens p. Similarly, r weakens (or,
is a weakening of) p if p⇒ r; therefore, p ∨ q weakens p. ✷

Priorities of Operators The logical operators in decreasing order of
priorities (binding powers) are ¬, =, ∧ and ∨, ⇒, ≡. Note that = and ≡
have different priorities though they have the same meaning when applied
to boolean operands. Therefore, p∧q = r∧s is equivalent to p ∧ (q = r) ∧ s,
whereas p∧q ≡ r∧s is (p∧q) ≡ (r∧s). Operators ∧ and ∨ have the same
priorities, so we use parentheses if there is a possibility of ambiguity (as in
p ∧ q ∨ r). To aid the reader in parsing logical formulae visually, we often
put extra space around operators of lower priorities, as in p ∧ q ≡ r ∨ s.
Predicate x, y = m,n is an abbreviation for x = m ∧ y = n. ✷
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A.2 Predicate Calculus

A.2.1 Quantification
We use quantification in writing arithmetic and boolean expressions. In all
cases, a quantified expression is of the following form: 〈⊗x : q(x) : e(x)〉.
Here, ⊗ is any commutative, associative binary operator, x is the bound
variable (or a list of bound variables), q(x) is a predicate that determines
the range of the bound variables, and e(x) is an expression called the body.
A quantified expression in which the range is implicit is written in the
following form: 〈⊗x :: e(x)〉. We use other brackets in addition to angular
brackets “〈” and “〉” to delimit the quantified expressions. Some examples
of quantified expressions are given below.

〈+ i : 0 ≤ i ≤ N : A[i]〉 (1)
〈∀i : 0 ≤ i < N : A[i] ≤ A[i+ 1]〉 (2)
〈∀i, j : 0 ≤ i ≤ N ∧ 0 ≤ j ≤ N ∧ i �= j : M [i, j] = 0〉 (3)
〈min i : 0 ≤ i ≤ N ∧ (∀j : 0 ≤ j ≤ N : M [i, j] = 0) : i〉 (4)
〈max p : p ∈ P : p.next(t)〉 (5)

To evaluate a quantified expression, (1) compute all possible values of the
bound variable x that satisfy range predicate q(x), (2) instantiate the body
e(x) with each value computed in (1), and (3) combine the instantiated
expressions in (2) using operator ⊗. If the range is empty, the value of
the expression is the unit element of operator ⊗; unit elements of some
common operators are as given next, in parentheses following the operator:
+ (0), × (1), ∧ (true), ∨ (false), ≡ (true), min (+∞), max (−∞) .
The values of the example expressions are as follows. Expression (1)

is the sum of the array elements A[0], . . . , A[N ]. Expression (2) is true
iff A[0], . . . , A[N ] are in ascending order. Expression (3) has two bound
variables; this boolean expression is true iff all off-diagonal elements of
matrixM [0..N, 0..N ] are zero. Expression (4) is the smallest-numbered row
in M all of whose elements are zero; if there is no such row the expression
evaluates to ∞. Expression (5) is the maximum of all p.next(t) where p is
in P .

A.2.2 Textual substitution
For an expression q, q[x := e] is the expression obtained by replacing in q
all free occurrences of x by e. Textual substitution plays an essential role
in establishing properties from program text; see section A.4.1.
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A.2.3 Universal and Existential quantification
In quantified boolean expressions, we often use the existential quantifier ∃
and universal quantifier ∀ in place of ∨ and ∧. The following are some of
the useful identities.

• (Empty range)
〈∀i : false : b〉 ≡ true
〈∃i : false : b〉 ≡ false

• (Trading)
〈∀i : q : b〉 ≡ 〈∀i :: q ⇒ b〉
〈∃i : q : b〉 ≡ 〈∃i :: q ∧ b〉

• (Move-out) Given that i does not occur as a free variable in p,
p ∨ 〈∀i : q : b〉 ≡ 〈∀i : q : p ∨ b〉
p ∧ 〈∃i : q : b〉 ≡ 〈∃i : q : p ∧ b〉

• (De Morgan)
¬〈∃i : q : b〉 ≡ 〈∀i : q : ¬b〉
¬〈∀i : q : b〉 ≡ 〈∃i : q : ¬b〉

• (Range weakening) Given that q ⇒ q′,

〈∀i : q′ : b〉 ⇒ 〈∀i : q : b〉
〈∃i : q : b〉 ⇒ 〈∃i : q′ : b〉

• (Body weakening) Given that b⇒ b′,

〈∀i : q : b〉 ⇒ 〈∀i : q : b′〉
〈∃i : q : b〉 ⇒ 〈∃i : q : b′〉

A number of identities can be derived from the trading rule (consult
Gries and Schneider [80, chapter 9]); we show two below.

〈∀i : q ∧ r : b〉 ≡ 〈∀i : q : r ⇒ b〉
〈∃i : q ∧ r : b〉 ≡ 〈∃i : q : r ∧ b〉

The following duals of the move-out rule are valid iff range q is not false.

p ∧ 〈∀i : q : b〉 ≡ 〈∀i : q : p ∧ b〉
p ∨ 〈∃i : q : b〉 ≡ 〈∃i : q : p ∨ b〉
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A.3 Proof Format

The proof format shown below, due to W.H.J. Feijen, is a convenient tool
for writing detailed proofs. Let ⇒ denote any transitive relation (not nec-
essarily implication over predicates) over proof terms. A proof term may be
a predicate, an arithmetic expression (in which case an arithmetic relation
like < or ≤ is used in place of ⇒), or a property in Seuss logic. A proof of
p⇒ s may be structured as follows.

p
⇒ {why p⇒ q}

q
⇒ {why q ⇒ r}

r
⇒ {why r ⇒ s}

s

Seuss properties co and �→ (see chapters 5 and 6) can have their left side
strengthened and right side weakened; also each one is transitive. Therefore,
a proof using these operators and implication over predicates is valid.
This is not the only proof format we employ. In many proofs, we write

one proof term per line, where the term may have been derived from a
combination of several previous proof terms. In such cases, the justification
of the proof term explains how the term was derived.

A.4 Hoare Logic and Weakest Pre-conditions

A.4.1 Hoare logic
We use Hoare logic [89] to reason about procedure bodies. Write {p} s {q}
for predicates p and q and a sequential program s to denote that if pro-
gram s is started in a state that satisfies p, it terminates in a state that
satisfies q. We restrict the discussion to terminating programs only. Assume
{p} s {true} and {false} s {p} hold for all p and s.
We prove {p} skip {q} by showing p⇒ q, because skip does not modify

the program state.

Axiom of Assignment If s is an assignment statement, say x := e,
{p} s {q} can be established by proving p ⇒ q[x := e], where q[x := e] is
the predicate obtained by replacing in q all free occurrences of x by e. ✷

For a guarded command C :: g → s, {p} C {q} is shown by proving
{p∧g} s {q} and p∧¬g ⇒ q. An important special case —corresponding
to co properties in section 5.2— arises when p ⇒ q; then it is sufficient
to prove {p ∧ g} s {q} to establish {p} C {q}.
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To show that p is transient under weak fairness —see, for instance,
section 6.3.2— we have to prove {p} C {¬p}, for some guarded com-
mand C :: g → s. The assertions to be proven in this case reduce to
{p ∧ g} s {¬p} and p ⇒ g.

A.4.2 Weakest pre-conditions
The weakest pre-condition of program s with respect to predicate q is writ-
ten as wp.s.q, see Dijkstra [55]. A state satisfies wp.s.q iff starting an exe-
cution of s in that state results in a state (on termination of s) that satisfies
q. Thus, {p} s {q} is the same as p ⇒ wp.s.q. We regard wp.s as a predi-
cate transformer. The notion of weakest liberal pre-condition (wlp) is also
developed in [55]. This notion differs from the weakest pre-condition only
when s is nonterminating; since we consider only terminating sequential
programs —the bodies of procedures— the two notions are identical for
our purposes. The properties of interest, given that wp ≡ wlp, are

• wp.s is universally conjunctive and universally disjunctive.

• wp.s.false ≡ false.

• wp.s is monotonic, i.e., (p⇒ q) ⇒ (wp.s.p⇒ wp.s.q).

A.5 Elementary Relational Calculus

This is a very brief and elementary introduction to relational calculus. The
reader should consult a standard book on modern algebra, such as MacLane
and Birkhoff [126], for a treatment of relations, and a source, such as Rutger
Dijkstra [62], for more recent developments in relational calculus and pro-
gram semantics. The material presented here is sufficient for understanding
the proofs in chapter 10, the only chapter in which relational calculus is
used.
A binary relation (henceforth, simply called a relation) r over domain D

is a subset of D ×D. The relation that corresponds to the empty set is ε.
The union of two relations is a relation that is obtained by taking the union
of the corresponding sets. For relations r and s over the same domain, their
product is written as rs or r ◦ s; it is defined as follows:

rs = {(x, z)| 〈∃y :: (x, y) ∈ r ∧ (y, z) ∈ s〉}
The transitive closure r∗ of relation r is the smallest relation that satisfies

r∗ = r ∪ rr∗ .
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As is traditional for sets, we write r ⊆ s to denote that relation r is con-
tained in relation s.
The following properties of relations are used in chapter 10. For relations

r, s, and t over the same domain,

• Union is commutative and associative.
• Product is associative.
• (ε is zero of relational algebra)
r ∪ ε = r
rε = ε and εr = ε

• (Monotonicity of union)
(r ⊆ s) ⇒ (t ∪ r ⊆ t ∪ s)

• (Monotonicity of product)
(r ⊆ s) ⇒ (rt ⊆ st)
(r ⊆ s) ⇒ (tr ⊆ ts)

• (Distributivity of product over union)
t(r ∪ s) = (tr ∪ ts)
(r ∪ s)t = (rt ∪ st)
Distributivity holds as well for unions of infinite number of relations.

We are interested in relational calculus mainly because of the way pro-
grams can be represented as relations. Let domain D be the state space
of a program. Predicate p on D is a subset of D, and we represent p by a
relation P where

P = {(x, x)| x ∈ p}
Predicate true is D×D and false is ε. Observe that p∨ q is represented by
P ∪Q where P and Q correspond to p and q. Similarly, ¬p is (D×D)−P .
A program is a relation; the pair (s, t) is in the relation iff there is an

execution of the program that transforms state s to state t. The state space
is augmented by a special state ⊥ that designates the result of a nontermi-
nating execution. Various operators for program composition have direct
counterparts in relational calculus: sequential composition corresponds to
relational product; a conditional statement, if b then r else s endif,
corresponds to (BR ∪ B′S), where B and B′ are the relations correspond-
ing to predicates b and ¬b, and R and S are the relations corresponding to
r and s. Looping constructs can be modeled by transitive closure.
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