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Parallel Recursive Algorithms

� Fast Fourier Transform� Batcher Sort� Ladner-Fischer Prefix sum� Odd-Even Reductions of tridiagonal Linear Systems� Hypercube Embedding

Recursive Connection Structures� Butterfly Networks, Hypercube� Complete Binary Tree
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Powerlists

Powerlist: A list of 2n items, n � 0 .

Smallest powerlist has a single item, hxi .
For p; q of the same length:

(tie) p j q : p concatenated with q ,

(zip) p ./ q : alternate items from p and q , starting with p .h0 1i j h2 3i = h0 1 2 3i , h0 1i ./ h2 3i = h0 2 1 3i

Powerlist-length is a power of 2.
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Example of a Powerlist Function: Reverse

revha b 
 di = hd 
 b ai

Definition of Reverse:

revhxi = hxi

rev(p j q) = (rev q) j (rev p)
Properties:

rev(p ./ q) = (rev q) ./ (rev p)
rev(rev p) = p
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Indices in a Powerlist

� Base Case: a singleton list� General Case: Deconstruct using j or ./
000 001 010 011 100 101 110 111h a b 
 d e f g h i
000 001 010 011 100 101 110 111h a b 
 d i j h e f g h i

000 010 100 110 001 011 101 111h a 
 e g i ./ h b d f h i
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Scalar Functions

Apply scalar functions pointwise.:p = h:p0 :p1 :::ip+ q = hp0 + q0 p1 + q1 :::i
Note:(p j q) + (r j s) = (p+ r) j (q + s)(p ./ q) + (r ./ s) = (p+ r) ./ (q + s)
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Laws about powerlists

L0. For singleton powerlists, hxi; hyi , hxi j hyi=hxi ./ hyi
L1. (Dual Deconstruction)

For non-singleton P , there are r; s; u; v such thatP = r j s and P = u ./ v
L2. (Unique Deconstruction)(hxi = hyi) � (x = y)(p j q = u j v) � (p = u ^ q = v)(p ./ q = u ./ v) � (p = u ^ q = v)

L3. (Commutativity of j and ./ )(p j q) ./ (u j v) = (p ./ u) j (q ./ v)
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Rotate Right and Rotate Left

rrha b 
 di = hd a b 
irlha b 
 di = hb 
 d airrhxi = hxi ; rr(u ./ v) = (rr v) ./ urlhxi = hxi ; rl(u ./ v) = v ./ (rl u)
Properties:rr(rl p) = p

rev(rr(rev(rr p))) = p
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An Example: The Function inv

000 001 010 011 100 101 110 111

invh a b 
 d e f g h i =h a e 
 g b f d h i
invhxi = hxi

inv(p j q) = (inv p) ./ (inv q)
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A Duality Property of inv

inv(p ./ q) = (inv p) j (inv q)

Induction : fDefn. invhxi = hxi , inv(p j q) = (inv p) ./ (inv q)g

inv((r j s) ./ (u j v))= f j , ./ commuteg
inv((r ./ u) j (s ./ v))= fdefinition of invg
inv(r ./ u) ./ inv(s ./ v)= finductiong(inv r j inv u) ./ (inv s j inv v)= f j , ./ commuteg(inv r ./ inv s) j (inv u ./ inv v)= fdefinition of invg
inv(r j s) j inv(u j v)
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Polynomial Evaluation

Evaluate: p0 + p1 � w + p2 � w2 + p3 � w3 .

Evaluate a powerlist hp0 p1 p2 p3i at an argument w .hxi ep w = x(p ./ q) ep w = (p ep w2) + w � (q ep w2)
Note: w could be a powerlist.
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Fast Fourier Transform

Given:P : h::Pj::i N itemsQ : h::Qi::i N itemsQi = P ep !i ; ! = N th principal root of 1.Q = P ep h!0!1:::!N�1i
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Fast Fourier Transform: Algorithm

Let P = u ./ v , (U = FFT u) , V = (FFT v)Qi = Ui + !i � Vi left half of QQi+len u = Ui � !i � Vi right half of QFFT hxi = hxiFFT (u ./ v) = (U + V �W ) j (U � V �W )
whereU = FFT uV = FFT vW = h!0!1:::!N=2�1i .
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String Matching Problem

Given: a subject string and a pattern string.

Lengths are powers of 2.

Find: All occurrences of pattern in the subject.

Result has same length as the subject.

pattern: “aabb”

subject: “aaabbabaaabaaabb”

Result:

[False,True,False,False,False,False,False,False,

False,False,False,False,True,False,False,False]
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String Matching: Simple cases

Subject, Pattern are both singletons.sm hxi hyi = hx = yi

Pattern is a singleton.sm hxi (r ./ s) = (sm hxi r) ./ (sm hxi s)
Subject is a singleton.sm (p ./ q) hyi = hFalsei
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String Matching: General case

� Assertion 1:p ./ q matches r ./ s at some even index 2k
iff p matches r at index k and q matches s at index k .� Assertion 2:p ./ q matches r ./ s at some odd index 2k + 1

iff p matches s at index k , q matches r at index k + 1 .
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A proof of one part of assertion 2.

p ./ q matches r ./ s at 2k + 1� fdefinition of “matches”g(8k : 0 � j < jp ./ qj : (p ./ q)j = (r ./ s)j+2k+1)) fconsider only the odd indices 2j + 1g(8j : 0 � 2j + 1 < jp ./ qj :(p ./ q)2j+1 = (r ./ s)2j+1+2k+1)) f (p ./ q)2j+1 = qj; (r ./ s)2j+1+2k+1 = rj+k+1g(8j : 0 � j < jqj : qj = rj+k+1)) fdefinition of “matches”gq matches r at k + 1
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String Matching Algorithm

sm hxi hyi = hx = yism hxi (r ./ s) = (sm hxi r) ./ (sm hxi s)sm (p ./ q) hyi = hFalseism (p ./ q) (r ./ s) =(smpr ^ smqs) ./ (sm0qr ^ smps)
wheresmpr = sm p rsmqs = sm q ssm0qr = ls(sm q r)smps = sm p s

The definition of left shift, ls , isls hxi = hFalseils (u ./ v) = v ./ (ls u)
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Calculate sm0

sm0 hxi hyi= fdefinition of sm0gls(sm hxi hyi)= fdefinition of sm hxi hyiglshx = yi= fdefinition of ls on a singleton listghFalsei
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sm0 (contd.)

sm0 hxi (r ./ s)= fdefinition of sm0gls(sm hxi (r ./ s))= fdefinition of sm hxi (r ./ s)gls((sm hxi r) ./ (sm hxi s))= fdefinition of ls (u ./ v) g(sm hxi s) ./ ls(sm hxi r)= fdefinition of sm0g(sm hxi s) ./ (sm0 hxi r)
A similar derivation shows thatsm0 (p ./ q) hyi = hFalsei
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sm0 (contd.)

sm0 (p ./ q) (r ./ s)= fdefinition of sm0gls(sm (p ./ q) (r ./ s))= fdefinition of sm (p ./ q) (r ./ s)gls((smpr ^ smqs) ./ (sm0qr ^ smps))= fdefinition of lsg(sm0qr ^ smps) ./ ls((smpr ^ smqs))= f ls distributes over ^ in the second termg(sm0qr ^ smps) ./ (ls(smpr) ^ ls(smqs))= f ls(smpr) = sm0pr and ls(smqs) = sm0qsg(sm0qr ^ smps) ./ (sm0pr ^ sm0qs)
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Putting the Pieces Together

sm hxi hyi = hx = yism hxi (r ./ s) = (sm hxi r) ./ (sm hxi s)sm (p ./ q) hyi = hFalseism (p ./ q) (r ./ s) =(smpr ^ smqs) ./ (sm0qr ^ smps)
wheresmpr = sm p rsmqs = sm q ssm0qr = sm0 q rsmps = sm p s
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Putting the Pieces Together; contd.

sm0 hxi hyi = hFalseism0 hxi (r ./ s) = (sm hxi s) ./ (sm0 hxi r)sm0 (p ./ q) hyi = hFalseism0 (p ./ q) (r ./ s) =(sm0qr ^ smps) ./ (sm0pr ^ sm0qs)
wheresm0qr = sm0 q rsmps = sm p ssm0pr = sm0 p rsm0qs = sm0 q s

UNIVERSITY OF TEXAS AT AUSTIN 24



DEPARTMENT OF COMPUTER SCIENCES

Sorting

Generic sorting Schemesorthxi = hxisort(p ./ q) = (sort p) merge (sort q)
Comparator:p : h2 3iq : h4 1ip l q = h2 4 1 3ihxi l hyi = hx min y x max yip l q = hp min q i ./ hp max qi
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Batcher Merge

Bitonic: u merge v = bi(u j (rev v)) , wherebihxi = hxibi(p ./ q) = (bi p) l (bi q)
Batcher Merge:hxi merge hyi = hxi l hyi(p ./ q) merge (u ./ v) = (p merge v) l (q merge u)

Theorem:: p merge q = bi(p j (rev q))
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Proof, Base case

Theorem:: p merge q = bi(p j (rev q))

Base: Let p; q = hxi; hyibi(hxi j revhyi)= fdefinition of revgbi(hxi j hyi)= f (hxi j hyi) = (hxi ./ hyi)gbi(hxi ./ hyi)= fdefinition of bighxi l hyi= fdefinition of mergeghxi merge hyi
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Proof, Inductive case

Theorem:: p merge q = bi(p j (rev q))
Induction: Let p; q = r ./ s; u ./ vbi(p j (rev q))= fexpanding p; qgbi((r ./ s) j rev(u ./ v))= fdefinition of revgbi((r ./ s) j (rev v ./ rev u))= f j ; ./ commutegbi((r j rev v) ./ (s j rev u))= fdefinition of big
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( r merge v) l (s merge u)= fdefinition of mergeg(r ./ s) merge (u ./ v)= fusing the definitions of p; qgp merge q
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Prefix Sum

L : powerlist of scalars,� : binary, associative operator on that scalar type.(ps L) : prefix sum of L with respect to � .(ps L) is a list of the same length as L given byps hx0; x1; ::; xi; ::; xNi= hx0; x0 � x1; ::; x0 � x1 � ::xi; ::; x0 � x1 � :: � xNi

The ith element of (ps L) :
apply � to the first i elements of L .
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Simple scheme for prefix sum

�7�6�5�4�3�2�1

�7�6�5�4�3�2�1

�7�6�5�4�3�2�1

�7�6�5�4�3�2�1

level 3

level 2

level 1

level 0

�0

�0

�0

�0

Figure 1: A network for prefix sum.
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Ladner and Fischer Scheme

Apply � to adjacent elements x2i; x2i+1 .

This computes the list hx0 � x1; :: x2i � x2i+1; ::i .
This list has half as many elements as the original.

Its prefix sum is then computed recursively.

Result is hx0 � x1; ::; x0 � x1 � :: � x2i � x2i+1; : : :i .
This has half of the elements of the final list.

Missing elements are:x0; x0 � x1 � x2; ::; x0 � x1 � :: � x2i; :: .
Add x2; x4; ::; appropriately.
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Specification of prefix sum

0 is the left identity element of � , i.e., 0 � x = x .p� : shift p to the right by one.ha b 
 di� = h0 a b 
i .hxi� = h0i(p ./ q)� = q� ./ p
It is easy to show

S1. (r � s)� = r� � s�
S2. (p ./ q)�� = p� ./ q�
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Specification, contd.

In (DE), z is unknown, L is a powerlist .

(DE) z = z� � L

This equation has a unique solution in z :z0 = (z�)0 � L0= 0 � L0= L0 , andzi+1 = zi � Li+1 , 0 � i < (len L)� 1
For L = ha b 
 di ,z = ha a � b a � b � 
 a � b � 
 � di

This is (ps L) , (unique) solution of (DE).
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prefix sum; simple scheme

sps hxi = hxisps L = (sps u) ./ (sps v)

where u ./ v = L� � L
�7�6�5�4�3�2�1

�7�6�5�4�3�2�1

�7�6�5�4�3�2�1

�7�6�5�4�3�2�1

level 3

level 2

level 1

level 0

�0

�0

�0

�0

Figure 2: A network for prefix sum.

UNIVERSITY OF TEXAS AT AUSTIN 35



DEPARTMENT OF COMPUTER SCIENCES

Explanation of the simple scheme

In the first level, L� � L is computed.

If L = hx0; x1; ::; xi; : : :i thenL� � L is hx0; x0 � x1; ::; xi � xi+1::i .
This is the zip of two sublists:hx0; x1 � x2; ::; x2i�1 � x2i; ::i andhx0 � x1; ::; x2i � x2i+1; ::i .
Compute prefix sums of these two lists and zip.
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Ladner-Fischer scheme

lfhxi = hxilf(p ./ q) = (t� � p) ./ t

where t = lf(p � q)
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Derivation of Ladner-Fischer scheme

For a powerlist p ./ q , what is ps(p ./ q)?

Let r ./ t = ps(p ./ q) . We solve for r; t .r ./ t= f r ./ t = ps (p ./ q) . Using (DE)g(r ./ t)� � (p ./ q)= f (r ./ t)� = t� ./ rg(t� ./ r) � (p ./ q)= f � , ./ commuteg(t� � p) ./ (r � q)
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Ladner-Fischer scheme (contd.)

deconstruct: r ./ t = (t� � p) ./ (r � q) ,

LF1. r = t� � p , and

LF2. t = r � q

Eliminate r from (LF2) using (LF1):t = t� � p � q .

Use (DE) and this equation

LF3. t = ps(p � q)
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Summary of derivation of the Ladner-Fischer scheme

ps(p ./ q)= fby definitiongr ./ t= f Using (LF1) for rg(t� � p) ./ t
where t is defined by LF3:

LF3. t = ps(p � q)
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Generating Functions

� Typically used on sequences of numbers.� I will apply generating functions to interconnection networks.� I will prove that two families of interconnection networks are
isomorphic, using their generating functions.

UNIVERSITY OF TEXAS AT AUSTIN 41



DEPARTMENT OF COMPUTER SCIENCES

Example of Interconnection Network

Bottom Port

Top Port

Node

Stage 0                   Stage 1                  Stage 2

Figure 3: Interconnection Network, N = 4

UNIVERSITY OF TEXAS AT AUSTIN 42



DEPARTMENT OF COMPUTER SCIENCES

Terminology

Interconnection network of size N , N = 2n , has:� n+ 1 stages, numbered 0 through n .� Each stage has N nodes.� Each node, except initial and final nodes, has 2 input and output
ports. top port, bottom port.� Each output port connected to a distinct input port of the next stage.
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Family of Networks

A family has a network for each value of N .

Figure 4: Benes Network, N = 4

Top input lines come in order from the upper half of the previous stage.

Bottom input lines come in order from the lower half.
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Clos Networks

Figure 5: Clos Network for N = 2

Figure 6: Clos Network, N = 4
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Clos Network Interconnection

� N = 2 : shown earlier.� N = 2n+1 : Input lines in the upper/lower half of stage 1 are the
top/bottom output lines the stage 0, in order. Then, append two copies of
network of size 2n .

Figure 7: Clos Network, N = 4
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Butterfly Network and its mirror image

Figure 8: Butterfly Network for N = 4

Figure 9: Mirror Image of the Butterfly Network, N = 4
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Isomorphism

Required to show: two families are isomorphic, that is,

The networks corresponding to N , for each N , in both families are
isomorphic.

Strategy: Represent each family by a generating function.

Two families are isomorphic if the corresponding functions are identical
(upto a permutation of arguments).
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Labelling

b

a

c

d

a0c0

a1c1

b0d0

b1d1

a0c00b0d00

a0c01b0d01

a1c10b1d10

a1c11b1d11

a0

a1

b0

c0

d0

c1

Figure 10: Labelling a Network

A network can be constructed from the set of labels of the final nodes.
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Notation

fpg : set of elements of p ,p0 : concatenate 0 to the end of each element of p . Similarly, p1 .p:q : concatenate corresponding elements of p and q .� fu ./ vg = fug [ fvg , and fu j vg = fug [ fvg .� (p ./ q)0 = (p0 ./ q0) , and (p j q)0 = (p0 j q0) .� (p ./ q):(u ./ v) = (p:u) ./ (q:v) , and (p j q):(u j v) = (p:u) j (q:v) .� For a permuting function h ,(h p)0 = h(p0) and h(p:q) = (h p):(h q) .
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Generating-Function for Clos Networks


(hxi) = hxi
(u ./ v) = 
(u0:v0) j 
(u1:v1)

Note: ha0b0 
0d0i = ha0 
0i:hb0 d0i = ha 
i0:hb di0 .

a

b

c1d1

a1b1

c0d0

a0b0

d

c

Figure 11: Clos Network, N = 4
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Generating-Function for Butterfly Network

f(hxi) = hxif(u j v) = f(u0:v0) j f(u1:v1)
Figure 12: Butterfly Network for N = 4
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Mirror Image of the Butterfly Network

m(hxi) = hxim(u ./ v) = m(u0:v0) ./ m(u1:v1)
Figure 13: Mirror Image of the Butterfly Network, N = 4
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Generating-Function for Benes Network

bk describes the Benes network with k + 1 stages.b0 (p) = fpgbk+1(u j v) = bk(u0:v0 ./ u1:v1) , for 0 � k � u , where u = log2 juj

Figure 14: Benes Network, N = 4
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Definition of Isomorphism

Families with generating functions g and h are isomorphic ifffgg = fh Æ �g , for some permutation function � . That is,fg(p)g = fh(�(p))g , for all p .

Isomorphism is an equivalence relation.

The order in the final list does not matter.
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Isomorphism: Clos, Butterfly, Mirror Image

Theorem 1:
1. 
 Æ inv = f

2. 
 = inv Æm

Proof of 2 (Induction): Let the argument powerlist be u ./ v .inv(m(u ./ v))= fdefinition of mginv[m(u0:v0) ./ m(u1:v1)℄= fProperty of invginv[m(u0:v0)℄ j inv[m(u1:v1)℄= finductiong
(u0:v0) j 
(u1:v1)= fdefinition of 
g
(u ./ v)
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Isomorphism: Benes, Butterfly

Lemma: bn(u ./ v) = (bn u) [ (bn v) , for all n , 0 � n � u .

Theorem 2: bu(u) = ff(u)gbp j q(p j q)= fdefinition of bgbp(p0:q0 ./ p1:q1)= fLemmagbp(p0:q0) [ bp(p1:q1)= finduction. Note that p = p0:q0 = p1:q1gff(p0:q0)g [ ff(p1:q1)g= fObservation 1gff(p0:q0) j f(p1:q1)g= fDefinition of f gff(p j q)g
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Higher Dimensional Arrays

A matrix of r rows and 
 columns is a powerlist of 
 elements:
each element is a powerlist of length r storing the items of a column.

Think in terms of array operations rather than operations on nested
powerlists.

Introduce construction operators, analogous to j and ./ , for tie and
zip along any specified dimension.j0; ./0 for the corresponding operators in dimension 1 , j00; ./00 for the
dimension 2, etc.
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Examples of Matrices

A = * ^ ^2 43 5_ _
+ B = * ^ ^0 16 7_ _
+

A j B = * ^ ^ ^ ^2 4 0 13 5 6 7_ _ _ _
+ A ./ B = * ^ ^ ^ ^2 0 4 13 6 5 7_ _ _ _
+

A j0 B = *
^ ^2 43 50 16 7_ _
+ A ./0 B = *

^ ^2 40 13 56 7_ _
+
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Definition of a matrix

Define a matrix to be either

a singleton matrix hhxii , orp j q where p; q are (similar) matrices, oru j0 v where u; v are (similar) matrices.

Matrix Transposition�hhxii = hhxii�(p j q) = (� p) j0 (� q)�(u j0 v) = (� u) j (� v)
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Matrix Transposition

�hhxii = hhxii�((p j q) j0 (u j v)) = ((� p) j0 (� q)) j ((� u) j0 (� v))
In the figure p0 = � p , etc.

q0 v0u0p0=� vu qp

Figure 15: transposition of a square matrix.
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