### **Powerlist**

Jayadev Misra

Department of Computer Sciences
University of Texas at Austin

Email: misra@cs.utexas.edu

web: http://www.cs.utexas.edu/users/psp

### **References on Powerlist**

- 1. "Powerlist: A Structure for Parallel Recursion," ACM Transactions on Programming Languages and Systems, Vol. 16, No. 6, pp. 1737-1767, November 1994.
- 2. "Generating–Functions of Interconnection Networks," Millennial Perspectives in Computer Science: the proceedings of the 1999 Oxford–Microsoft Symposium in honour of Sir Tony Hoare, St. Catherine's College, Oxford, September 1999.
- 3. "Derivation of a Parallel String Matching Algorithm," http://www.cs.utexas.edu/users/psp/StringMatch.ps

## References on Seuss Logic

- A Discipline of Multiprogramming, Jayadev Misra, Springer-Verlag, 2001. A few chapters are available at http://www.cs.utexas.edu/users/psp/discipline.ps.gz
- 2. "A logic for Concurrent Programming (in two parts): Safety and Progress," Journal of Computer and Software Engineering, Vol.3, No.2, pp 239-300, 1995. http://www.cs.utexas.edu/users/psp/SafetyProgress.ps

## **Parallel Recursive Algorithms**

- Fast Fourier Transform
- Batcher Sort
- Ladner-Fischer Prefix sum
- Odd-Even Reductions of tridiagonal Linear Systems
- Hypercube Embedding

#### **Recursive Connection Structures**

- Butterfly Networks, Hypercube
- Complete Binary Tree

### **Powerlists**

Powerlist: A list of  $2^n$  items,  $n \ge 0$ .

Smallest powerlist has a single item,  $\langle x \rangle$ .

For p, q of the same length:

(tie)  $p \mid q$ : p concatenated with q,

(zip)  $p \bowtie q$ : alternate items from p and q, starting with p.

$$\langle 0 \ 1 \rangle \mid \langle 2 \ 3 \rangle = \langle 0 \ 1 \ 2 \ 3 \rangle, \quad \langle 0 \ 1 \rangle \bowtie \langle 2 \ 3 \rangle = \langle 0 \ 2 \ 1 \ 3 \rangle$$

Powerlist-length is a power of 2.

### **Example of a Powerlist Function: Reverse**

$$rev\langle a \ b \ c \ d \rangle = \langle d \ c \ b \ a \rangle$$

#### Definition of Reverse:

$$egin{aligned} \mathit{rev}\langle x 
angle = \langle x 
angle \\ \mathit{rev}(p \mid q) = (\mathit{rev}\ q) \mid (\mathit{rev}\ p) \end{aligned}$$

### Properties:

### **Indices in a Powerlist**

- Base Case: a singleton list
- General Case: Deconstruct using or ⋈

## **Scalar Functions**

Apply scalar functions pointwise.

$$\neg p = \langle \neg p_0 \ \neg p_1 \dots \rangle 
p + q = \langle p_0 + q_0 \ p_1 + q_1 \dots \rangle$$

Note:

$$(p \mid q) + (r \mid s) = (p+r) \mid (q+s)$$
$$(p \bowtie q) + (r \bowtie s) = (p+r) \bowtie (q+s)$$

# Laws about powerlists

- L0. For singleton powerlists,  $\langle x \rangle, \langle y \rangle, \langle x \rangle \mid \langle y \rangle = \langle x \rangle \bowtie \langle y \rangle$
- L1. (Dual Deconstruction) For non-singleton P, there are r, s, u, v such that  $P = r \mid s$  and  $P = u \bowtie v$
- L2. (Unique Deconstruction)

$$(\langle x \rangle = \langle y \rangle) \equiv (x = y)$$

$$(p \mid q = u \mid v) \equiv (p = u \land q = v)$$

$$(p \bowtie q = u \bowtie v) \equiv (p = u \land q = v)$$

L3. (Commutativity of  $\mid$  and  $\bowtie$ )  $(p \mid q) \bowtie (u \mid v) = (p \bowtie u) \mid (q \bowtie v)$ 

## **Rotate Right and Rotate Left**

```
rr\langle a \ b \ c \ d \rangle = \langle d \ a \ b \ c \rangle
rl\langle a \ b \ c \ d \rangle = \langle b \ c \ d \ a \rangle
rr\langle x \rangle = \langle x \rangle; \quad rr(u \bowtie v) = (rr \ v) \bowtie u
rl\langle x \rangle = \langle x \rangle; \quad rl(u \bowtie v) = v \bowtie (rl \ u)
```

### Properties:

$$egin{aligned} rr(rl \ p) &= p \ \mathit{rev}(rr(\mathit{rev}(rr \ p))) &= p \end{aligned}$$

# An Example: The Function *inv*

$$egin{aligned} & \mathit{inv}\langle x 
angle = \langle x 
angle \\ & \mathit{inv}(p \mid q) = (\mathit{inv}\, p) \Join (\mathit{inv}\, q) \end{aligned}$$

## A Duality Property of *inv*

```
inv(p \bowtie q) = (inv p) \mid (inv q)
        Induction : {Defn. inv\langle x\rangle = \langle x\rangle, inv(p \mid q) = (inv p) \bowtie (inv q) }
               inv((r \mid s) \bowtie (u \mid v))
             = \{ \mid, \bowtie commute \}
               inv((r\bowtie u)\mid (s\bowtie v))
             = {definition of inv}
                inv(r\bowtie u)\bowtie inv(s\bowtie v)
             = {induction}
               (inv r \mid inv u) \bowtie (inv s \mid inv v)
             = \{ \mid , \bowtie commute \}
                (inv r \bowtie inv s) \mid (inv u \bowtie inv v)
              = {definition of inv}
                inv(r \mid s) \mid inv(u \mid v)
```

# **Polynomial Evaluation**

Evaluate:  $p_0 + p_1 \times w + p_2 \times w^2 + p_3 \times w^3$ .

Evaluate a powerlist  $\langle p_0 p_1 p_2 p_3 \rangle$  at an argument w.

$$\langle x \rangle \ ep \ w = x$$
  
 $(p \bowtie q) \ ep \ w = (p \ ep \ w^2) + w \times (q \ ep \ w^2)$ 

Note: w could be a powerlist.

### **Fast Fourier Transform**

#### Given:

 $P: \langle ...P_j... \rangle$  N items

 $Q: \langle ...Q_i... \rangle$  N items

 $Q_i = P \; ep \; \omega^i$ ;  $\omega = N^{th}$  principal root of 1.

 $Q = P e \rho \langle \omega^0 \omega^1 ... \omega^{N-1} \rangle$ 

## **Fast Fourier Transform: Algorithm**

Let 
$$P=u\bowtie v,\;\;(U=FFT\;u),\;\;V=(FFT\;v)$$
 
$$Q_i=U_i+\omega^i\times V_i\quad \text{ left half of }\;Q$$
 
$$Q_{i+len\;u}=U_i-\omega^i\times V_i\quad \text{ right half of }\;Q$$
 
$$FFT\langle x\rangle=\langle x\rangle \\ FFT(u\bowtie v)=(U+V\times W)\mid (U-V\times W) \\ \text{ where } \\ U=FFT\;u \\ V=FFT\;v \\ W=\langle \omega^0\omega^1...\omega^{N/2-1}\rangle\,.$$

## **String Matching Problem**

Given: a subject string and a pattern string.

Lengths are powers of 2.

Find: All occurrences of pattern in the subject.

Result has same length as the subject.

pattern: "aabb"

subject: "aaabbabaaabba"

Result:

[False, True, False, Fa

False, False, False, True, False, False, False]

# **String Matching: Simple cases**

Subject, Pattern are both singletons.

$$sm \langle x \rangle \langle y \rangle = \langle x = y \rangle$$

Pattern is a singleton.

$$sm \langle x \rangle (r \bowtie s) = (sm \langle x \rangle r) \bowtie (sm \langle x \rangle s)$$

Subject is a singleton.

$$sm\ (p\bowtie q)\ \langle y\rangle = \langle \mathsf{False}\rangle$$

## **String Matching: General case**

#### • Assertion 1:

```
p\bowtie q matches r\bowtie s at some even index 2k iff p matches r at index k and q matches s at index k.
```

#### Assertion 2:

```
p\bowtie q matches r\bowtie s at some odd index 2k+1 iff p matches s at index k, q matches r at index k+1.
```

## A proof of one part of assertion 2.

```
p\bowtie q \text{ matches }r\bowtie s \text{ at }2k+1\\ \equiv \{\text{definition of "matches"}\}\\ (\forall k:0\leq j<|p\bowtie q|:(p\bowtie q)_j=(r\bowtie s)_{j+2k+1})\\ \Rightarrow \{\text{consider only the odd indices }2j+1\}\\ (\forall j:0\leq 2j+1<|p\bowtie q|:\\ (p\bowtie q)_{2j+1}=(r\bowtie s)_{2j+1+2k+1})\\ \Rightarrow \{(p\bowtie q)_{2j+1}=q_j,(r\bowtie s)_{2j+1+2k+1}=r_{j+k+1}\}\\ (\forall j:0\leq j<|q|:q_j=r_{j+k+1})\\ \Rightarrow \{\text{definition of "matches"}\}\\ q \text{ matches }r \text{ at }k+1
```

## **String Matching Algorithm**

```
sm \langle x \rangle \langle y \rangle = \langle x = y \rangle
sm \langle x \rangle (r \bowtie s) = (sm \langle x \rangle r) \bowtie (sm \langle x \rangle s)
sm (p \bowtie q) \langle y \rangle = \langle \mathsf{False} \rangle
sm (p \bowtie q) (r \bowtie s) =
(smpr \land smqs) \bowtie (sm'qr \land smps)
\mathsf{where}
smpr = sm \ p \ r
smqs = sm \ q \ s
sm'qr = ls(sm \ q \ r)
smps = sm \ p \ s
```

The definition of left shift, ls, is

$$ls \langle x \rangle = \langle \mathsf{False} \rangle$$
  
 $ls (u \bowtie v) = v \bowtie (ls \ u)$ 

### Calculate sm'

```
sm' \langle x \rangle \langle y \rangle
= \{\text{definition of } sm' \}
ls(sm \langle x \rangle \langle y \rangle)
= \{\text{definition of } sm \langle x \rangle \langle y \rangle \}
ls\langle x = y \rangle
= \{\text{definition of } ls \text{ on a singleton list} \}
\langle \text{False} \rangle
```

# sm' (contd.)

```
sm' \langle x \rangle \ (r \bowtie s)
= \{ \text{definition of } sm' \}
ls(sm \langle x \rangle \ (r \bowtie s))
= \{ \text{definition of } sm \langle x \rangle \ (r \bowtie s) \}
ls((sm \langle x \rangle \ r) \bowtie (sm \langle x \rangle \ s))
= \{ \text{definition of } ls \ (u \bowtie v) \}
(sm \langle x \rangle \ s) \bowtie ls(sm \langle x \rangle \ r)
= \{ \text{definition of } sm' \}
(sm \langle x \rangle \ s) \bowtie (sm' \langle x \rangle \ r)
```

A similar derivation shows that

$$sm' (p \bowtie q) \langle y \rangle = \langle \mathsf{False} \rangle$$

# sm' (contd.)

```
sm' \ (p \bowtie q) \ (r \bowtie s)
= \{ \text{definition of } sm' \}
ls(sm \ (p \bowtie q) \ (r \bowtie s))
= \{ \text{definition of } sm \ (p \bowtie q) \ (r \bowtie s) \}
ls((smpr \land smqs) \bowtie (sm'qr \land smps))
= \{ \text{definition of } ls \}
(sm'qr \land smps) \bowtie ls((smpr \land smqs))
= \{ ls \ \text{distributes over } \land \text{ in the second term} \}
(sm'qr \land smps) \bowtie (ls(smpr) \land ls(smqs))
= \{ ls(smpr) = sm'pr \ \text{and} \ ls(smqs) = sm'qs \}
(sm'qr \land smps) \bowtie (sm'pr \land sm'qs)
```

# **Putting the Pieces Together**

```
sm \langle x \rangle \langle y \rangle = \langle x = y \rangle
sm \langle x \rangle (r \bowtie s) = (sm \langle x \rangle r) \bowtie (sm \langle x \rangle s)
sm (p \bowtie q) \langle y \rangle = \langle \mathsf{False} \rangle
sm (p \bowtie q) (r \bowtie s) =
(smpr \wedge smqs) \bowtie (sm'qr \wedge smps)
\mathsf{where}
smpr = sm p r
smqs = sm q s
sm'qr = sm' q r
smps = sm p s
```

# Putting the Pieces Together; contd.

```
sm' \langle x \rangle \langle y \rangle = \langle \mathsf{False} \rangle
sm' \langle x \rangle \ (r \bowtie s) = (sm \langle x \rangle \ s) \bowtie (sm' \langle x \rangle \ r)
sm' \ (p \bowtie q) \ \langle y \rangle = \langle \mathsf{False} \rangle
sm' \ (p \bowtie q) \ (r \bowtie s) =
(sm'qr \ \land \ smps) \bowtie (sm'pr \ \land \ sm'qs)
where
sm'qr = sm' \ q \ r
smps = sm \ p \ s
sm'pr = sm' \ p \ r
sm'qs = sm' \ q \ s
```

# Sorting

### Generic sorting Scheme

```
sort\langle x \rangle = \langle x \rangle
sort(p \bowtie q) = (sort \ p) \ merge \ (sort \ q)
```

### Comparator:

```
p: \langle 2 3 \rangle
q: \langle 4 1 \rangle
p \updownarrow q = \langle 2 4 1 3 \rangle
\langle x \rangle \updownarrow \langle y \rangle = \langle x \min y \quad x \max y \rangle
p \updownarrow q = \langle p \min q \rangle \bowtie \langle p \max q \rangle
```

## **Batcher Merge**

Bitonic:  $u merge v = bi(u \mid (rev v))$ , where

$$bi\langle x \rangle = \langle x \rangle$$

$$bi(p \bowtie q) = (bi \ p) \updownarrow (bi \ q)$$

### Batcher Merge:

```
\begin{array}{l} \langle x \rangle \ merge \ \langle y \rangle = \langle x \rangle \updownarrow \langle y \rangle \\ (p \bowtie q) \ merge \ (u \bowtie v) = (p \ merge \ v) \ \updownarrow \ (q \ merge \ u) \end{array}
```

Theorem::  $p merge q = bi(p \mid (rev q))$ 

### **Proof, Base case**

```
Theorem:: p \ merge \ q = bi(p \mid (rev \ q))
Base: Let p, q = \langle x \rangle, \langle y \rangle
                 bi(\langle x \rangle \mid rev\langle y \rangle)
        = \{ \text{definition of } rev \}
                bi(\langle x \rangle \mid \langle y \rangle)
        = \{ (\langle x \rangle \mid \langle y \rangle) = (\langle x \rangle \bowtie \langle y \rangle) \}
                bi(\langle x \rangle \bowtie \langle y \rangle)
        = {definition of bi}
                 \langle x \rangle \updownarrow \langle y \rangle
        = {definition of merge}
                 \langle x \rangle \ merge \ \langle y \rangle
```

# **Proof, Inductive case**

```
Theorem:: p \ merge \ q = bi(p \mid (rev \ q))
Induction: Let p, q = r \bowtie s, u \bowtie v
          bi(p \mid (rev \ q))
     = {expanding p, q}
          bi((r \bowtie s) \mid rev(u \bowtie v))
     = {definition of rev}
          bi((r \bowtie s) \mid (rev \ v \bowtie rev \ u))
     = \{ \mid, \bowtie \text{ commute} \}
          bi((r \mid rev \ v) \bowtie (s \mid rev \ u))
     = {definition of bi}
```

```
bi(r \mid rev \ v) \updownarrow bi(s \mid rev \ u)
= \{induction\}
(r \ merge \ v) \updownarrow (s \ merge \ u)
= \{definition \ of \ merge\}
(r \bowtie s) \ merge \ (u \bowtie v)
= \{using \ the \ definitions \ of \ p, q\}
p \ merge \ q
```

### **Prefix Sum**

L: powerlist of scalars,

: binary, associative operator on that scalar type.

 $(ps\ L)$ : prefix sum of L with respect to  $\oplus$ .

(ps L) is a list of the same length as L given by

$$ps \langle x_0, x_1, .., x_i, .., x_N \rangle$$

$$= \langle x_0, x_0 \oplus x_1, .., x_0 \oplus x_1 \oplus ..x_i, .., x_0 \oplus x_1 \oplus .. \oplus x_N \rangle$$

The  $i^{th}$  element of  $(ps\ L)$ : apply  $\oplus$  to the first i elements of L.

# Simple scheme for prefix sum



Figure 1: A network for prefix sum.

### Ladner and Fischer Scheme

Apply  $\oplus$  to adjacent elements  $x_{2i}, x_{2i+1}$ .

This computes the list  $\langle x_0 \oplus x_1, ... x_{2i} \oplus x_{2i+1}, ... \rangle$ .

This list has half as many elements as the original.

Its prefix sum is then computed recursively.

Result is 
$$\langle x_0 \oplus x_1, ..., x_0 \oplus x_1 \oplus ... \oplus x_{2i} \oplus x_{2i+1}, ... \rangle$$
.

This has half of the elements of the final list.

Missing elements are:

$$x_0, x_0 \oplus x_1 \oplus x_2, ..., x_0 \oplus x_1 \oplus ... \oplus x_{2i}, ...$$

Add  $x_2, x_4, ...$ , appropriately.

# **Specification of prefix sum**

0 is the left identity element of  $\oplus$ , i.e.,  $0 \oplus x = x$ .

 $p^*$ : shift p to the right by one.

$$\langle a \ b \ c \ d \rangle^* = \langle 0 \ a \ b \ c \rangle$$
.

$$\langle x \rangle^* = \langle 0 \rangle$$
$$(p \bowtie q)^* = q^* \bowtie p$$

It is easy to show

S1. 
$$(r \oplus s)^* = r^* \oplus s^*$$

S2. 
$$(p \bowtie q)^{**} = p^* \bowtie q^*$$

## Specification, contd.

In (DE), z is unknown, L is a powerlist.

(DE) 
$$z = z^* \oplus L$$

This equation has a unique solution in z:

$$egin{array}{lll} z_0&=(z^*)_0\oplus L_0\ &=0\oplus L_0\ &=L_0\ &=L_0\ &z_{i+1}&=z_i\oplus L_{i+1}$$
 ,  $0\leq i<(len\ L)-1$ 

For  $L = \langle a \ b \ c \ d \rangle$ ,

$$z = \langle a \quad a \oplus b \quad a \oplus b \oplus c \quad a \oplus b \oplus c \oplus d \rangle$$

This is (ps L), (unique) solution of (DE).

## prefix sum; simple scheme

$$sps \ \langle x \rangle = \langle x \rangle$$

$$sps \ L = (sps \ u) \bowtie (sps \ v)$$

$$where \ u \bowtie v = L^* \oplus L$$

$$0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \text{ level } 0$$

$$0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \text{ level } 1$$

$$0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \text{ level } 2$$

Figure 2: A network for prefix sum.

#### **Explanation of the simple scheme**

In the first level,  $L^* \oplus L$  is computed.

If 
$$L=\langle x_0,x_1,..,x_i,\ldots 
angle$$
 then  $L^*\oplus L$  is  $\langle x_0,x_0\oplus x_1,..,x_i\oplus x_{i+1}..
angle$  .

This is the zip of two sublists:

$$\langle x_0,x_1\oplus x_2,..,x_{2i-1}\oplus x_{2i},..
angle$$
 and  $\langle x_0\oplus x_1,..,x_{2i}\oplus x_{2i+1},..
angle$  .

Compute prefix sums of these two lists and zip.

#### Ladner-Fischer scheme

$$\begin{array}{c} lf\langle x\rangle = \langle x\rangle \\ lf(p\bowtie q) = (t^*\oplus p)\bowtie t \\ \text{where } t = lf(p\oplus q) \end{array}$$

#### **Derivation of Ladner-Fischer scheme**

```
For a powerlist p\bowtie q, what is ps(p\bowtie q)?

Let r\bowtie t=ps(p\bowtie q). We solve for r,t.

r\bowtie t
= \{r\bowtie t=ps\ (p\bowtie q) \text{. Using (DE)}\}
(r\bowtie t)^*\oplus (p\bowtie q)
= \{(r\bowtie t)^*=t^*\bowtie r\}
(t^*\bowtie r)\oplus (p\bowtie q)
= \{\oplus, \bowtie \text{ commute}\}
(t^*\oplus p)\bowtie (r\oplus q)
```

#### Ladner-Fischer scheme (contd.)

deconstruct:  $r \bowtie t = (t^* \oplus p) \bowtie (r \oplus q)$ ,

LF1. 
$$r=t^*\oplus p$$
, and

LF2. 
$$t = r \oplus q$$

Eliminate r from (LF2) using (LF1):

$$t = t^* \oplus p \oplus q$$
.

Use (DE) and this equation

LF3. 
$$t = ps(p \oplus q)$$

#### **Summary of derivation of the Ladner-Fischer scheme**

```
ps(p \bowtie q)
= \{ \text{by definition} \}
r \bowtie t
= \{ \text{Using (LF1) for } r \}
(t^* \oplus p) \bowtie t
```

where t is defined by LF3:

LF3. 
$$t = ps(p \oplus q)$$

## **Generating Functions**

- Typically used on sequences of numbers.
- I will apply generating functions to interconnection networks.
- I will prove that two families of interconnection networks are isomorphic, using their generating functions.

### **Example of Interconnection Network**



Figure 3: Interconnection Network, N=4

### **Terminology**

Interconnection network of size N,  $N = 2^n$ , has:

- n+1 stages, numbered 0 through n.
- Each stage has N nodes.
- Each node, except initial and final nodes, has 2 input and output ports. top port, bottom port.
- Each output port connected to a distinct input port of the next stage.

#### **Family of Networks**

A family has a network for each value of N.



Figure 4: Benes Network, N = 4

Top input lines come in order from the upper half of the previous stage.

Bottom input lines come in order from the lower half.

#### **Clos Networks**



Figure 5: Clos Network for N=2



Figure 6: Clos Network, N=4

#### **Clos Network Interconnection**

- N=2: shown earlier.
- $N=2^{n+1}$ : Input lines in the upper/lower half of stage 1 are the top/bottom output lines the stage 0, in order. Then, append two copies of network of size  $2^n$ .



Figure 7: Clos Network, N=4

#### **Butterfly Network and its mirror image**



Figure 8: Butterfly Network for N=4



Figure 9: Mirror Image of the Butterfly Network, N=4

#### Isomorphism

Required to show: two families are isomorphic, that is,

The networks corresponding to N, for each N, in both families are isomorphic.

Strategy: Represent each family by a generating function.

Two families are isomorphic if the corresponding functions are identical (upto a permutation of arguments).

## Labelling



Figure 10: Labelling a Network

A network can be constructed from the set of labels of the final nodes.

#### **Notation**

 $\{p\}$ : set of elements of p,

p0: concatenate 0 to the end of each element of p. Similarly, p1.

p.q: concatenate corresponding elements of p and q.

- ullet  $\{u\bowtie v\}=\{u\}\cup\{v\}$ , and  $\{u\mid v\}=\{u\}\cup\{v\}$ .
- $\bullet$   $(p\bowtie q)0=(p0\bowtie q0)$ , and  $(p\mid q)0=(p0\mid q0)$ .
- $\bullet$   $(p\bowtie q).(u\bowtie v)=(p.u)\bowtie (q.v)$ , and  $(p\mid q).(u\mid v)=(p.u)\mid (q.v)$ .
- For a permuting function h, (h p)0 = h(p0) and h(p.q) = (h p).(h q).

#### **Generating-Function for Clos Networks**

$$c(\langle x \rangle) = \langle x \rangle$$

$$c(u \bowtie v) = c(u0.v0) \mid c(u1.v1)$$

Note:  $\langle a0b0 \ c0d0 \rangle = \langle a0 \ c0 \rangle. \langle b0 \ d0 \rangle = \langle a \ c \rangle 0. \langle b \ d \rangle 0$ .



Figure 11: Clos Network, N = 4

# **Generating-Function for Butterfly Network**

$$f(\langle x \rangle) = \langle x \rangle$$
  
 
$$f(u \mid v) = f(u0.v0) \mid f(u1.v1)$$



Figure 12: Butterfly Network for N=4

### Mirror Image of the Butterfly Network

$$m(\langle x \rangle) = \langle x \rangle$$
  

$$m(u \bowtie v) = m(u0.v0) \bowtie m(u1.v1)$$



Figure 13: Mirror Image of the Butterfly Network, N=4

#### **Generating-Function for Benes Network**

 $b_k$  describes the Benes network with k+1 stages.

$$b_0\left(p
ight)=\{p\}$$
  $b_{k+1}(u\mid v)=b_k(u0.v0\bowtie u1.v1)$  , for  $0\leq k\leq \overline{u}$  , where  $\overline{u}=\log_2|u|$ 



Figure 14: Benes Network, N=4

#### **Definition of Isomorphism**

Families with generating functions g and h are isomorphic iff  $\{g\} = \{h \circ \pi\}$ , for some permutation function  $\pi$ . That is,

$$\{g(p)\} = \{h(\pi(p))\}, \text{ for all } p.$$

Isomorphism is an equivalence relation.

The order in the final list does not matter.

#### Isomorphism: Clos, Butterfly, Mirror Image

#### Theorem 1:

```
1. c \circ inv = f
2. c = inv \circ m
```

Proof of 2 (Induction): Let the argument powerlist be  $u \bowtie v$ .

```
inv(m(u \bowtie v))
= \{ definition of m \}
inv[m(u0.v0) \bowtie m(u1.v1)]
= \{ Property of inv \}
inv[m(u0.v0)] \mid inv[m(u1.v1)]
= \{ induction \}
c(u0.v0) \mid c(u1.v1)
= \{ definition of c \}
c(u \bowtie v)
```

### Isomorphism: Benes, Butterfly

```
Lemma: b_n(u \bowtie v) = (b_n \ u) \cup (b_n \ v), for all n, 0 \leq n \leq \overline{u}.
Theorem 2: b_{\overline{u}}(u) = \{f(u)\}
                b_{\overline{p+q}}(p \mid q)
      = \{ \text{definition of } b \}
                b_{\overline{p}}(p0.q0 \bowtie p1.q1)
      = {Lemma}
                b_{\overline{p}}(p0.q0) \cup b_{\overline{p}}(p1.q1)
      = {induction. Note that \overline{p} = \overline{p0.q0} = \overline{p1.q1}}
                \{f(p0.q0)\} \cup \{f(p1.q1)\}
      = {Observation 1}
                \{f(p0.q0) \mid f(p1.q1)\}
      = \{ \text{Definition of } f \}
                \{f(p \mid q)\}
```

#### **Higher Dimensional Arrays**

A matrix of r rows and c columns is a powerlist of c elements: each element is a powerlist of length r storing the items of a column.

Think in terms of array operations rather than operations on nested powerlists.

Introduce construction operators, analogous to  $\mid$  and  $\bowtie$ , for tie and zip along any specified dimension.

 $|',\bowtie'|$  for the corresponding operators in dimension 1,  $|'',\bowtie''|$  for the dimension 2, etc.

## **Examples of Matrices**

$$A = \left\langle \begin{array}{cccc} \wedge & \wedge \\ 2 & 4 \\ 3 & 5 \\ \vee & \vee \end{array} \right\rangle \qquad B = \left\langle \begin{array}{cccc} \wedge & \wedge \\ 6 & 7 \\ \vee & \vee \end{array} \right\rangle$$

$$A \mid B = \left\langle \begin{array}{cccc} \wedge & \wedge & \wedge & \wedge \\ 2 & 4 & 0 & 1 \\ 3 & 5 & 6 & 7 \\ \vee & \vee & \vee & \vee \end{array} \right\rangle \qquad A \bowtie B = \left\langle \begin{array}{cccc} \wedge & \wedge & \wedge & \wedge \\ 2 & 0 & 4 & 1 \\ 3 & 6 & 5 & 7 \\ \vee & \vee & \vee & \vee \end{array} \right\rangle$$

$$A \mid B = \left\langle \begin{array}{cccc} \wedge & \wedge & \wedge & \wedge \\ 2 & 4 & 0 & 1 \\ 3 & 5 & 7 & \vee & \vee & \vee \end{array} \right\rangle$$

$$A \mid B = \left\langle \begin{array}{cccc} \wedge & \wedge & \wedge & \wedge \\ 3 & 6 & 5 & 7 \\ \vee & \vee & \vee & \vee & \vee \end{array} \right\rangle$$

$$A \mid B = \left\langle \begin{array}{cccc} \wedge & \wedge & \wedge & \wedge \\ 3 & 6 & 5 & 7 \\ \vee & \vee & \vee & \vee & \vee \end{array} \right\rangle$$

$$A \mid B = \left\langle \begin{array}{cccc} \wedge & \wedge & \wedge & \wedge \\ 3 & 6 & 5 & 7 \\ \vee & \vee & \vee & \vee & \vee \end{array} \right\rangle$$

#### **Definition of a matrix**

#### Define a matrix to be either

a singleton matrix  $\langle \langle x \rangle \rangle$ , or  $p \mid q$  where p, q are (similar) matrices, or  $u \mid v$  where u, v are (similar) matrices.

#### **Matrix Transposition**

$$\tau \langle \langle x \rangle \rangle = \langle \langle x \rangle \rangle 
\tau(p \mid q) = (\tau p) \mid' (\tau q) 
\tau(u \mid' v) = (\tau u) \mid (\tau v)$$

### **Matrix Transposition**

$$\begin{aligned}
\sigma\langle\langle x\rangle\rangle &= \langle\langle x\rangle\rangle \\
\sigma((p \mid q) \mid' (u \mid v)) &= ((\sigma p) \mid' (\sigma q)) \mid ((\sigma u) \mid' (\sigma v))
\end{aligned}$$

In the figure  $p' = \sigma p$ , etc.

$$\sigma \frac{p \, q}{u \, v} = \frac{p' \, u'}{q' \, v'}$$

Figure 15: transposition of a square matrix.