N

DEPARTMENT OF COMPUTER SCIENCES —\

Powerlist

Jayadev Misra

Department of Computer Sciences
University of Texas at Austin

Email: m sra@s. ut exas. edu
web: htt p: //ww. cs. ut exas. edu/ user s/ psp

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

‘ References on Powerlist I

1. “Powerlist: A Structure for Parallel Recursion,” ACM Transactions on
Programming Languages and Systems, Vol. 16, No. 6, pp.
1737-1767, November 1994.

2. “Generating—Functions of Interconnection Networks,” Millennial
Perspectives in Computer Science: the proceedings of the 1999
Oxford—Microsoft Symposium in honour of Sir Tony Hoare, St.
Catherine’s College, Oxford, September 1999.

3. “Derivation of a Parallel String Matching Algorithm,”
http://ww. cs. ut exas. edu/ users/ psp/ Stri nghat ch. ps

-)

DEPARTMENT OF COMPUTER SCIENCES —\

‘ References on Seuss Logic |

1. A Discipline of Multiprogramming, Jayadev Misra, Springer-Verlag,
2001. A few chapters are available at

http://ww. cs. ut exas. edu/ user s/ psp/ di sci pline. ps. gz

2. “Alogic for Concurrent Programming (in two parts): Safety and
Progress,” Journal
of Computer and Software Engineering, Vol.3, No.2, pp 239-300, 1995.
http://ww. cs. ut exas. edu/ user s/ psp/ Saf et yProgr ess. ps

-)

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Parallel Recursive Algorithms I

e Fast Fourier Transform

e Batcher Sort

e Ladner-Fischer Prefix sum

e Odd-Even Reductions of tridiagonal Linear Systems
e Hypercube Embedding

Recursive Connection Structures

e Butterfly Networks, Hypercube

e Complete Binary Tree

-)

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Powerlists I

Powerlist: A list of 2™ items, n > 0.

Smallest powerlist has a single item, (x).

For p,q of the same length:

(tie) p|q: p concatenated with ¢,

(zip) px q: alternate items from p and ¢, starting with p.
(01)](23)= (0123), (01)(23)= (0213)

Powerlist-length is a power of 2.

N Y

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Example of a Powerlist Function: Reverse I

reviabed) = (dcba)

Definition of Reverse:

rev(z) = (x)
rev(p | q) = (rev q) | (rev p)

Properties:

rev(p <1 q) = (rev q) < (rev p)
rev(rev p) =p

N Y

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Indices In a Powerlist I

e Base Case: a singleton list

e General Case: Deconstruct using | or

000 001 010 011 100 101 110 111
(' a b ¢ d) | (e f g h)
000 010 100 110 001 011 101 111

(a ¢ e g) = (b d f h)

N /

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Scalar Functions I

Apply scalar functions pointwise.

p+qg={MPo+q pP1+aq ..

Note:

(plq)+(r|s)=m+r)|(g+s)
(p<iq) +(reas)=(p+r)<(q+s)

N /

-

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Laws about powerlists |

LO. For singleton powerlists, (z), (y), (x) | (y)=(x) =< (y)

L1. (Dual Deconstruction)
For non-singleton P, there are r,s,u,v such that
P=r|sand P = uxv

L2. (Unigue Deconstruction)

«@zwwzgzm

(Plg=ulv)=@=u N qg=0)
(p<g=uxv)=(p=u A qg="0)

L3. (Commutativity of | and <)
(plg)e<(u|v) = (prau) | (g<v)

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Rotate Right and Rotate Left |

rr(abcd)=(dabc)

rli{abecd) =(bcda)

rr(x) = (x); rr(uiov) = (rrv) =< u

rli{x) = (x); rl(u=<v)=vx(rl u)
Properties:

rr(rl p) = p

rev(rr(rev(rr p))) = p

N /

DEPARTMENT OF COMPUTER SCIENCES —\

An Example: The Function inv

000 001 010 011 100 101 110 111
nvi a b ¢ d e f g h) =
(a e ¢ g b f d h)

Inv(z) = (x)

inv(p | q) = (inv p) o (inv q)

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ A Duality Property of inv I

inv(p > ¢) = (inv p) | (inv g)

Induction : {Defn. inv(z) = (z), inv(p | q) = (inv p) > (inv q) }
inv((r | s) > (u | v))
= { |, > commute}
INv((r < u) | (s<v))
= {definition of inv }
INV(r > u) > iNV(s >)

= {induction}
(inv 7 | inv) > (inv s | inv v)
= { |, > commute}

(invreinv s) | (inv u > inv v)
= {definition of inv }
inv(r | s) | inv(u | v)

- __/

UN|VERS|TY OF TEXAS AT AUST|N ___|] 11

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Polynomial Evaluation |

Evaluate: pg + p; X w + pa X w? + p3 x w3.

Evaluate a powerlist (py p1 p2 p3) at an argument w.

() epw = x
(p>aq) epw = (pepw?) +w x (qep w?)

Note: w could be a powerlist.

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Fast Fourier Transform I

Given:
P: (..Pj..) N items

Q: (..Q;..) N items
Q; = Pepw'; w= N principal root of 1.

Q=P ep (Wwl. N1

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Fast Fourier Transform: Algorithm |

Let P=uxv, (U=FFTu), V= (FFT v)

Q; =U;,+w'xV; lefthalfof Q
Qitien w =U; —w' x V; right half of Q

FFT(x) = (x)
FFT(u<xtv)=U+VxW)|(U—-VxW)
where

U=FFTu

V=FFTv

W = (WOw. . .wN/271)

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ String Matching Problem |

Given: a subject string and a pattern string.

Lengths are powers of 2.
Find: All occurrences of pattern in the subject.
Result has same length as the subject.
pattern: “aabb”
subject: “aaabbabaaabaaabb”
Result:
[False, True,False,False,False,False,False,False,

False,False,False,False, True,False,False,False]

. _

UN|VERS|TY OF TEXAS AT AUST|N ___|] 15

DEPARTMENT OF COMPUTER SCIENCES —\

‘ String Matching: Simple cases |

Subject, Pattern are both singletons.

sm (z) (y) = (. =y)
Pattern is a singleton.

sm (x) (re<ts) = (sm(x) r) <1 (sm(x) s)
Subject is a singleton.

sm (p > q) (y) = (False)

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ String Matching: General case |

e Assertion 1:

p <1 ¢ matches r < s at some even index 2k

Iff p matches r atindex k£ and ¢ matches s atindex k.

e Assertion 2:
p <1 ¢ matches r < s at some odd index 2k + 1

Iff p matches s atindex k, ¢ matches r atindex k+ 1.

. _

UN|VERS|TY OF TEXAS AT AUST|N ___|] 17

DEPARTMENT OF COMPUTER SCIENCES —\

‘ A proof of one part of assertion 2. |

p <1 q matches ri<s at 2k + 1
= {definition of “matches”}
(VE:0<j<[|praq|:(p>aq)j = (r><s)jtop41)
= {consider only the odd indices 2j5 + 1}
(Vj:0<2j+1<|pxq|:
(P> q)2j41 = (r > 8)2j1142k+1)
= { (P)21 = ¢5, (r > 8)2j4142k+1 = Tjh+1)
(Vji:0<7j<lgl:q5 =rjtr+1)
= {definition of “matches”}
g matches r at £+ 1

. _

DEPARTMENT OF COMPUTER SCIENCES —\

‘ String Matching Algorithm |

z) (y) = {z =y)
z) (re<is) = (sm(x)r) <1 (sm(x) s)
(y) = (False)
(r>=s) =
(smpr A smgs) > (sm/qr N smps)
where
smpr = smpr
smqs = sm q s
sm/qr = ls(sm qr)
SMpPs = sSM P S

The definition of left shift, s, is
s (x) = (False)
Is (uriv) =v x (Is u)

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Calculate sm/ I

= {definition of sm’}
Is(sm (z) (y))
= {definition of sm (z) (y)}

ls{x = y)
= {definition of [s on a singleton list}
(False)

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ sm’ (contd.) |

sm' () (r = s)
= {definition of sm’}
Is(sm (x) (r > s))
— {definition of sm (z) (r 2 s)}
Is((sm (x) r) > (sm(z) s))
— {definition of Is (u<v) }
(sm (x) s) > ls(sm (x))
= {definition of sm’}
(sm (z) s) o (sm' (z) 1)

A similar derivation shows that

sm' (p>aq) (y) = (False)
- _

N

‘ sm’ (contd.) |

sm' (pr<q) (r= s)

= {definition of sm'}

[s(sm (p > q) (r > s))
= {definition of sm (pr<q) (r < s)}
Is((smpr A smgs) <1 (sm'qr A smps))

= {definition of [s}

(sm'qr N smps) < ls((smpr A smgs))
= { Is distributes over A in the second term}
(sm'qr N smps) < (Is(smpr) A ls(smgs))
= { ls(smpr) = sm'pr and [s(smqs) = sm/qs}
(sm'qr N smps) < (sm/pr N sm/qs)

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

22

‘ Putting the Pieces Together |

(smpr A smgs) > (sm/qr N smps)
where
smpr = smpr
smMqs = sm q s
sm'qr = sm/ g r
SMpPs = sSM p §

N

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

23

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Putting the Pieces Together; contd. |

sm' (x) (y) = (False)

sm' (x) (re<is) = (sm(x)s) < (sm' (x) r)

sm’ (p < q) (y) = (False)

sm’ (pr<iq) (re<s) =
(sm'qr N smps) > (sm'pr N sm/qs)
where

sm'qr = sm/ g r
SMmps = sm p s

sm'pr =sm/ pr
sm'qs = sm' q s

DEPARTMENT OF COMPUTER SCIENCES —\

Generic sorting Scheme

sort(x) = (x)

‘ Sorting |

sort(p > q) = (sort p) merge (sort q)

Comparator:

—(2413)
(y) ={(rminy x max
(p min g) >4 (p max g)

Y)

25

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Batcher Merge |

Bitonic: u merge v = bi(u | (rev v)), where

bi(x) = (x)
bi(p =1 q) = (bi p) I (bi q)

Batcher Merge:

(z) merge (y) = (z) T (y)

(p 1 q) merge (u<1v) = (p merge v) 1 (g merge u)

Theorem:: p merge q = bi(p | (rev q))

N R/

‘ Proof, Base case |

Theorem:: p merge q = bi(p | (rev q))

Base: Let p, ¢ = (z), (y)

bi((z) | rev(y))

= {definition of rev}
bi((z) | (y))

= { (=) [() = (=) >=(y)) }
bi({z) > (y))

= {definition of bi}
() T (y)

= {definition of merge}
(x) merge (y)

N

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

27

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Proof, Inductive case |

Theorem:: p merge q = bi(p | (rev q))

Induction: Let p, g=7r1<xs, uxxv

bi(p | (rev q))
= {expanding p,q}
bi((ras) | rev(u > v))
= {definition of rev}
bi((re<s) | (revwv<irev u))
= { |, x commute}
bi((r | revv) (s |revu))
= {definition of bi}

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

bi(r | rev v)] bi(s | rev u)

= {induction}
(7 merge v)] (s merge u)
= {definition of merge}

(r > s) merge (u > v)

{using the definitions of p,q}
p merge q

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Prefix Sum I

L powerlist of scalars,

@ : binary, associative operator on that scalar type.
(ps L): prefix sum of L with respectto & .

(ps L) is a list of the same length as L given by

PS (T0y L1y .oy Tiy ooy TN)

= (xg, 20 D T1,., 20 D x1 D ..Tj,..,T0 DXL D .. D TN)

The it" element of (ps L):
apply ¢ tothe first : elements of L.

- __/

‘ Simple scheme for prefix sum |

o4 o5 o6 o7 levelO

kk o7 levell

o7 level 2

o0 e 02 03 0

Figure 1: A network for prefix sum.

o7 level 3

-

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

31

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Ladner and Fischer Scheme I

Apply & to adjacent elements zs;, x2;11.

This computes the list (xg ® x1,.. x2; ® Toi11,..) -
This list has half as many elements as the original.
Its prefix sum is then computed recursively.
Resultis (xg ® x1,..,20 D x1 D .. D To; D Toja1,...).
This has half of the elements of the final list.
Missing elements are:
Lo, Tog D X1 D T2,.., o D X1 D .. D X9y, ...
Add x5, x24,.., appropriately.
N\ ___/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Specification of prefix sum |

0 is the left identity elementof & ,i.e., 0 ® x = x.

p*: shift p to the right by one.
(abecd)*=(0abc).

(p1g)" =q" =<p
It is easy to show

S1. (r@&s)*=r*@ s*
S2. (praq)** = p* < qg*

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Specification, contd. |

In (DE), z is unknown, L is a powerlist .
(DE) z=2z*&@ L

This equation has a unique solutionin z:

— Lo , and
Ziz1 =2, ® L1, 0<i<(lenL)-—1

For L= {(abcd)),

z=(a adb adbdc adbdcdd

Thisis (ps L), (unique) solution of (DE).

N

UNIVERSITY OF TEXAS AT AUSTIN

34

DEPARTMENT OF COMPUTER SCIENCES —\

‘ prefix sum; simple scheme |

sps (r) = (1)
sps L = (sps u) < (sps v)
where u<xv=L*® L

o4 o5 o6 o7 levelO

kk o7 levell

o7 level 2

o7 level 3

Figure 2: A network for prefix sum.

‘ Explanation of the simple scheme |

In the first level, L* & L Is computed.
If L = (xg,x1,..,2;,...) then

L*® Lis (xg,x0 ® x1,..,T; D Tjiq..).
This is the zip of two sublists:

(xg,x1 ® X2, .., T2 1 D Ta4,.., and

(xg ® X1, .., To; D Toia1,--)-

Compute prefix sums of these two lists and zip.

-

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

36

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Ladner-Fischer scheme I

lf(praq) = (" ®p) >t
where t =1f(p ® q)

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Derivation of Ladner-Fischer scheme I

For a powerlist p < ¢, whatis ps(piq)?

Let r<t = ps(pr<q). We solve for r,t.

r At

= { re<t=ps (p=gq). Using (DE)}
(r>t)" @ (prq)

— { (r<t)*=t"ar}
(t*>ar) & (pr<q)

- { @&, = commute}
(t* @ p) > (r @ q)

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Ladner-Fischer scheme (contd.) |

deconstruct: r <t = (t* @ p) < (r @ q),

LF1. r=t*®p,and

LF2. t=rdgq
Eliminate r from (LF2) using (LF1):
t=t"dop>Dgq.

Use (DE) and this equation

LF3. t=ps(p @ q)

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Summary of derivation of the Ladner-Fischer scheme |

ps(p > q)

= {by definition}
r >t

= { Using (LF1) for r}
(t* ®dp)t

7

where ¢ is defined by LF3:

LF3. ¢t =ps(p @ q)

- __/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Generating Functions |

e Typically used on sequences of numbers.

e | will apply generating functions to interconnection networks.

e | will prove that two families of interconnection networks are
Isomorphic, using their generating functions.

. _

UN|VERS|TY OF TEXAS AT AUST|N ___|] 41

N

__--Node

Stage 0 Stage 1

Stage 2

Figure 3: Interconnection Network, N =14

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Example of Interconnection Network |

42

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Terminology |

Interconnection network of size N, N = 2", has:

e n + 1 stages, numbered 0 through n.
e Each stage has N nodes.

e Each node, except initial and final nodes, has 2 input and output
ports. top port, bottom port.

e Each output port connected to a distinct input port of the next stage.

- __/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Family of Networks |

A family has a network for each value of N.

Figure 4: Benes Network, N =14

Top input lines come in order from the upper half of the previous stage.

Bottom input lines come in order from the lower half.

- __/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Clos Networks I

Figure 5: Clos Network for N = 2

Figure 6: Clos Network, N =14
N ___

UN|VERS|TY OF TEXAS AT AUST|N ___|] 45

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Clos Network Interconnection I

e N = 2:shown earlier.

e N =2"T1: |nput lines in the upper/lower half of stage 1 are the
top/bottom output lines the stage 0, in order. Then, append two copies of
network of size 2".

Figure 7. Clos Network, N =14

. _

DEPARTMENT OF COMPUTER SCIENCES —\

Butterfly Network and its mirror image
Figure 8: Butterfly Network for NV =4
Figure 9: Mirror Image of the Butterfly Network, N =4

N _/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Isomorphism |

Required to show: two families are isomorphic, that is,

The networks correspondingto N, for each N, in both families are
Isomorphic.

Strategy: Represent each family by a generating function.

Two families are isomorphic if the corresponding functions are identical
(upto a permutation of arguments).

. _

‘LabeMng |

a0c00b0Od00
— 1 a0
a a0c0
—al
a0c01b0d01
b bo alcl
alcl0b1d10
C bOdO
do alcllbldil
d bld1l

Figure 10: Labelling a Network

N

UNIVERSITY OF TEXAS AT AUSTIN

A network can be constructed from the set of labels of the final nodes.

49

DEPARTMENT OF COMPUTER SCIENCES —\

R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Notation I

{p}: set of elements of p,

p0: concatenate 0 to the end of each element of p. Similarly, pl.
p.q. concatenate corresponding elements of p and q.

e {uav} ={utU{v},and {u|v} ={u}U{v}.

* (p>1¢)0 = (p0>aq0),and (p|q)0=(p0|q0).

o (prgq).(urdv) = (p.u) > (gv),and (p|q).(u|v) = (p.u)|(gv).

e For a permuting function h,
(h p)0 = h(p0) and h(p.q) = (h p).(h q).

- ———— e

UNIVERSITY OF TEXAS AT AUSTIN

-

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Generating-Function for Clos Networks |

Figure 11: Clos Network, N =4

UNIVERSITY OF TEXAS AT AUSTIN

-

-
- -~

cldl

51

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Generating-Function for Butterfly Network |

&
I

(20.v0) | f(ul.vl)

Figure 12: Butterfly Network for N =4
N _/

-

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Mirror Image of the Butterfly Network |

7~

m({(z)) = (z)

<
(u > v) = m(u0.v0) < m(ul.vl)

Pad

Figure 13: Mirror Image of the Butterfly Network, N =4

UNIVERSITY OF TEXAS AT AUSTIN

53

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Generating-Function for Benes Network I

b, describes the Benes network with k£ + 1 stages.

bo (p) = {p}

brr1(u | v) = bg(u0.00 xxul.wl), for 0 < k <wu, where w = log, |ul

Figure 14:. Benes Network, N =4

N

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Definition of Isomorphism |

Families with generating functions g and h are isomorphic iff
{g} = {h o}, for some permutation function =. That is,

{9(p)} = {h(n(p))}, forall p.

Isomorphism is an equivalence relation.

The order in the final list does not matter.

. _

UN|VERS|TY OF TEXAS AT AUST|N ___|] 55

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Isomorphism: Clos, Butterfly, Mirror Image |

Theorem 1:
l. commv=F
2. c=1invom

Proof of 2 (Induction): Let the argument powerlist be « > v.

inv(m(u < v))

= {definition of m}
inv|m(u0.v0) 0 m(ul.vl)]

= {Property of inv}
inv|m(u0.v0)] | invim(ul.vl)]

= {induction}
c(u0.v0) | c(ul.vl)

= {definition of ¢}
c(u <1 v)

. _

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Isomorphism: Benes, Butterfly |

Lemma: b,(u<tv) = (b, u)U (b, v),forall n, 0 <n<wu.

Theorem 2: bg(u) = {f(u)}

b4 1 a)
= {definition of b}
b5(p0.q0 > pl.ql)
= {Lemma}
b3(p0.q0) U bz(pl.ql)
— {induction. Note that 7 = p0.q0 = pl.q1}
{f(00.q0)} U{f(pl.q1)}
= {Observation 1}
{f(p0.q0) | f(pl.q1)}
= {Definition of f}
{Flpla)}

. _

UN|VERS|TY OF TEXAS AT AUST|N ___|] 57

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ Higher Dimensional Arrays |

A matrix of r» rows and ¢ columns is a powerlist of ¢ elements:
each element is a powerlist of length » storing the items of a column.

Think in terms of array operations rather than operations on nested
powerlists.

Introduce construction operators, analogousto | and <, for tie and
zip along any specified dimension.

’,><" for the corresponding operators in dimension 1, |” > for the
dimension 2, etc.

- __

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Examples of Matrices |
AA AA
2 4 0 1
VAR, VAR,
A A AA A A AA
2 4 0 1 2 0 4 1
AB_<3 5 6 7> AMB_<3 6 5 7>
vV oV OV vV OV VoV
AA AA
2 4 2 4
3 5 0 1
/ . / —
wa(38) awae(21
6 7 6 7
VAR, VAR,

‘ Definition of a matrix I

Define a matrix to be either

a singleton matrix {((x)), or
p | ¢ where p,q are (similar) matrices, or
u |"v where wu,v are (similar) matrices.

Matrix Transposition

T({(z)) = ({z))
T(plq) =(tp)| (7 q)
T(u | v) = (7 u) | (7v)

N

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

60

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Matrix Transposition |

o{(z)) = ({z))
o(plq) | (ulv))=((op) | (cq)]|((cu)l| (cv))
In the figure p’ = o p, etc.
o P ¢ _ p:g:

Figure 15: transposition of a square matrix.

N R/

