
An Object Model for Multiprogramming

Jayadev Misra

The University of Texas at Austin Austin, Texas 78712, USA

Abstract. We have developed a programming model that integrates concurrency
with object-based programming. The model includes features for object definition
and instantiation, and it supports concurrent executions of designated methods of
the object instances. Yet, the model includes no specific communication or syn-
chronization mechanism, except procedure call. The traditional schemes for com-
munication, synchronization, interfaces among processes and accesses to shared
memory can be encoded by objects in our model. Concurrency in the model is
transparent to the programmer; the programmer believes that the program ex-
ecutes in a sequential manner whereas the implementation employs concurrent
threads to gain efficiency.

1 Introduction

The research described in this document is based on two observations: (1) the applica-
tions that will be implemented on networks of processors in the future will be signif-
icantly more ambitious than the current applications (which are mostly involved with
transmissions of digital data and images), and (2) many of the programming concepts
developed for databases, object-oriented programming and designs of reactive systems
can be unified into a concise model of distributed programs that can serve as the foun-
dation for designing these future applications.

We have developed a model of multiprogramming, calledSeuss. Seuss fosters a
discipline of programming that makes it possible to understand a program execution
as a single thread of control, yet it permits program implementation through multiple
threads. As a consequence, it is possible to reason about the properties of a program
from its single execution thread, whereas an implementation on a specific platform
(e.g., shared memory or message communicating system) may exploit the inherent con-
currency appropriately. A central theorem establishes that multiple execution threads
implement single execution threads, i.e., any property proven for the latter is a property
of the former as well.

A major point of departure in Seuss is that there is no built-in concurrency and no
commitment to either shared memory or message-passing style of implementation. No
specific communication or synchronization mechanism, except procedure call, is built
into the model. In particular, the notions of input/output and their complementary na-
ture in rendezvous-based communication [7, 12] is outside this model. There is no dis-
tinction between computation and communication; process specifications and interface
specifications are not distinguished. Consequently, we do not have many of the tra-
ditional multiprogramming concepts such as, processes, locking, rendezvous, waiting,
interference and deadlock, as basic concepts in our model. Yet, typical multiprograms

employing message passing over bounded or unbounded channels can be encoded in
Seuss by declaring the processes and channels as the components of a program; simi-
larly, shared memory multiprograms can be encoded by having processes and memories
as components. Seuss permits a mixture of either style of programming, and a variety
of different interaction mechanisms – semaphore, critical region, 4-phase handshake,
etc. – can be encoded as components.

Seuss proposes a complete disentanglement of the sequential and concurrent as-
pects of programming. We expect large sections of code to be written, understood
and reasoned-about as sequential programs.We view multiprogramming as a way to
orchestrate the executions of these sequential programs, by specifying the conditions
under which each program is to be executed. Typically, several sequential programs
will execute simultaneously; yet, we can guarantee that their executions would be non-
interfering, and hence, each program may be regarded as atomic. We propose an effi-
cient implementation scheme that can, using user directives, interleave the individual
sequential programs with fine granularity without causing any interference.

2 Seuss Programming Model and Notation

We describe a programming model and a publication notation. The notation is intended
for implementation on top of a variety of host languages. Therefore, no commitment
has been made to the syntax of any particular language. The notation is fully described
in [13].

The notation is described using BNF. All non-terminal identifiers are in Roman and
all terminal identifiers are in boldface type. The special symbols used as meta symbols
of the BNF are

::= { } [] ∨ ()
and the special symbols used as terminals are

| 6 | ; : ::
A syntactic unit enclosed within “{” and “}” may be instantiated zero or more times.
A syntactic unit enclosed within “[” and “]” may be instantiated zero or one time. The
symbol∨ is used for alternation; in the right hand side of a production, (p ∨ q) denotes
that a choice is to be made between the syntactic unitsp and q in instantiating this
production. We omit the parentheses, (and), when no confusion can arise.

2.1 Program Structure

The basic constructs of a Seuss program arebox, cloneandprocedure. A box defines a
type (orclassin object-oriented programming), a clone is an instance of a box, and pro-
cedures (actions and methods) are the constituents of boxes. A box has a local state and
it includes procedures by which its local state can be accessed and updated. Procedures
in a box or a clone may call upon procedures of other clones. Boxes are used to encode
processes as well as the communication protocols for process interactions; therefore,
it is necessary only to develop the methodology for programming and understanding
boxes and their component procedures.

box ::=box box-name{component} end
component ::= box∨ clone∨ variable∨ procedure
box-name ::= identifier

A box may contain declarations of boxes; therefore boxes may be nested to arbitrary
depth. The hierarchical structure of a program can be described by asyntax tree: For
box A that has a component box (or clone)B, A is theparent of B andB a child of
A.

Program A programconsists of a box – that describes the program code – and a clone
– that instantiates the box (typically, we combine the box and the clone, as described in
section 3).

Library There is a special box,Library , that includes the ubiquitous programming con-
structs such as channels and semaphores as boxes. By convention, every user program
is a component ofLibrary andLibrary is the root of the syntax tree that describes
a program. Consequently, every box and clone in a user program has a parent. Any
component box ofLibrary may be instantiated within the user program.

Scope RulesThe scope rules determine the names – of boxes, clones, variables and
procedures – that can be referenced within a box. The rules are similar to those in other
block-structured languages, such as PASCAL; see Chapter 2 of [13] for details.

2.2 clone

clone ::=cloneclone-name: box-name [init clone-initialization]
clone-name ::= identifier

A clone is an instance of a box. The form of a clone declaration is

clonec : B init q0; q1, ...

The initialization is optional; in the case shown above,q0, q1, ... are total-methods
of B, and they are executed sequentially whenc is instantiated.

2.3 variable

variable ::=var variable-name: type [init variable-initialization]
variable-name ::= identifier

We rely on traditional notations for declarations and initializations of variables.

2.4 procedure

We propose two distinct kinds of procedures, to model terminating and potentially non-
terminating computations – representing computations of wait-free programs and mul-
tiprograms, respectively. The former can be assigned a semantic with pre- and post-
conditions, i.e., based on its possible inputs and corresponding outputswithoutconsid-
erations of interference with its environment. Multiprograms, however, cannot be given
a pre- and post-condition semantic because on-going interaction with the environment
is of the essence. We distinguish between these two types of computations by using two
different kinds of procedures: atotal procedure never waits (for an unbounded amount
of time) to interact with its environment whereas apartial procedure may wait, possi-
bly forever, for such interactions. In this view, aP operation on a semaphore is a partial
procedure – because it may never terminate – whereas aV operation is a total proce-
dure. A total procedure models wait-free, ortransformational, aspects of programming
and a partial procedure models concurrent, orreactive, aspects of programming[10].
Our programming model does not includewaitingas a fundamental concept; therefore,
a (partial) procedure does not wait, but itrejectsthe call, thus preserving the program
state.

procedure ::= partial-procedure∨ total-procedure
partial-procedure ::=partial partial-method∨ partial-action
total-procedure ::=total total-method∨ total-action
partial-method ::=methodhead :: partial-body
partial-action ::=action [head] :: partial-body
total-method ::=methodhead :: total-body
total-action ::=action [head] :: total-body

A procedure is eitherpartial or total; also, a procedure is either amethodor anac-
tion. Thus, there are four possible headings identifying each procedure. Each procedure
has a head and a body; the head is optional for actions. The procedure head is similar
to the form used in typical imperative languages; it has a procedure name followed by
a list of formal parameters and their types. The procedure body is different for partial
and total procedures.

partial-body

partial-body ::= alternative{(| alternative)∨ (6 | alternative)}
alternative ::= precondition [; preprocedure]→ total-body

The body of a partial procedure consists of one or more alternatives. Each alternative
is positiveor negative: the first alternative is positive; an alternative preceded by| is
positive and one preceded by6 | is negative. Each alternative has a precondition, an
optional preprocedure and a body that is a total-body. A precondition is a predicate; it is
constrained to name only the variables of the box in which the procedure appears. The
precondition of at most one alternative of a partial procedure holds in any state, i.e., the
preconditions are pairwise disjoint. A preprocedure is the name of a partial method in a
visible clone; see scope rules in section 2.1.

total-body A total-body is a wait-free program; in this document, we use only sequen-
tial programs for total-body. The body may call upon total-methods of other clones
in its scope. No partial-method may be called from a total-body. The total-body can
contain all the constructs of typical sequential programs including local declarations
(variables, procedures, functions, etc.). It should be established by the programmer that
every execution of a total-body terminates, perhaps in afailedstate.

Procedure Execution A method is executed when it is called. A total-method always
acceptscalls; its body is executed whenever it is called. A partial-methodacceptsor
rejectseach call; it accepts a call if and only if one of its positive alternatives accepts
the call, and it rejects the call otherwise. An alternative, positive or negative, accepts a
call in a given state as follows. An alternative of the formp → S accepts the call ifp
holds; then its body,S, is executed and control is returned to its caller. An alternative of
the formp; h → S accepts a call providedp holds andh accepts the call made by this
procedure (using the same rules, sinceh is also a partial procedure); upon completion
of the execution ofh the bodyS is executed, and control is returned to the caller. Thus,
an alternative rejects a call if the precondition does not hold, or if the preprocedure,
provided it is present, rejects the call. Note that, since the precondition of at most one
alternative of a partial procedure holds in a given state, at most one alternative will
accept a call (if no alternative accepts the call, the call is rejected). It follows that the
state of the caller’s clone is unchanged whenever a call is rejected, though the state of
the called clone may be changed because a negative alternative may have accepted the
call.

The execution of an action is similar to that of a method, even though the former is
not called. A total action always accepts and executes its body. An execution of a partial
action is accepted if any one of its positive alternatives accepts, else the execution is
rejected.

3 Program Execution

A tight execution of a program is an infinite sequence of steps where each step consists
of executing an action of a clone. The choice of actions is arbitrary except that each
action of each clone appears in an infinite number of steps of a tight execution. We
specify below the run-time structure of the program; it is a tree of clones and the actions
of the program is the set of all actions at the nodes of the tree.

A program consists of a box followed by a clone that is an instantiation of the box.
During the execution of a program only the instantiated clones exist; all the boxes have
been eliminated. We employ aninstantiation treeto display the run-time structure of a
program. We start by describing the rules for instantiating a clone of the form

clonec : B init q0; q1, ...

Instantiation tree ofc has a root labeledc and it consists of the instances of the
variables, methods and actions ofB. The clones ofB are recursively instantiated and the
resulting trees become the subtrees ofc. The variables ofc are initialized as specified in

their declarations in thevar command, and then by executing the sequence of methods
q0; q1, Observe that the box declarations have been eliminated; in particular,Library
does not appear and the root of the instantiation tree is the clone corresponding to the
user-program.

We require that the programmer establish a partial orderlower among the clones
of the instantiation tree such that a procedure at nodey calls a method at nodex only
if x lower y. A simple syntax-based scheme is to ensure that the definition of a clone
lexically-precedes any reference to it.

Notational ConventionIt is often the case that a box has a single clone, as shown below.

box B
body ofB

end

clonec : B init q0; q1, ...

In this case, we eliminate the explicit box declaration, and the introduction of sym-
bol B by using the convention that the program fragment given below stands for the
one above.

clonec
body ofB

end init q0; q1, ...

Normally, a program is written in this manner, as a single clone.

4 An Example

This example, attributed to Hamming, is taken from Dijkstra[6]. The purpose of the
example is not to show a clever algorithm, but to illustrate various features of Seuss.

It is required to compute the sequence of integers of the form2i × 3j × 5k in
increasing order, for all natural numbersi, j, k. Our solution follows the treatment in
Section 8.2 (page 182) of Chandy and Misra[4], and it is sketched briefly below.

The programHamming (a clone) consists of the boxes,mult , merge, andproduce.
Boxesmult andmerge areFifo channels, whereFifo is declared inLibrary . Hamming
contains a single partial method,next , that yields the next number,g, in the desired se-
quence. Since,2× g, 3× g, 5× g are also numbers of the desired sequence,next sends
these numbers along theFifo channelsmult [1], mult [2], mult [3], respectively. The
role ofproduce is to merge the increasing sequences received alongmult [1], mult [2],
mult [3], and send the resulting increasing sequence alongmerge. Merging is done by
using three variables,h[1..3], whereh[i] is the last number received alongmult [i]; if all
numbers received have already been output thenh[i] is 0. Boxproduce has two partial
actions,read andwrite. The ith procedure withinread, 1 ≤ i ≤ 3, is dedicated to
receiving the next value frommult [i] providedh[i] = 0. Procedurewrite outputs the
smallest of theh values, when they are all nonzero, alongmerge and updatesh. The
computation is started by having the value1 in the channelmerge, initially.

cloneHamming
clonemult [1..3]: Fifo
clonemerge: Fifo init put(1)

cloneproduce
var h[1..3]:nat init 0, f : nat
partial action read ::

([]i : 1 ≤ i ≤ 3 : h[i] = 0; mult[i].get(h[i]) → skip)

partial action write::
h[1] 6= 0 ∧ h[2] 6= 0 ∧ h[3] 6= 0 →

f := min(h[1], h[2], h[3]); merge.put(f);
if f = h[1] thenh[1] := 0;
if f = h[2] thenh[2] := 0;
if f = h[3] thenh[3] := 0

end{produce}

partial method next(g: nat)::
;merge.get(g) →

mult [1].put(2 × g);
mult [2].put(3 × g);
mult [3].put(5 × g)

end{Hamming}

5 Related Work

Our work incorporates ideas from serializability and atomicity in databases[1], no-
tions of objects and inheritance[11], Communicating Sequential Processes[7], i/o au-
tomata[9], and Temporal Logic of Actions[8]. A partial procedure is similar to a database
(nested) transaction that may commit or abort; the procedure commits (to execute) if its
precondition holds and its preprocedure commits, and it aborts otherwise. A typical
abort of a database transaction requires a rollback to a valid state. In Seuss, a partial
procedure does not change the program state until it commits, and therefore, there is
no need for a rollback. The form of a partial procedure is inspired by Communicating
Sequential Processes[7]. Our model may be viewed as a special case of CSP because
we disallow nested partial procedures.

Seuss is an outgrowth of our earlier work on UNITY [4]. A UNITY program con-
sists of statements each of which may change the program state. A program execution
starts in a specified initial state. Statements of the program are chosen for execution
in a non-deterministic fashion, subject only to the (fairness) rule that each statement
be chosen eventually. The UNITY statements were particularly simple – assignments
to program variables – and the model allowed few programming abstractions besides
asynchronous compositions of programs. Seuss is an attempt to build a compositional
model of multiprogramming, retaining some of the advantages of UNITY. An action
is similar to a statement, though we expect actions to be much larger in size. We have

added more structure to UNITY, by distinguishing between total and partial procedures,
and imposing a hierarchy over the boxes. Executing actions as indivisible units would
extract a heavy penalty in performance; therefore, we have developed the theory that
permits interleaved executions of the actions. Programs in UNITY interact by operating
on a shared data space; Seuss boxes, however, have no shared data and they interact
through procedure calls only. In a sense, boxes may only share boxes. As in UNITY,
the issues of deadlock, starvation, progress (liveness), etc., can be treated by making
assertions about the sequence of states in every execution. Also, as in UNITY, program
termination is not a basic concept. A program has reached afixed pointwhen precondi-
tions of all actions arefalse; further execution of the program does not change its state
then, and an implementation may terminate a program execution that reaches a fixed
point. We have developed a simple logic for UNITY (for some recent developments,
see [15], [14], [3]) that is applicable to Seuss as well.

References

1. P. A. Bernstein, V. Hadzilacos, and N. Goodman.Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Reading, Mass., 1987.

2. J.C. Browne et al. A language for specification and programming of reconfigurable parallel
computation structures. InInt. Conf. of Parallel Processing, Bellaire, Michigan, pages 142–
149. IEEE, Aug 1982.

3. K. M. Chandy and B. A. Sanders. Towards Compositional Specifications for Parallel Pro-
grams. InDIMACS Workshop on Specifications of Parallel Algorithms, Princeton, NJ, May
9-11 1994.

4. K. Mani Chandy and Jayadev Misra.Parallel Program Design: A Foundation. Addison
Wesley, 1988.

5. E. W. Dijkstra. Solution of a problem in concurrent programming control.Communications
of the ACM, 8(9):569, 1965.

6. E. W. Dijkstra.A Discipline of Programming. Prentice-Hall, Englewood Cliffs, New Jersey,
1976.

7. C.A.R. Hoare.Communicating Sequential Processes. Prentice Hall International, London,
1984.

8. L. Lamport. The temporal logic of actions.ACM Transactions on Programming Languages
and Systems, 16(3):872–923, May 1994.

9. N. Lynch and M. Tuttle. An introduction to input/output automata.CWI-Quarterly,
2(3):219–246, Sept. 1989.

10. Zohar Manna and Amir Pnueli.The temporal logic of reactive and concurrent systems.
Springer-Verlag, 1991.

11. Bertrand Meyer.Object-Oriented Software Construction. Prentice Hall PTR, Upper Saddle
River, NJ, 1997.

12. R. Milner. Communication and Concurrency. International Series in Computer Science, C.
A. R. Hoare, Series Editor. Prentice-Hall International, London, 1989.

13. Jayadev Misra.A Discipline of Multiprogramming. Unpublished Manuscript Available at
the following URL, ftp://ftp.cs.utexas.edu/pub/psp/seuss/discipline.ps.Z.

14. Jayadev Misra. A logic for concurrent programming: Progress.Journal of Computer and
Software Engineering, 3(2):273–300, 1995.

15. Jayadev Misra. A logic for concurrent programming: Safety.Journal of Computer and
Software Engineering, 3(2):239–272, 1995.

