
Generating-Functions of Interconnection

Networks

Jayadev Misra
The University of Texas at Austin

Austin, Texas 78712, USA
email: misra@cs.utexas.edu

July 17, 2000

Abstract

Generating functions have long been used to analyze properties of se-
quences of numbers. In this note, we use generating functions to analyze a
class of combinatorial objects, called interconnection networks. In particu-
lar, we prove that two families of interconnection networks are isomorphic
by showing that the corresponding generating functions are isomorphic.

1 Introduction

Generating functions have long been used to analyze properties of sequences of
numbers (see Chapter 7 of [5] for an excellent introduction to this topic). In
this note, we use generating functions to analyze a class of combinatorial ob-
jects, called interconnection networks. In particular, we prove that two families
of interconnection networks are isomorphic by showing that the corresponding
generating functions are isomorphic.

Interconnection networks (also known as permutation networks) are used for
regular interconnections of processors in a parallel computer. Such a network
consists of N nodes, also known as switches, each of which has k input and
output lines (except that initial nodes have no input lines and final nodes have
no output lines). In this note k = 2, i.e., each node has two input and two output
lines. It is often required to show that two given families are isomorphic, i.e.,
the networks corresponding to N , for each N , in both families are isomorphic
(we define “isomorphic” later in this paper).

Each family consists of an infinite number of networks, for various values
of N . The typical proof of isomorphism, see for instance [11, 1], is based on
finding a mapping between the nodes of the two networks of size N . We proceed
differently. We represent a family by a single function – its generating function
– from which each member of the family can be generated by computing the
function value with specific arguments. In this note, we show how the structure

1

of a family can be described by a function on powerlists[9]; a short introduction
to powerlists is given in section 3. The functional description can be used to
deduce properties of the networks in the family. Also, different network families
may be proven isomorphic by proving a certain kind of equivalence among the
functions.

Powerlists are convenient for representing recursive structures; so, they are
well-suited for representations of interconnection networks which are often re-
cursive. We find that functions over powerlists are easier to manipulate than
the traditional mappings between nodes.

The proofs in [11, 1] work only for networks in which k, the input (and
output) degrees of the nodes, is 2. McIlroy and Savicki[7] have developed more
sophisticated proofs for arbitrary k. Their proofs are also based on using map-
ping functions. The original powerlist theory, on which this paper is based, can
handle only k = 2. Kornerup has extended the powerlist theory, and he has
proven similar isomorphism results for arbitrary k, see [6].

2 Interconnection Networks

An interconnection network of size N , where N = 2n, for some n, n ≥ 0, has
n + 1 stages numbered 0 through n (the stages will appear in increasing order
from left to right in the figures). Each stage has N nodes. Nodes in stage 0
are called initial nodes and those in stage n are final nodes. Each non-initial
node has two input ports, known as top and bottom. Each non-final node has
two output ports known as top and bottom. Each output port of a node in stage
i is connected to a distinct input port of a node in stage i + 1, 0 ≤ i < n.
Examples of interconnection networks are butterfly networks[4], Benes[2] and
Clos[3] networks. Each of these, e.g. butterfly network, actually denotes a
family of networks where for each value of n there is a specific network in the
family.

Two networks are isomorphic if they are isomorphic in a graph-theoretic
sense; i.e., there is a 1-1 correspondence between the nodes of the two networks
such that for two nodes u, v in one network where an output port (top or bottom)
of u connects to an input port (top or bottom) of v, the corresponding nodes
are similarly connected in the other network. Two families of interconnection
networks are isomorphic if for each N , where N is a power of 2, the networks of
size N from the families are isomorphic. We give an alternate characterization
of isomorphism in section 5.

2.1 Benes Networks

We consider a family where the network for N = 4 is shown in Figure 1. The
structure of the network is iterative; the connections are identical from stage to
stage. For each non-initial stage, the top input lines of all nodes come in order
from the upper half of the nodes of the previous stage and the bottom input
lines come in order from the lower half.

2

Each network in this family is half of Benes network[2]; the other half is a
mirror image of this half (the final nodes of the first half are the initial nodes
of the second half). In this paper, we consider only the half of the network, as
shown in Figure 1, and call it a Benes network.

Figure 1: Benes Network, N = 4

2.2 Clos Networks

Now, we consider an interconnection network created in a recursive fashion.
For N = 1, the network is a single node. For N = 2, the network is a butterfly
network with 2 stages, as shown in Figure 2. We show the general construction
scheme in Figure 3, for N = 4. For stage 1, the input lines of the nodes in the
upper half are the top output lines of all the nodes of the previous stage and
the input lines of the nodes in the lower half are the bottom lines of all nodes
in the previous stage, in order. Next, two copies of the same network of the
next smaller size, (for N = 2 in Figure 3), are appended to the upper and lower
halves.

Each network in this family is half of Clos network[3]; the other half is
a mirror image of this half. In this paper, we consider only the half of the
network, as shown in Figure 3, and call it a Clos network.

Figure 2: Clos Network for N = 2

3

Figure 3: Clos Network, N = 4

Figure 4: Butterfly Network for N = 4

2.3 Butterfly Network and its Mirror Image

A butterfly network[4] of size N , where N = 2 is shown in Figure 2, and for
N = 4 is shown in Figure 4. The interconnection structure can be described
as follows. The nodes in the upper half of the initial stage have their top lines
connected to the top ports in the upper half of the next stage and their bottom
lines connected to the top ports of the lower half of the next stage, in order.
The connections for the lower half of initial nodes is analogous.

The mirror image of the butterfly network for N = 8 is shown in Figure 5.

3 Powerlists

The powerlist data structure was introduced in [9] to facilitate descriptions of
parallel algorithms. The smallest powerlist—corresponding to the empty list for

4

Figure 5: Mirror Image of the Butterfly Network, N = 8

the linear case—is a list of one element. There are two different ways in which
two powerlists are joined to create a longer powerlist. If p, q are powerlists of
the same length then

p | q is the powerlist formed by concatenating p and q, and

p ./ q is the powerlist formed by successively taking alternate items
from p and q, starting with p.

Thus, the length of p | q or p ./ q is double the length of p (and q). Hence,
the length of a powerlist is 2n, for some n, n ≥ 0. Powerlists can be nested, but
we will not use that feature in this note.

In the following examples the sequence of elements of a powerlist are enclosed
within angular brackets.

〈0〉 | 〈1〉 = 〈0 1〉, 〈0〉 ./ 〈1〉 = 〈0 1〉,
〈0 1〉 | 〈2 3〉 = 〈0 1 2 3〉, 〈0 1〉 ./ 〈2 3〉 = 〈0 2 1 3〉

The operation | is called tie and ./ is zip.

Convention: We write function application without parantheses where no
confusion is possible. Thus, we write “f x” instead of “f(x)” and “g x y”
instead of “g(x, y)”. The constructors | and ./ have the same binding power
and their binding power is lower than that of function application. 2

Functions over linear lists are typically defined by case analysis—a function
is defined over the empty list and, recursively, over non-empty lists. Functions
over powerlists are defined analogously. For instance, the following function,
rev , reverses the order of the elements of the argument powerlist.

5

rev〈x〉 = 〈x〉
rev(p | q) = (rev q) | (rev p)

The case analysis, as for linear lists, is based on the length of the argument
powerlist. We adopt the pattern matching scheme of ML[8] and Miranda[10]1 to
deconstruct the argument list into its components, p and q, in the recursive case.
Deconstruction, in general, uses the operators | and ./ . In the definition of
rev , we have used | for deconstruction; we could have used ./ instead and
defined rev in the recursive case by

rev(p ./ q) = (rev q) ./ (rev p)

It can be shown that the two proposed definitions of rev are equivalent and for
any powerlist P

rev(rev P) = P.

3.1 Laws about powerlists

L0. For singleton powerlists, 〈x〉, 〈y〉
〈x〉 | 〈y〉 = 〈x〉 ./ 〈y〉

L1. (Dual Deconstruction)
For any non-singleton powerlist, P , there exist similar powerlists
r, s, u, v such that
P = r | s and P = u ./ v

L2. (Unique Deconstruction)
(〈x〉 = 〈y〉) ≡ (x = y)
(p | q = u | v) ≡ (p = u ∧ q = v)
(p ./ q = u ./ v) ≡ (p = u ∧ q = v)

L3. (Commutativity of | and ./)
(p | q) ./ (u | v) = (p ./ u) | (q ./ v)

These laws can be derived by suitably defining tie and zip, using the standard
functions from the linear list theory. One possible strategy is to define tie as
the concatenation of two equal length lists and then, use the Laws L0 and L3
as the definition of zip; Laws L1, L2 can be derived next. Alternatively, these
laws may be regarded as axioms relating tie and zip.

Law L0 is often used in proving base cases of algebraic identities. Laws
L1, L2 allow us to uniquely deconstruct a non-singleton powerlist using either
| or ./ . Law L3 is crucial. It is the only law relating the two construction

operators, | and ./ , in the general case. Hence, it is invariably applied in
proofs by structural induction where both constructors play a role.

1Miranda is a trademark of Research Software Ltd.

6

3.2 An Example: The Function inv

We define a function inv that arises in a variety of contexts. In particular,
inv is used to permute the output of a Fast Fourier Transform network into
the correct order. This function is also central to our development of proofs of
isomorphisms of interconnection networks.

For a powerlist of 2n elements we associate an n-bit index with each element,
where the indices are the binary representations of 0, 1, .., 2n − 1 in sequence.
(For a powerlist u | v, indices for the elements in u have “0” as the highest bit
and in v have “1” as the highest bit. In u ./ v, similar remarks apply for the
lowest bit.) Any bijection, h, mapping indices to indices defines a permutation
of the powerlist: the element with index i is moved to the position where it has
index (h i).

The function inv permutes the elements of the argument powerlist. It is
defined by the following function on indices. An element with index b in P has
index b′ in (inv P), where b′ is the reversal of the bit string b. Thus,

000 001 010 011 100 101 110 111

inv〈 a b c d e f g h 〉 =
〈 a e c g b f d h 〉

The definition of inv is

inv〈x〉 = 〈x〉
inv(p | q) = (inv p) ./ (inv q)

The following proof shows a typical application of structural induction.

INV1. inv(p ./ q) = (inv p) | (inv q)

Proof is by structural induction on p and q.
Base : inv(〈x〉 ./ 〈y〉)

= {From Law L0 : 〈x〉 ./ 〈y〉 = 〈x〉 | 〈y〉}
inv(〈x〉 | 〈y〉)

= {definition of inv}
inv〈x〉 ./ inv〈y〉

= {inv〈x〉 = 〈x〉, inv〈y〉 = 〈y〉. Thus, they are singletons. Applying Law L0}
inv〈x〉 | inv〈y〉

Induction :
inv((r | s) ./ (u | v))

= {commutativity of | , ./ }
inv((r ./ u) | (s ./ v))

= {definition of inv}
inv(r ./ u) ./ inv(s ./ v)

7

= {induction}
(inv r | inv u) ./ (inv s | inv v)

= { | , ./ commute}
(inv r ./ inv s) | (inv u ./ inv v)

= {apply definition of inv to both sides of | }
inv(r | s) | inv(u | v) 2

Using INV1 and structural induction, it is easy to establish

inv(inv P) = P ,

inv(rev P) = rev(inv P).

4 Generating-Functions of Networks

We represent a family of networks by a function from powerlists to powerlists,
as described below.

4.1 Notation

In this note, all powerlist elements are strings over some given alphabet. For a
powerlist p,

p is the logarithm (base 2) of the length of p,
{p} is the set of elements of p,
p0 is the powerlist obtained by concatenating “0” to the end of each element

of p,
p1, similarly, is the powerlist obtained by concatenating “1” to the end of

each element of p,
p.q, where p and q have the same length, is the powerlist obtained by con-

catenating corresponding elements of p and q in this order.

We use the following precedence among the various operators: concatenation
with 0 or 1 binds the strongest followed by . and then | and ./ as operators
of equal binding power. Thus, p0.q0 ./ p1.q1 is [(p0).(q0)] ./ [(p1).(q1)].

Observations: For powerlists p, q, u, v of the same length

1. {u ./ v} = {u} ∪ {v}, and {u | v} = {u} ∪ {v}.
2. p = p0 = p.q.

3. (p ./ q)0 = (p0 ./ q0), and (p | q)0 = (p0 | q0).

4. (p ./ q).(u ./ v) = (p.u) ./ (q.v), and (p | q).(u | v) = (p.u) | (q.v).

5. For any function h that permutes the elements of a powerlist, (h p)0 =
h(p0) and h(p.q) = (h p).(h q).

8

4.2 Naming the Nodes and Lines

We adopt the following scheme to name the nodes and lines of a network. Name
each node in stage 0 by a distinct symbol from some alphabet. For a node named
b, name its top output line b0 and its bottom output line b1. A node whose top
input line is named u and the bottom v, is assigned u.v as its name. Thus, in
Figure 6, given that the nodes in stage 0 are named a, b, c, d from top to bottom,
other nodes are named as shown in that figure. It is clear that given the list
of names for the nodes in stage 0, all the node and line names are determined.
Further, given the set of node names at the last stage, it is possible to reconstruct
the names assigned to all the nodes, lines and their interconnections.

a1c11b1d11

a

b

c

d

a0c0

a1c1

b0d0

b1d1

a0c00b0d00

a0c01b0d01

a1c10b1d10

Figure 6: Naming the Nodes in a Network

We describe the structure of a network by a function whose argument is
a powerlist of names, to be assigned in sequence to the nodes in stage 0, and
whose result is either a powerlist of node names or a set of final node names.

4.3 Generating-Functions for the Example Networks

We describe the structure of a Benes network using the set of names for the final
nodes. The set of names is adequate to describe the structure of a network and,
hence, prove isomorphism of two network structures. We describe the other
networks by functions that return a powerlist of names for the final nodes.
The powerlist representation is useful when we wish to concatenate different
networks; then functional composition corresponds to network concatenation.

Benes Network: In the following, function bk describes the structure of the
Benes network that has k + 1 stages.

b0 (p) = {p}
bk+1(u | v) = bk(u0.v0 ./ u1.v1), for 0 ≤ k ≤ u

9

Clos Network: The following function, c, describes the Clos network.

c(〈x〉) = 〈x〉
c(u ./ v) = c(u0.v0) | c(u1.v1)

Butterfly Network and its Mirror Image: The butterfly network is de-
scribed by function f and its mirror image by m.

f(〈x〉) = 〈x〉
f(u | v) = f(u0.v0) | f(u1.v1)

m(〈x〉) = 〈x〉
m(u ./ v) = m(u0.v0) ./ m(u1.v1)

5 Isomorphisms of the Example Networks

Two families of interconnection networks, given by generating functions g and
h, are isomorphic provided {g} = {h ◦ π}, for some permutation function π
(function composition is denoted by ◦). That is, {g(p)} = {h(π(p))}, for all p.
Isomorphism is an equivalence relation from this definition, and it is equivalent
to the previous definition of isomorphism.

We show that all four networks – Benes, Clos, butterfly and its mirror image
– are isomprphic. We prove these results by showing that the corresponding
functions return the same set of final node names given identical list of names
for the initial nodes; see corollary at the end of theorem 2. In some cases – see
theorem 1 – we can identify the exact permutation that is to be applied to the
input list to make the resulting lists of final nodes identical. In the following
theorem, we use the permutation function inv which was defined in section 3.2
as follows.

inv(〈x〉) = 〈x〉
inv(p | q) = (inv p) ./ (inv q)

Theorem 1:

1. c ◦ inv = f
2. c = inv ◦m

Proof: All the proofs are by induction on the structures of the argument pow-
erlists. The base case in each identity is straightforward. So, we prove the result
only for the inductive case.

1. Let the argument powerlist be p | q.

c[inv(p | q)]
= {definition of inv}

c[(inv p) ./ (inv q)]
= {definition of c}

10

c[(inv p)0.(inv q)0] | c[(inv p)1.(inv q)1]
= {(inv t)0= {Observation 5} inv(t0), for any powerlist t}

c[(inv p0).(inv q0)] | c[(inv p1).(inv q1)]
= {(inv r).(inv s) = (inv r.s), from Observation 5}

c[inv(p0.q0)] | c[inv(p1.q1)]
= {induction. Note that p = p0.q0 = p1.q1}

f(p0.q0) | f(p1.q1)
= {Definition of f}

f(p | q) 2

2. Let the argument powerlist be u ./ v.

inv(m(u ./ v))
= {definition of m}

inv[m(u0.v0) ./ m(u1.v1)]
= {Property INV1 of inv}

inv[m(u0.v0)] | inv[m(u1.v1)]
= {induction}

c(u0.v0) | c(u1.v1)
= {definition of c}

c(u ./ v) 2

Corollary: f ◦ inv = inv ◦m 2

In the following theorem, {f(u)} is the set of values in the powerlist f(u).

Theorem 2: bu(u) = {f(u)}

Proof: First, we prove a lemma about b.

Lemma: bn(u ./ v) = (bn u) ∪ (bn v), for all n, 0 ≤ n ≤ u.
Proof: We prove the result by induction on n. For n = 0, we have,

b0(u ./ v)
= {definition of b}

{u ./ v}
= {Observation 1}

{u} ∪ {v}
= {definition of b}

(b0 u) ∪ (b0 v)

For the inductive case, let n = k + 1, for some k ≥ 0. Since n ≤ u, u (and
v) is not a singleton list. Let u be p | q and v be r | s. We show that for all k,
0 ≤ k + 1 ≤ p | q (or equivalently, 0 ≤ k ≤ p),

bk+1[(p | q) ./ (r | s)] = bk+1(p | q) ∪ bk+1(r | s).

bk+1[(p | q) ./ (r | s)]
= {commutativity of | and ./ }

11

bk+1[(p ./ r) | (q ./ s)]
= {definition of b}

bk([(p ./ r)0.(q ./ s)0] ./ [(p ./ r)1.(q ./ s)1])
= {commutativity of zip and concatenation with 0, Observation 3}

bk([(p0 ./ r0).(q0 ./ s0)] ./ [(p1 ./ r1).(q1 ./ s1)])
= {induction, 0 ≤ k ≤ p < p0 ./ r0 = (p0 ./ r0).(q0 ./ s0)}

bk[(p0 ./ r0).(q0 ./ s0)] ∪ bk[(p1 ./ r1).(q1 ./ s1)]
= {commutativity of . and ./ , Observation 4}

bk[(p0.q0) ./ (r0.s0)] ∪ bk[(p1.q1) ./ (r1.s1)]
= {induction, 0 ≤ k ≤ p = p0.q0}

bk(p0.q0) ∪ bk(r0.s0) ∪ bk(p1.q1) ∪ bk(r1.s1)
= {rearranging the terms}

bk(p0.q0) ∪ bk(p1.q1) ∪ bk(r0.s0) ∪ bk(r1.s1)
= {induction, 0 ≤ k ≤ p = p0.q0}

bk(p0.q0 ./ p1.q1) ∪ bk(r0.s0 ./ r1.s1)
= {definition of b}

bk+1(p | q) ∪ bk+1(r | s) 2

Now we are ready to prove the main result: bu(u) = {f(u)}. The base case
is straightforward. For the inductive case, let the argument powerlist be p | q.

b
p | q

(p | q)
= {definition of b}

bp(p0.q0 ./ p1.q1)
= {Lemma}

bp(p0.q0) ∪ bp(p1.q1)
= {induction. Note that p = p0.q0 = p1.q1}

{f(p0.q0)} ∪ {f(p1.q1)}
= {Observation 1}

{f(p0.q0) | f(p1.q1)}
= {Definition of f}

{f(p | q)} 2

Corollary: bu(u) = {f(u)} = {c(u)} = {m(u)}. 2

Acknowledgement: I am indebted to Doug McIlroy who suggested that pow-
erlists may be effective in proving properties of interconnection networks. Jacob
Kornerup showed me how to extend these results to networks of higher degrees.

References

[1] D.P. Agrawal. Graph theoretic analysis and design of multistage intercon-
nection networks. IEEE Trans. on Computers, C-32:637–648, 1983.

[2] V. E. Benes. Mathematical Theory of Connecting Networks and Telephone
Traffic. Academic Press, New York, 1965.

12

[3] C. Clos. A study of non-blocking switching networks. Bell Syst. Tech. J.,
32:406–424, 1953.

[4] J. M. Cooley and J. W. Tukey. An algorithm for the machine calculation
of complex Fourier series. Math. Comp., 19(90):297–301, 1965.

[5] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Math-
ematics. Addison-Wesley Publishing Company, 1989.

[6] Jacob Kornerup. Data Structures for Parallel Recursion. PhD the-
sis, University of Texas at Austin, 1997. Available for download as
http://www.cs.utexas.edu/users/kornerup/dis.ps.Z.

[7] M. D. McIlroy and J. P. Savicki. Isomorphism of classical rearrangeable
networks. In D.-Z. Du and F. K. Hwang, editors, Advances in Switching
Networks, volume 42 of DIMACS Series in Discrete Math. and Theoretical
Comp. Sci., pages 147–156, Providence, 1998. American Math. Soc.

[8] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard
ML. MIT Press, 1990.

[9] J. Misra. Powerlist: A structure for parallel recursion. ACM Transac-
tions on Programming Languages and Systems, 16(6):1737–1767, November
1994.

[10] David Turner. An overview of Miranda. ACM SIGPLAN Notices, 21:156–
166, December 1986.

[11] C. Wu and T. Feng. On a class of multistage interconnection networks.
IEEE Trans. on Computers, C-29:694–702, 1980.

13

