
Modular Multiprogramming∗

Jayadev MISRA†

Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712
(512) 471-9547

email: misra@cs.utexas.edu
Home Page: http://www.cs.utexas.edu/users/misra

October 21, 1998

Abstract
Object-based sequential programming has had a major impact on soft-

ware engineering. However, object-based concurrent programming remains
elusive as an effective programming tool. The class of applications that will
be implemented on future high-bandwidth networks of processors will be sig-
nificantly more ambitious than the current applications (which are mostly
involved with transmissions of digital data and images), and object-based
concurrent programming has the potential to simplify designs of such appli-
cations. This paper shows that many of the programming concepts developed
for databases, object-oriented programming and designs of reactive systems
can be unified into a compact model of concurrent programs that can serve
as the foundation for designing these future applications.

1 Introduction

Object-based sequential programming has had a major impact on soft-
ware engineering. However, object-based concurrent programming re-

∗This monograph is available at ftp://ftp.cs.utexas.edu/pub/psp/seuss/discipline.ps.Z
†This material is based in part upon work supported by the National Science Founda-

tion Awards CCR–9803842, CCR–9707056 and CCR-9504190.

1

mains elusive as an effective programming tool. The class of applica-
tions that will be implemented on future high-bandwidth networks of
processors will be significantly more ambitious than the current appli-
cations (which are mostly involved with transmissions of digital data
and images), and object-based concurrent programming has the po-
tential to simplify designs of such applications. Many of the program-
ming concepts developed for databases, object-oriented programming
and designs of reactive systems can be unified into a compact model
of concurrent programs that can serve as the foundation for designing
these future applications.

Research in multiprogramming has, traditionally, attempted to
reconcile two apparently contradictory goals: (1) it should be possible
to understand a module (e.g., a process or a data object) in isolation,
without considerations of interference by the other modules, and (2)
it should be possible to implement concurrent threads at a fine level of
granularity so that no process is ever locked out of accessing common
data for long periods of time. The goals are in conflict because fine
granularity, in general, implies considerable interference. The earliest
multiprograms (see, for instance, the solution to the mutual exclusion
problem in Dijkstra [8]) were trivially small and impossibly difficult to
understand, because the behaviors of the individual processes could
not be understood in isolation, and all possible interactions among
the processes had to be analyzed explicitly. Since then, much effort
has gone into limiting or even eliminating interference among pro-
cesses by employing a variety of synchronization mechanisms: locks or
semaphores, critical regions, monitors and message communications.

Constraining the programming model to a specific protocol (bi-
nary semaphores or message communication over bounded channels,
for instance) will prove to be short-sighted in designing complex ap-
plications. More general mechanisms for interactions among modules,
that include these specific protocols, are required. Further, for the
distributed applications of the future, it is essential to devise a model
in which the distinction between computation and communication is
removed; in particular, the methods for designing and reasoning about
the interfaces should be no different from those employed for the com-
putations at the nodes of the network.

Wide-Area Computing

Wide-Area computing is carried out over a set of asynchronously com-
municating machines. Machines interact by sending messages to each
other. Often, the applications that run on this platform – interactive
query over a replicated database, for instance – are coded using mes-
sage communication as a basic primitive. We believe that applications
should be coded at a higher level of abstraction. Remote Procedure
Call (RPC) is one mechanism that goes beyond message communica-
tion. The concurrent-object model that we propose in this document
is even more divorced from the implementation details. The query
processing application, for instance, will be coded by invoking proce-
dures that operate on segments of the database, and using processes
that guarantee consistency among the replicas. Clearly, the procedure
calls have to be implemented using message communications, but that

2

should not be a concern at the level of application programming.
There are several key questions in developing a model of concurrent-

objects for wide-area computing. Foremost among the concerns is the
difficulty associated with managing concurrent interactions, particu-
larly when a multitude of machines interact. This is the main topic
of this research. Additionally, issues of security and fault-tolerance
are central to wide-area computing. How can a secure computation
be carried out if the data and procedure reside at different machines?
If a computation involves several thousand machines – as would be
expected for a computation on the world-wide web – is it realistic to
allow an unknown party to have exclusive access to a resource; that
party may crash resulting in a major roll-back effort? Is it reasonable
to queue a caller for access to a resource when the resource manager
could possibly fail, causing the caller to block? In this case, it may
be more effeicient to reject the call if the resource is not readily avail-
able. We seek a model that allows us to experiment with a variety of
questions of this nature.

Overview of the Proposed Solution

We have developed a model of multiprogramming, called Seuss. One
of the major goals of Seuss is to simplify multiprogramming; Seuss fos-
ters a discipline of programming that makes it possible to understand
a program execution as a single thread of control, yet it permits pro-
gram implementation through multiple threads. As a consequence, it
is possible to reason about the properties of a program from its single
execution thread, whereas an implementation on a specific platform
(e.g., shared memory or message communicating system) may exploit
the inherent concurrency appropriately. A central theorem establishes
that multiple execution threads implement single execution threads,
i.e., for any interleaved execution of some actions there exists a non-
interleaved execution of those actions that establishes an identical final
state starting from the same initial state.

The programming system is built around a conceptually simple
mathematical system. Accordingly, all well-known constructs of con-
current programming – process, message communication, synchroniza-
tion, sharing and mutual exclusion – were eliminated. Traditional
multiprogramming concepts such as, locking, rendezvous, waiting, in-
terference and deadlock, do not appear as basic concepts in our model.
No specific communication or synchronization mechanism, except pro-
cedure call, is built into this model. Yet, typical multiprograms em-
ploying message passing over bounded or unbounded channels can be
encoded in Seuss by declaring the processes and channels as the com-
ponents of a program; similarly, shared memory multiprograms can
be encoded by having processes and memories as components. Seuss
permits a mixture of either style of programming, and a variety of
different interaction mechanisms – semaphore, critical region, 4-phase
handshake, etc. – can be encoded as components.

Seuss proposes a complete disentanglement of the sequential and
concurrent aspects of programming. We expect large sections of code
to be written, understood and reasoned-about as sequential programs.
We view multiprogramming as a way to orchestrate the executions of

3

these sequential programs, by specifying the conditions under which
each program is to be executed. We propose an efficient implementa-
tion scheme that can, under user directives, interleave the individual
sequential programs with fine granularity without causing any inter-
ference.

2 Seuss Syntax

In this section, we introduce a publication notation for writing pro-
grams. The notation is intended for implementation on top of a variety
of host languages. Therefore, no commitment has been made to the
syntax of any particular language (there are different implementations
with C++ and Java as host languages) and syntactic aspects that are
unrelated to the model are left unspecified in the publication notation.

The notation is described using BNF. All non-terminal identifiers
are in Roman and all terminal identifiers are in boldface type. The
traditional meta symbols of BNF – ::= { } [] () – are used, along
with ∨ to stand for alternation (the usual symbol for alternation, “|”,
is a terminal symbol in our notation). The special symbols used as
terminals are, | 6 | ; : :: in the syntax given below. A syntactic unit
enclosed within “{” and “}” in a production may be instantiated zero
or more times, and a unit within “[” and “]” may be instantiated zero
or one time. In the right hand side of a production, (p ∨ q) denotes
that a choice is to be made between the syntactic units p and q in
instantiating this production. We omit the parentheses, “(” and “)”,
when no confusion can arise. Text enclosed within “ { ” and “ } ” in
a program is to be treated as a comment.

2.1 Program

The Seuss programming model is sparse: a program consists of cats
(cat is short for category) and boxes. A cat is similar to a pro-
cess/class/monitor type; a box is an instance of a cat. A cat/box
has a local state and it includes procedures by which its local state
can be accessed and updated. Procedures in a box may call upon
procedures of other boxes.

program ::= program program-name {cat ∨ box} end
cat ::= cat cat-name [parameters]: {variable} {procedure} end
box ::= box box-name [parameters]: cat-name

A program consists of a set of cats and boxes in any order. The
declaration of a cat or box includes its name and, possibly, parameters.
The names of programs, cats and boxes are identifiers. The parameters
of a cat or box could be ordinary variables, cats or boxes. A cat
consists of (zero or more) variable declarations followed by procedure
declarations. A box is an instance of a cat. Variables are declared and
initialized in a cat as in traditional programming languages.

2.2 procedure

A cat includes procedures that may be called from procedures of other
cats. There are two kinds of procedures, total and partial. A total

4

procedure models computations that never wait (for an unbounded
amount of time) to interact with their environments; a computation
that may wait, possibly forever, for such an interaction is modeled by
a partial procedure. Thus, a P operation on a semaphore (that may
possibly never complete) is coded as a partial procedure. Our pro-
gramming model does not include waiting as a fundamental concept;
therefore, a partial procedure does not wait, but it rejects the call. We
have a more detailed discussion of the distinction between total and
partial procedures in section 4.1.

procedure ::= partial-procedure ∨ total-procedure
partial-procedure ::= partial partial-method ∨ partial-action
total-procedure ::= total total-method ∨ total-action
partial-method ::= method head :: partial-body
partial-action ::= action [head] :: partial-body
total-method ::= method head :: total-body
total-action ::= action [head] :: total-body

A procedure is either partial or total; also, a procedure is either a
method or an action. Thus, there are four possible headings identi-
fying each procedure. Each procedure has a head and a body; the head
is optional for actions. The procedure head is similar to the form used
in typical imperative languages; it has a procedure name followed by
a list of formal parameters and their types. The procedure body has
different forms for partial and total procedures. For this manuscript,
we take a total-body to be any sequential program. The partial-body
is defined by:

partial-body ::= alternative {(| alternative) ∨ (6 | alternative)}
alternative ::= precondition [; preprocedure] → total-body
preprocedure ::= partial-method-call

The body of a partial procedure consists of one or more alterna-
tives. Each alternative is positive or negative: the first alternative is
positive; an alternative preceded by | is positive and one preceded by
6 | is negative. Each alternative has a precondition, an optional prepro-
cedure and a total-body. A precondition is a predicate on the state
of the box to which this procedure belongs (i.e., it is constrained to
name only the variables of the cat in which the procedure appears).
For each partial procedure at most one of its alternatives holds in any
state, i.e., the preconditions in the alternatives of a partial procedure
are pairwise disjoint. A preprocedure is a call upon a partial method
(in some other box).

2.3 Example of Seuss Syntax

The following example illustrates Seuss syntax. A ubiquitous con-
cept in multiprogramming is a semaphore. The program given be-
low includes a definition of Semaphore as a cat and two instances of
Semaphore, s and t. Cat user describes a group of users that execute
their critical sections only if they hold both semaphores, s, t; there
are three instances of user. Each user releases both semaphores upon

5

completion of its critical section. In user, boolean variables hs and ht
are true only when the user holds the semaphores s and t, respectively.
We explain the operational semantics of Seuss in section 3.

Notational Convention We write box s, t : Semaphore as a
shorthand for box s : Semaphore and box t : Semaphore.

program MutualExclusion
cat Semaphore

var n: nat init 1 {initially, the semaphore value is 1}
partial method P :: n > 0 → n := n− 1
total method V :: n := n + 1

end {Semaphore}

box s, t : Semaphore

cat user
var hs, ht: boolean init false
partial action s.acquire:: ¬hs; s.P → hs := true
partial action t .acquire:: ¬ht; t.P → ht := true
partial action execute::

hs ∧ ht → critical section; s.V ; t.V ; hs := false; ht := false
end {user}

box u, v, w : user
end {MutualExclusion}

The partial actions s.acquire and t .acquire in user include calls
upon the partial methods s.P and t.P as preprocedures; they also
include calls upon the total methods s.V and t.V in their bodies. The
partial action P in Semaphore has no preprocedure. Each partial
procedure in this example has exactly one (positive) alternative.

2.4 Constraints on Programs

Procedure Call A total-body can include a call only to a total
method; a partial method cannot be called by a total body. A partial
method can only be called as a preprocedure of an alternative of a
partial procedure. The syntax specifies that an alternative can have
at most one preprocedure. In the example of section 2.3, partial ac-
tion s.acquire calls s.P as a preprocedure, and execute calls the total
methods s.V, t.V in its total body (i.e., the code following →).

Partial Order on Boxes Every procedure p imposes a partial
order ≥p over the boxes; during the execution of p a procedure of box
b can call a procedure of box b′ provided b >p b′ (i.e., b ≥p b′ ∧ b 6= b′).
Thus, calls are made from the procedures of a higher box to that of
a lower box. In the example of section 2.3, user boxes (u, v, w) call
upon Semaphore boxes (s, t), but not conversely.

In most cases, it is possible to have a single partial order over boxes
that is obeyed by all procedure calls, as is the case in the example of
section 2.3. There are important exceptions, however, for which we

6

allow different procedures to impose different partial orders over boxes.
Consider a sleeper who sets an alarm clock (AlarmClock) to ring at
a specified time, and the alarm clock notifies the sleeper by ringing at
the specified time. Let the sleeper and the AlarmClock be coded as
boxes; an action set in sleeper calls a procedure in AlarmClock (to set
the clock), and an action WakeUp in AlarmClock calls a procedure
in sleeper (to wake up the sleeper at the specified time). Then, there
is no fixed order of these two boxes: set orders sleeper higher than
AlarmClock, and WakeUp orders them in the opposite manner.

A consequence of the requirement of partial order is that no pro-
cedure from a box is called if some procedure of that box is executing;
therefore, at most one procedure from any box is executing at any
moment.

Termination Condition Execution of each total action must ter-
minate; this is an obligation of the programmer. If this condition is
met then it can be shown that execution of each action terminates
(see the rules for procedure execution, below).

3 Seuss Semantics (Operational)

At run time, a program consists of a set of boxes; their states are ini-
tialized at the beginning of the run. There are two different execution
styles for a program. In a tight execution one action is executed at a
time. There is no notion of concurrent execution; each action com-
pletes before the next action is started. In a loose execution actions
may be executed concurrently.

The programmer understands a program by reasoning about its
tight executions only. We have developed a logic for this reasoning.
An implementation may choose a loose execution for a program to
maximize resource utilization.

3.1 Tight Execution

A tight execution consists of an infinite number of steps; in each step,
an action of a box is chosen and executed, as described below, in
section 3.2. The choice of action to execute in a step is arbitrary
except for the following fairness constraint: each action of each box is
chosen eventually.

Observe that methods are executed only when they are called from
other methods or actions, though actions execute autonomously (and
eventually).

3.2 Procedure Execution

A method is executed when it is called. To simplify description, we
imagine that an action is called by a scheduler. Then the distinction
between a method and an action vanishes; each procedure is executed
when called.

A procedure accepts or rejects a call. A total procedure always
accepts calls; its body is executed whenever it is called. Termination

7

condition (see section 2.4) ensures that execution of each total pro-
cedure terminates. A partial procedure may accept or reject a call.
First, we describe the rules of execution of a partial procedure g that
consists of a single (positive) alternative, of the following form:

partial method g(x, y):: p; h(u, v) → S

Execution of g can be described by the following rules.

if ¬p then reject
else {p holds} call h with parameters (u, v):

if h rejects then reject
else {h accepts}

execute S using parameters, if any, returned by h;
return parameters, if any, to the caller of g and accept

endif
endif

As stated earlier, the programmer must ensure that execution of
each total procedure terminates. It can be then be shown that the
execution of any partial procedure g terminates, by using induction
on the partial order induced by ≥g (see Calls Condition of section 2.4).

The caller is oblivious of rejection, because its body is not executed
and its state remains unchanged. If all alternatives in a program are
positive, then the effect of execution of an action is either rejection –
then the state does not change for any box – or acceptance – some
box state may change then. This is because, if any procedure rejects
during the execution of an action then the entire action rejects. If any
procedure accepts – the lowest procedure, that has no preprocedure,
accepts first, followed by acceptances by its callers in the reverse or-
der of calls – then the entire action accepts. This execution strategy
meets the commit requirement in databases where a transaction either
executes to completion or does not execute at all.

We have described the execution of a partial procedure that has
a single (positive) alternative. In case a procedure has several al-
ternatives, positive and negative, the following execution strategy is
adopted. Recall that preconditions of the alternatives are disjoint.

if preconditions of all alternatives are false then reject
else {precondition of exactly one alternative f holds}

if f is a positive alternative then execute as described above
else {f is a negative alternative}

execute f as if it is a positive alternative except:
reject the call and do not return parameter values

endif
endif

The execution of a negative alternative always results in a rejec-
tion. The caller is still oblivious of rejection, because its body is not
executed and its state remains unchanged. However, a called proce-
dure may change the state of its own box while rejecting the call, if it
executes a negative alternative.

8

3.3 Examples of Alternatives

Use of Positive Alternatives

The following cat includes a method get that alternately gets an item
from box in1 and box in2, starting with in1. In the following, c =
1/c = 2 if the next item is to be retrieved from in1/in2.

cat multiplexor
var c : {1, 2} init 1
partial method get(x: type)::

c = 1; in1.get(x) → c := 2
| c = 2; in2.get(x) → c := 1

end {multiplexor}

The solution shown below avoids the use of alternatives by retriev-
ing one item in advance and buffering it in y; get simply returns the
value in y if y holds any data. The program includes two actions to
read the next item from each of in1, in2 into y. We let y assume a
special value, ⊥, when it holds no fresh data.

cat multiplexor1
var c : {1, 2} init 1,
var y: type init ⊥
partial method get(x: type):: y 6= ⊥ → x, y := y,⊥
partial action get1:: c = 1 ∧ y = ⊥; in1.get(y) → c := 2
partial action get2:: c = 2 ∧ y = ⊥; in2.get(y) → c := 1

end {multiplexor1}

The execution of this program does not quite match that of the
original program. In general, alternatives can not be eliminated.

Use of Negative Alternatives

Strong Semaphore The following program implements a strong
semaphore. A group of users share a semaphore. Any user that calls
P persistently is eventually granted the semaphore. Each caller passes
its id as a parameter to P . A negative alternative is used to record
the id’s of the callers to P whose call was rejected, so that they could
be granted the semaphore in the same sequence in which they called
P . The program uses the following variables:

q: the sequence of users whose last call on P was rejected.
avail ≡ the semaphore is available.

cat StrongSemaphore
var q: seq of id init 〈〉,

avail: boolean init true

partial method P(i : id) ::
avail ∧ i = q.head → avail, q := false , tail.q

6 | i 6∈ q → q := q : i {i is appended at the end of q}

total method V :: avail := true
end {StrongSemaphore}

9

The reader can argue operationally that (1) at most one caller is
granted the semaphore at any time, and (2) the solution is starvation-
free: each persistent caller is eventually granted the semaphore, pro-
vided each caller who had been granted the semaphore relinquishes it
eventually. Several variations of semaphores are treated in section 12.

Mutual Execution For the example in section 2.3, each user ac-
quired two semaphores, s, t, before it could execute its critical section.
Our syntax prohibits a procedure from calling multiple partial proce-
dures. Thus, it is illegal to write in the box user

partial action execute:: true ; s.P ; t.P → critical section; s.V ; t.V

This is clearly the intent, though, and we show how to simulate
this using negative alternatives. We introduce a cat, MultiSemaphore,
that acquires the semaphores, s, t. This cat has a partial procedure
P that accepts only if it has acquired both s and t; it also includes a
total procedure V that releases both s, t. In order to avoid dead-
lock, P in MultiSemaphore acquires s, t in this order. The user
simply calls MultiSemaphore.P to enter its critical section and calls
MultiSemaphore.V upon completion of the critical section.

The code for MultiSemaphore.P first attempts to acquire s, and
the call is rejected – using a negative alternative – even if s is ac-
quired. After acquisition of s, a call to P is accepted only if t can be
acquired. There are three instances of MultiSemaphore, u′, v′, w′, in
this program, each of which acts as an agent for a specific user, u, v,
or w. The cat user includes the agent as a parameter.

program MutualExclusion1
cat Semaphore

var n: nat init 1 {initially, the semaphore value is 1}
partial method P :: n > 0 → n := n− 1
total method V :: n := n + 1

end {Semaphore}

box s, t : Semaphore

cat MultiSemaphore
var hs, ht: boolean init false
partial method P ::

hs ∧ ¬ht; t.P → ht := true
6 | ¬hs; s.P → hs := true

total method V :: s.V ; t.V ; hs := false; ht := false
end {MultiSemaphore}

cat user(ms : MultiSemaphore)
partial action execute::

true ; ms.P → critical section; ms.V
end {user}

box u′, v′, w′ : MultiSemaphore
box u : user(u ′), v : user(v ′), w : user(w ′)

10

end {MutualExclusion1}

4 Discussion

4.1 Total vrs Partial Procedures

It may seem that total and partial procedures are interchangeable.
A total procedure f can be coded as a partial procedure, true → f .
Also, a partial procedure can be coded as a total procedure where the
outcome of the call – acceptance or rejection – is coded explicitly as
a parameter that can be tested by the caller.

The distinction between total and partial procedures is fundamen-
tal. Total procedures model terminating computations, i.e., trans-
formational , aspects of programming, and partial procedures model
potentially non-terminating computations, or reactive, aspects[15]. In
this view, a P operation on a semaphore is modeled by a partial pro-
cedure – because it may never terminate – whereas a V operation
is a total procedure. A total procedure can be assigned a semantic
with pre- and post-conditions, i.e., based on its possible inputs and
corresponding outputs without considerations of interference with its
environment, where as for partial procedures interaction with the en-
vironment is of the essence.

The distinction between total and partial procedures is important
for concurrent implementation. It can be shown that two threads
can execute concurrently given that (1) total procedures in different
threads commute, and (2) partial procedures in each thread semi-
commute with total procedures in the other thread (there is no re-
quirement on the partial procedures of different threads). This con-
dition allows a richer set of concurrent computations, because not all
procedures are required to commute.

Total procedure

A total-body is a wait-free program. A total procedure can be assigned
a meaning based only on its inputs and outputs; if the procedure is
started in a state that satisfies the input specification then it ter-
minates eventually in a state that satisfies the output specification.
Procedures to sort a list, find a minimum spanning tree in a graph or
send a job to an unbounded print-queue, are examples of total proce-
dures. A total procedure need not be deterministic; e.g., any minimum
spanning tree could be returned by the procedure. Furthermore, a to-
tal procedure need not be implemented on a single processor, e.g., the
list may be sorted by a sorting network[1], for instance. Data paral-
lel programs and other synchronous computation schemes are usually
total procedures. A total procedure may even be a multiprogram in
our model admitting of asynchronous execution, provided it is guar-
anteed to terminate, and its effect can be understood only through its
inputs and outputs; therefore, such a procedure never waits to receive
input, for instance. An example of a total procedure that interacts
with its environment is one that sends jobs to a print-queue (with-
out waiting); the jobs may be processed by the environment while the

11

procedure continues its execution. Almost all total procedures shown
in this manuscript are sequential programs.

A total procedure may call only total procedures. When a to-
tal procedure is called (with certain parameters, in a given state) it
may (1) terminate normally, (2) execute forever, or (3) fail. Non-
termination of a total procedure is the result of a programming error.
We require (see Termination Condition of section 2.4) the programmer
to establish that the procedure is invoked only in those states where
its execution is finite.

A failure is also caused by a programming error; it occurs when
the procedure is invoked in a state in which it should not be invoked,
for instance, if the computation requires a number to be divided by 0
or a natural number to be reduced below 0. Failure is a general pro-
gramming issue, not just an issue in Seuss or multiprogramming. We
interpret failure to mean that the resulting state is arbitrary; any step
taken in a failed state results in a failed state. Typically, a hardware
or software trap terminates the program when a failure occurs.

Example Consider a V operation on a binary semaphore. If the
semaphore value is 0 then the application of V changes it to 1. What
happens when the semaphore value is 1 prior to the application of
V ? There are at least 4 possibilities: (1) the operation is interpreted
as a skip (i.e., the semaphore value remains 1 and the operation ter-
minates), (2) the operation fails, i.e., it changes the semaphore value
arbitrarily, to either 0 or 1, (3) the operation waits for the semaphore
value to become 0, and (4) the operation never terminates. If we adopt
interpretations (1) or (2) then we may regard the V operation as a
total procedure. With interpretation (3), the operation is viewed as a
partial procedure. We insist that the V operation be so implemented
that the possibility (4) does not arise. In this document, we will treat
V as a total procedure with meaning (2).

Partial procedure

A partial procedure models potentially non-terminating computations.
Each execution of a partial procedure is terminating though the pro-
cedure may be called over and over (possibly, infinitely often). For
instance, in traditional programming the caller of a P waits as long
as the semaphore value is 0. In our model, each call to P terminates
– possibly, rejected –, but the caller continues calling as long as the
condition for the attempt is met. Thus, in c; P → S the body S is
executed only if P accepts the call; if P rejects the call, S is not exe-
cuted and the state of the caller’s box does not change (thus preserving
c). To simulate waiting, the execution of this procedure is attempted
repeatedly as long as P rejects.

We believe that a caller should be oblivious to rejection. A rejec-
tion represents a transient condition where as acceptance represents
a stable condition: if a process polls its incoming channel and finds it
empty, it can not assert that it is empty (and, hence, start any com-
putation based on channel emptiness) because the condition may be
falsified even before the start of the computation. Therefore, a partial
procedure treats a rejected call by doing nothing.

12

4.2 Tight vrs Loose Execution

In a tight execution an action is completed before another action is
started. This allows a program execution to be understood by a single
thread of control, avoiding interleaved executions of the action-bodies.
Each procedure, total or partial, may be understood from its text alone
given the meanings of the procedures that it calls, without consider-
ation of interference by other procedures. A simple temporal logic,
such as UNITY logic, is suitable for deducing properties of a program
in this execution model.

An implementation, however, need not be restricted to a single
thread as long as it achieves the same effect as a single-thread execu-
tion. Implementations may exploit the structures of Seuss programs
(and user supplied directives) to run concurrent threads of actions
with a fine grain of interleaving; these loose executions preserve the
semantics of tight execution.

A consequence of having a single thread in a tight execution is that
the notion of waiting has to be abandoned, because a thread can afford
to wait only if there is another thread whose execution can terminate
its waiting; rendezvous-based interactions [12, 17] that require at least
two threads of control to be meaningful, have to be abandoned in this
model of execution. We have replaced waiting by the refusal of a
procedure to execute; i.e., by rejection.

4.3 Programming Methodology in Seuss

In the Seuss model, we view a multiprogram as a set of actions where
each action deals with one aspect of the system functionality, and
execution of an action is wait-free. Additionally, we specify the con-
ditions under which an action is to be executed. Typical actions in an
operating system may include the ones for garbage collection, response
to a device failure by posting appropriate warnings and initiation of
communication after receiving a request, for instance. Process con-
trol systems, such as avionics and telephony, may contain actions for
processing of received data, updates of internal data structures, and
outputs for display and archival recordings.

Seuss divides the multiprogramming world into (1) programming
of action-bodies whose executions are wait-free, and (2) specifying the
conditions for orchestrating the executions of the action bodies. Dif-
ferent theories and programming methodologies are appropriate for
these two tasks. In particular, if the action-bodies are sequential pro-
grams then traditional sequential programming methodologies may be
adopted for their developments. The orchestration of the actions has
to employ some multiprogramming theory, but it is largely indepen-
dent of the action-bodies. Seuss addresses only the design aspects of
multiprograms – i.e., how to combine actions – and not the designs of
the action-bodies.

Seuss severely restricts the amount of control available to the pro-
grammer at the multiprogramming level. The component actions of a
program can be executed through infinite repetitions only. In particu-
lar, sequencing of two actions has to be implemented explicitly. Such
loss of flexibility is to be expected when controlling larger abstrac-

13

tions. For an analogy, observe that machine language offers complete
control over all aspects of a machine operation: the instructions may
be treated as data, data types may be ignored entirely, and control
flow may be altered arbitrarily. Such flexibility is appropriate when a
piece of code is very short; then the human eye can follow arbitrary
jumps, and “mistreatment” of data can be explained away in a com-
ment. Flow charts are particularly useful in unraveling intent in a
short and tangled piece of code. At higher levels, control structures
for sequential programs are typically limited to sequential composi-
tion, alternation, and repetition; arbitrary jumps have nearly vanished
from all high-level programming. Flow charts are of limited value at
this level of programming, because intricate manipulations are dan-
gerous when attempted at a higher level, and prudent programmers
limit themselves to appropriate programming methodologies in order
to avoid such dangers. We expect that the rules of combination have
to become even simpler at the multiprogramming level. That is why
we propose that the component actions of a multiprogram be executed
using a form of repeated non-deterministic selection only.

4.4 Modular Multiprogramming

Traditionally, multiprograms consist of processes that execute au-
tonomously. A typical process receives requests from the other pro-
cesses, and it may call upon other processes for data communication or
synchronization. The interaction mechanism – shared memory, mes-
sage passing, broadcast, etc. – defines the platform on which it is most
suitable to implement a specific multiprogram.

Seuss can be used to describe a process-based view of a multipro-
gram. A cat is a mechanism for grouping related actions. It is not a
process, though traditional processes may be encoded as cats (as we
have done for the multiplexor). A cat can be used to encode protocols
for communication, synchronization and mutual exclusion, and it can
be used to encode objects as in object-oriented programming. The
only method of communication among the cats is through procedure
calls, much like the programming methodology based on remote pro-
cedure calls. The minimality of the model makes it possible to develop
a simple theory of programming.

4.5 Partial Order on Boxes

There is a partial order on the boxes of a program imposed by each
procedure. This is in contrast to the usual views of process networks
in which the processes communicate by messages or through a shared
store. Typically, such a network is not regarded as being partially
ordered. For instance, suppose that process P sends messages over
a channel cp to process Q and Q sends over cq to P . The processes
are viewed as nodes in a cycle where the edges (channels), cp and cq,
are directed between P , Q. Similar remarks apply to processes com-
municating through shared memory. We view communication media
(message channels and memory) as boxes. Therefore, we would rep-
resent the system described above as a set of four boxes: P , Q, cp
and cq with the procedures (send and receive) in cp, cq being called

14

from P and Q, but not vice versa. The direction of message flow is
immaterial in this hierarchy. A partial order is extremely useful in
deducing properties by induction on the “levels” of the procedures.

The restriction that procedure calls are made along a partial order
implies that a partial procedure at a lowest level is of the form p → S,
where the preprocedure is absent and the body S contains no proce-
dure calls. A total procedure at a lowest level contains no procedure
calls.

5 Small Examples

A number of small examples are shown in the rest of the paper. The
goal is to show that typical multiprogramming examples from the lit-
erature have succinct representations in Seuss; additionally, that the
small number of features of Seuss is adequate for solving many well-
known problems: communications over bounded and unbounded chan-
nels, mutual exclusions and synchronizations, resource allocations, etc.
We show a number of variations of some of these examples, implement-
ing various progress guarantees, for instance.

Notational Conventions

Single Instance of a Cat Whenever a cat, C, has a single in-
stance, b, we declare b and append the body of C to it. This eliminates
explicit introduction of cat C.

Quantification We use quantification in writing arithmetic and
boolean expressions, in coding a (bounded) number of alternatives
of a procedure and a (bounded) number of procedures. In all cases,
the form of a quantification is as follows: (op dummy: range: body),
where, op is an operator, described below, dummy is a variable (or a
list of variables), range defines the constraints on dummy, and body is
used to construct the expression, alternatives, or the procedures. The
op may be an arithmetic/boolean operator (for arithmetic/boolean
expressions), | and 6 | to create a set of alternatives of a procedure,
and [] to create a set of procedures. We require that only actions, not
methods, may be quantified.

(+i : 0 ≤ i ≤ N : A[i])
(∀i : 0 ≤ i < N : A[i] ≤ A[i + 1])
(∀i, j : 0 ≤ i ≤ N ∧ 0 ≤ j ≤ N ∧ i 6= j : M [i, j] = 0)

partial action:: ([] i : 0 ≤ i < N : sem[i].P → total body)

partial action::
(| i : 0 ≤ i < N : x = i → x := 0
6 | i : N ≤ i < 2×N : x = i → x := i−N
)

The first expression is the sum of the values in array A[0..N]. The
second expression is true if A is sorted in ascending order. The next
expression has two dummies; it is a boolean expression that is true if

15

all off-diagonal elements of matrix M [0..N, 0..N] are zero. The first
partial action declaration creates N partial actions where the ith

action attempts the P operation on the ith semaphore, sem[i]. The
last partial action declaration creates N positive alternatives and N
negative alternatives.

6 Channels

6.1 Unbounded Fifo Channel

An unbounded fifo channel is a cat that has two methods: put (i.e.,
send) is a total method that appends an element to the end of the mes-
sage sequence and get (i.e., receive) is a partial method that removes
and returns the head element of the message sequence, provided it is
non-empty. We define a polymorphic version of the channel where the
message type is left unspecified. In the method put, we use : in the
assignment to denote concatenation; 〈〉 denotes an empty sequence.

cat FifoChannel(type)
var r: seq of type init 〈〉 {r is initially empty}
partial method get(x: type):: r 6= 〈〉 → x, r := r.head, r.tail
total method put(x: type):: r := r : x

end {FifoChannel of type }

In the following cat partial action transfer copies the elements of
in to out, both being boxes of FifoChannel of integer. Since transfer
is executed repeatedly, every element of in is eventually transferred to
out.

cat copy
var x: integer
partial action transfer :: true; in.get(x) → out.put(x)

end {copy}

The following cat is similar to copy except that it includes two
partial actions, to read from either channel in1 or in2 and output
to out. Since the two actions are executed infinitely often, this cat
implements a fair merge of in1 and in2.

cat merge
var x: integer
partial action transfer1 :: true; in1.get(x) → out.put(x)
partial action transfer2 :: true; in2.get(x) → out.put(x)

end {merge}

6.2 Bounded Fifo Channel

We show a bounded channel of size N , N > 0, below. Here both put
and get are partial. The messages are kept in a circular buffer, b. Let
⊕ denote addition mod N ; f is the index of the oldest message, r is
the index of the youngest message ⊕1, and k is the total number of
messages in the channel.

16

cat bch of type
var b[0..N − 1]: type, f, r, k : 0..N init 0
{initially the buffer is empty}

partial method put(x: type)::
k < N → r, b[r], k := r ⊕ 1, x, k + 1

partial method get(x: type)::
k > 0 → f, x, k := f ⊕ 1, b[f], k − 1

end {bch(N) of type}
Next, consider a channel that can hold at most one message. The

sender writes into the channel only when the channel is empty, and
writing makes the channel full. The receiver reads and removes from
the channel only when it is full; therefore, reading makes the channel
empty. Thus, the sender receives an acknowledgment (that its previ-
ous output has been received) when it is able to write into the channel.
As before, both get and put are partial methods. The variable w holds
the contents of the channel if any, and full is true if and only if there
is some data in w.

cat word(type)
var w: type, full : boolean init false {the buffer is empty}
partial method put(x: type):: ¬full → w, full := x, true
partial method get(x: type):: full → x, full := w, false

end {word of type}
As an application of bounded channels, we consider the following

example due to Hoare[11]. A multiplexor process receives a stream of
messages from 10 different consoles. It acknowledges each message it
receives and sends the received message along an output channel. A
console may terminate the stream by sending a special end-of-stream
(eos) message.

The solution in [11] uses rendezvous-based communication that
eliminates the need for acknowledging the receipt of messages. We
achieve a similar effect by requiring that a console and the multiplexor
communicate over a bounded channel of size 1, i.e., a word. Then, each
console is assured that its last message has been received if it is able
to send another message. This is slightly inferior to rendezvous-based
communications where the buffer size is zero and each communication
is instantly acknowledged.

The multiplexor and the ith console communicate via c[i], 0 ≤
i ≤ 9, where c[i] is an instance of word . The multiplexor sends its
outputs along a FifoChannel called out. Variable more[i] is true if the
multiplexor has not received a eos message from channel i.

box multiplexor
var m: message, more[0..9]: boolean init true
partial action::

([]i : 0 ≤ i ≤ 9 :
more[i]; c[i].get(m) → out.put(m); more[i] := (m 6= eos)

)
end {multiplexor}

There is no restriction on the order in which the partial actions
in the multiplexor are executed. The fairness constraint ensures that

17

any message sent by a console is eventually received and output by
the multiplexor.

6.3 Unordered Channel

The fifo channel guarantees that the order of delivery of messages is
the same as the order in which they were put into the channel. Next,
we consider an unordered channel that returns any message from the
channel in response to a call on get when the channel is non-empty.
The channel is implemented as a bag and get is implemented as a non-
deterministic operation. We write x :∈ b to denote that x is assigned
any value from bag b (provided b is non-empty). The usual notation
for set operations is used for bags in the following example.

cat uch of type
var b: bag of type init {} {initially b is empty}
partial method get(x: type):: b 6= {} → x :∈ b; b := b− {x}
total method put(x: type):: b := b ∪ {x}

end {uch of type}

This implementation does not guarantee that every message will
eventually be delivered, given that messages are removed from the
bag an unbounded number of times. Such a guarantee is, of course,
established by the fifo channel. We propose a solution below that
implements this additional guarantee. In this solution there is an
index – a natural number – for every message and there is a variable t
that is less than or equal to the smallest index. A message is assigned
an index strictly exceeding t whenever it is put in the channel. The
indices need not be distinct. The get method removes any message
with the smallest index and updates t.

cat nch of type
var b: bag of (index: nat, msg: type) init {} {b is empty},

t: nat init 0, s: nat, m: type
partial method get(x: type):: b 6= {} →

let (s,m) have minimum index, s, in b;
remove (s,m) from b;
t, x := s,m

total method put(x: type)::
b := b ∪ {(s, x)},

where s is some natural number exceeding t
end {nch of type}

We now show that every message is eventually removed given that
there are an unbounded number of calls on get. For a message with
index i we show that the pair (i − t, p), where p is the number of
messages with index t, decreases lexicographically with each execution
of get, and it never increases. Hence, eventually, i = t and p = 0
implying that this message has been removed. An execution of put
does not affect i, t or p, because the added message receives an index
higher than t; thus, (i− t, p) does not change. A get either increases
t, thus decreasing i − t, or it keeps t the same and decreases p, thus,
decreasing (i− t, p).

18

6.4 Task Dispatcher

We design a task dispatcher that is interposed between a set of clients
and a set of servers. A client generates a sequence of tasks, where each
task has a priority between 0 and N . A server requests to process a
task whenever it is idle; however, a server can only process tasks of
certain priorities; a server that can process tasks of priority i can also
process tasks of priorities less than i. The task dispatcher responds
to a request from a server by sending it a task that the server can
process.

It is easy to see that a task dispatcher is nothing but a glorified
channel; it has two methods, put and get. The client calls put, with a
task and its priority as parameters, to deposit a task in the channel,
and a server calls get with a parameter value p, and the dispatcher
sends a task of priority at most p to the server, if such a task exists.

In the following solution, r[i] is a queue of tasks of priority i that
have been deposited by the clients and have not yet been processed
by the servers. The dispatcher always sends the task of the highest
priority that it can possibly send.

cat dispatcher
var r[0..N]: seq of task init 〈〉, i : 0..N
partial method get(x: task, p : 0..N)::
{get a task of priority p or lower, as close to p as possible}
(∃j :: 0 ≤ j ≤ p ∧ r[j] 6= 〈〉) →

i := p;
while r[i] = 〈〉 do i := i− 1 enddo;
x, r[i] := r[i].head; r[i].tail

total method put(x: task, p : 0..N):: r[p] := r[p] : x
end {dispatcher}

There is no guarantee that every task will eventually be removed.
This modification of the solution is left to the reader.

6.5 Faulty Channel

A cat, FaultyChannel , that simulates message loss, duplication and
out-of-order delivery in a channel, is shown in this section. Such a
channel has the usual methods, put and get, by which the senders
and the receivers interact with it. Additionally, the channel may lose
messages, it may duplicate any message an unbounded (though finite)
number of times, and it may permute the order of messages.

We simulate the faulty channel using a bag b, as in uch, in order
to simulate out-of-order delivery. To simulate message loss and du-
plication, we associate a count n with each element that is put; the
count is an arbitrary natural number, denoting the maximum number
of times that the element is to be delivered. If n = 0 for a message
then the message is immediately discarded, and for n exceeding 0 the
message is added n times to b.

The given faulty channel can provide no guarantee of any message
transmission at all because all messages may be lost; clearly, no useful
device can be built out of such a channel. The next requirement we
add is that a message that is put repeatedly is eventually delivered,

19

provided that the receiver calls get over and over. We implement this
requirement by insisting that n become non-zero periodically in the
method put. In the following, x :∈ b means that x is to be assigned
an arbitrary value from b.

cat FaultyChannel of type
var b: bag of type init {}

{initially b is empty}

partial method get(x: type)::
b 6= {} → x :∈ b; b := b− {x}

total method put(x: type)::
Let n be a fair natural number;
while n 6= 0 do

b := b ∪ {x}; n := n− 1
od

end {FaultyChannel}

Now, we argue that if put is called repeatedly with a value m and,
also, get is called repeatedly, then m will eventually be returned as a
result of get. Message m is eventually added to b because eventually
n > 0. Let c be the number of elements of b that differ from m.
Whenever a message other then m is returned in a call to get, the
value of c decreases. Also, no message other than m is added to b by
a put; hence, c does not increase. Therefore, messages other than m
can be delivered only a finite number of times before m is returned as
the result of a call to get.

This fault model of a channel is assumed in the Alternating Bit
Protocol[21]. Such a protocol can be studied (proved correct) by en-
coding the communication between the sender and the receiver using
FaultyChannel .

It can be shown that the proposed solution is maximal; that it can
display any possible behavior of the faulty channel. This is a necessity
if the program is to be used as a simulator for a faulty channel.

7 A Simple Database

We use a simple database example to illustrate the use of some of the
cats introduced so far.

A cat, database, has total methods insert, delete and query that
act upon a stored database, D. Each of these procedures returns one
of three results; eff (effective), error (error) or ineff (ineffective). An
insert of x has the outcome eff if x is not in D (prior to the operation)
and there is enough room to add x to D, and in this case, x is added
to D; the outcome is error if x is not in D and there is not enough
room to insert x; and the outcome is ineff if x is already in D. A
delete of x has an outcome eff if x is in D prior to the operation, and
then x is removed from D; the outcome is ineff , otherwise. A query
for x has an outcome eff if x is in D, the outcome is ineff , otherwise.

type outcome = (eff , error , ineff)

20

cat database
var D: set of element init {} {the database is initially empty}
total method insert(x: element, r: outcome)::

if x ∈ D then r := ineff
elseif there is room to add x then r := eff ; add x to D
else r := error

endif
total method delete(x: element, r: outcome)::

if x ∈ D then r := eff ; remove x from D
else r := ineff

endif
total method query(x: element, r: outcome)::

if x ∈ D then r := eff
else r := ineff

endif
end {database}

We create one instance of this cat.

box store : database

Now, consider two users each of whom sends a stream of requests
for operations on store. The requests are directed to a multiplexor .
The multiplexor accepts the requests in arbitrary order and upon com-
pletion of each request returns the result of the operation to the cor-
responding user. An operation’s result is a boolean; it is true if and
only if the operation was effective. The multiplexor also outputs a log
of the effective insert and delete operations, from which the database
can be reconstructed.

First, we consider the communications between the users and the
multiplexor . We implement the communication of requests by using
word , described in section 6.2. We create two instances of word –
xreq, yreq – for the two users to send requests to the multiplexor , by
the following declaration.

type request = record
op : (insert , delete, query),n: element

endrecord
box xreq, yreq : word of request

The multiplexor creates a log of the effective insert and delete
operations by sending the sequence of effective requests over an un-
bounded fifo channel, see section 6.1. We create one instance of this
cat, log. Also, we create two instances of FifoChannel – xrep, yrep –
for the multiplexor to reply to the two users with the results of their
requests.

box log : FifoChannel of request
box xrep, yrep : FifoChannel of boolean

The box multiplexor consists of two actions, to read from xreq and
yreq.

21

box multiplexor
var req: request, r: outcome
partial action :: true; xreq.get(req) →

if req.op = insert then store.insert(req.n, r);
if r = eff then log.put(req) endif

elseif req.op = delete then store.delete(req.n, r);
if r = eff then log.put(req) endif

else {req.op = query} then store.query(req.n, r)
endif;
xrep.put(r = eff)

partial action :: true; yreq.get(req) →
if req.op = insert then store.insert(req.n, r);

if r = eff then log.put(req) endif
elseif req.op = delete then store.delete(req.n, r);

if r = eff then log.put(req) endif
else {req.op = query} then store.query(req.n, r)
endif;
yrep.put(r = eff)

end {multiplexor}

The trail of the effective requests may, alternatively, be stored in
a database instead of being sent on a fifo channel; then, declare box
log : database, and let the multiplexor insert the effective requests
into log . Our current implementation of database does not save the
sequence in which data are inserted. Therefore, the multiplexor will
have to add a sequence number explicitly to each effective request
before inserting it into log.

8 Example of a Process Network

This example is attributed to Hamming in Dijkstra[10]. It is required
to compute the sequence of integers of the form 2i × 3j × 5k in in-
creasing order, for all natural numbers i, j, k. Our solution follows the
treatment in Section 8.2 (page 182) of Chandy and Misra[5], and it is
sketched briefly below.

The computation strategy is as follows. Let H denote the sequence
to be output. Then, H = 〈1〉 : merge(2 × H, 3 × H, 5 × H), i.e.,

Prod. Cons.

H5:

 H: h

 H3: 3 X h

 H2: 2 X h

 5 X h

Figure 1: Network to Compute 2i × 3j × 5k

22

H is formed by starting with 1 and appending the merge of 2 ×
H, 3×H, 5×H. This equation has a unique solution in H where the
function merge constructs an increasing sequence out of its argument
sequences, each of which is also increasing (merge drops the duplicates
from its arguments).

This computation strategy is realized by the network shown in
Figure 1. The box produce receives 2 × H, 3 × H, 5 × H along the
FifoChannels H2,H3, H5 respectively, and it produces the desired
sequence along FifoChannel H by merging its inputs; initially, H has
the integer 1 on it. The box consume removes items from H; for a
removed item h it sends 2×H, 3×H, 5×H along the FifoChannels
H2,H3,H5, respectively.

The program Hamming is shown below. Box produce has three
variables, h2, h3, h5, where h2 is the last number received along H2
that is yet to be sent along H; if all numbers received have already
been output then h2 is 0; h3, h5 have similar meanings. Box produce
has two kinds of partial actions, read and write. A read action, say
read2, receives the next value from H2 provided h2 = 0. Procedure
write outputs the smallest of h2, h3, h5, when they are all nonzero,
along H and updates them if appropriate. The computation is started
by having the value 1 in channel H, initially; this is accomplished by
executing the method put(1) in H. Box consume contains a single
action that reads an input h from H and outputs 2× h, 3× h, 5× h
along the FifoChannels H2,H3,H5, respectively.

program Hamming
box H2,H3,H5: FifoChannel(integer)
box H: FifoChannel(integer) init put(1)

box produce
var h2, h3, h5: nat init 0, f : nat

partial action read2 :: h2 = 0; H2.get(h2) → skip
partial action read3 :: h3 = 0; H3.get(h3) → skip
partial action read5 :: h5 = 0; H5.get(h5) → skip

partial action write::
h2 6= 0 ∧ h3 6= 0 ∧ h5 6= 0 →

f := min(h2, h3, h5); H.put(f);
if f = h2 then h2 := 0;
if f = h3 then h3 := 0;
if f = h5 then h5 := 0

end {produce}

box consume
var h: nat
partial action::
true ;H .get(h) →

H2 .put(2 × h);
H3 .put(3 × h);
H5 .put(5 × h)

end {consume}

23

end {Hamming}

9 Broadcast

We show a cat that implements broadcast-style message communi-
cation. Processes, called writers, attempt to broadcast a sequence of
values to a set of readers. A new value can be broadcast only if all pre-
vious values have been read by all readers. Cat broadcast synchronizes
the reads and writes as follows.

The value to be broadcast is stored in variable v; and n counts the
number of readers that have read v. Let N be the total number of
readers. Both read and write are partial methods. The precondition
for write is that the counter n equals N , i.e., all readers have read the
current value. The precondition for read is that this particular reader
has not read the current value of v.

To implement the precondition for reading, we associate a sequence
number with the value stored in v. It is sufficient to have a 1-bit se-
quence number, a boolean variable t, as in the Alternating Bit Protocol
for communication over a faulty channel [21]. A read operation has
a boolean argument, s, that is the last sequence number read by this
reader. If s and t match then the reader has already read this value
and, hence, the call upon read is rejected. If s and t differ then the
reader is allowed to read the value and both s and n are updated.
The binary sequence number, t, is reversed whenever a new value is
written to v. It is easy to show that n equals the number of readers
whose s-value equals the cat’s t-value. Initially, the local variable s
for each reader is true.

cat broadcast of type
var v: type, n : 0..N init N, t: boolean init true
partial method read(s: boolean, x: type)::

s 6= t → s, x, n := t, v, n + 1
partial method write(x: type):: n = N → t, v, n := ¬t, x, 0

end {broadcast}

10 Barrier Synchronization

Each process in a group of concurrently executing processes performs
its computation in a sequence of phases. It is required that no process
begin executing its (p + 1)th phase until all processes have completed
their pth phase, p ≥ 0. Each process has a variable k, the highest
phase that this process has completed. The cat barrier has a partial
method, sync, that is called by each process with parameter k in order
for it to advance to phase k + 1. Initially, k = 0 for all processes. The
protocol for the process is shown below.

box process
var k: nat init 0
partial action ::

true; barrier.sync(k) → do next phase
end {process}

24

The cat barrier has a phase number p, where p is the highest phase
that all processes have completed. The following solution, due to
Rajeev Joshi, is based on the observation that the call to sync should
be accepted for a process with parameter k provided that k = p, i.e.,
all processes have completed phase k. Let n be the number of processes
that have not yet started the (p + 1)th phase. Then n decreases with
every accepted call by sync, and if n becomes 0 then both p, n are
updated. Let the number of processes be N .

box barrier
n : 0..N init N ,
p: nat init 0
partial method sync(k: nat)::

k = p → k, n := k + 1, n− 1;
if n = 0 then p, n := p + 1, N

end {barrier}

It can be shown that p ≤ k ≤ p+1 is an invariant of this program,
for all k of different processes. Therefore, k = p may be evaluated
by comparing the lowest bits of k, p, and incrementation of k, p can
be implemented by inverting their lowest bits. Hence, we introduce
booleans s, t that represent the lowest bits of k, p respectively. Such a
solution is shown below.

box process1
var s: boolean init true
partial action ::

true; barrier.sync(s) → do next phase
end {process1}

box barrier1
n : 0..N init N ,
t: boolean init true
partial method sync(s: boolean)::

s = t → s, n := ¬s, n− 1;
if n = 0 then t, n := ¬t,N

end {barrier1}

11 Readers and Writers

We consider the classic Readers Writers Problem [6] in which a com-
mon resource – say, a file – is shared among a set of reader processes
and writer processes. Any number of readers may have simultaneous
access to the file where as a writer needs exclusive access. There are
two partial methods, StartRead and StartWrite, by which a reader
and a writer gain access to the resource, respectively. Upon completion
of its access, a reader releases the resource by calling the total method
EndRead, and a writer by calling EndWrite. We assume throughout
that read and write operations are finite, i.e., each accepted StartRead
is eventually followed by a EndRead and a StartWrite by EndWrite.

We employ a parameter N which is the maximum number of read-
ers permitted to have simultaneous access to the resource; N may be

25

set arbitrarily high to permit simultaneous access by all readers. The
following solution, based upon one in section 6.10 of [5], uses a pool
of tokens. Initially, there are N tokens. A reader needs 1 token and a
writer N tokens to proceed. It follows that many (up to N) readers
could be active simultaneously where as at most one writer will have
access to the resource at any time. Upon completion of their accesses,
the readers and the writers return all tokens they hold, 1 for a reader
and N for a writer, to the pool. In the following program n is the
number of available tokens.

cat ReaderWriter
var n : 0..N init N
partial method StartRead :: n > 0 → n := n− 1
partial method StartWrite :: n = N → n := 0
total method EndRead :: n := n + 1
total method EndWrite :: n := N

end {ReaderWriter}

Guaranteed Progress for Writers

The solution given above can make no guarantee of progress for either
the readers or the writers. Our next solution guarantees that readers
will not permanently overtake writers: if there is a waiting writer
then some writer gains access to the resource eventually. The strategy
is to deny access to the readers if there is some writer attempting
to execute StartWrite. A boolean variable, WriteTry, is true if a
call upon StartWrite has been rejected since completion of the last
write operation, i.e., EndWrite. We don’t argue the correctness of
this solution because a more general case is treated next. We note,
however, that writers may permanently overtake the readers in this
solution.

cat ReaderWriter1
var n : 0..N init N, WriteTry : boolean init false
partial method StartRead ::

n > 0 ∧ ¬WriteTry → n := n− 1
partial method StartWrite ::

n = N → n := 0
6 | n 6= N → WriteTry := true

total method EndRead :: n := n + 1
total method EndWrite :: n := N ; WriteTry := false

end {ReaderWriter1}

Guaranteed Progress for Readers and Writers

The next solution guarantees progress for both readers and writers; it
is similar to the previous solution – we introduce a boolean variable,
ReadTry, analogous to WriteTry. However, the analysis is consid-
erably more complicated in this case. We outline an operational ar-
gument for the progress guarantees; a formal argument will appear
elsewhere.

26

cat ReaderWriter2
var n : 0..N init N ,

WriteTry,ReadTry : boolean init false
partial method StartRead ::

n > 0 ∧ ¬WriteTry → n := n− 1
6 | n = 0 → ReadTry := true

partial method StartWrite ::
n = N ∧ ¬ReadTry → n := 0

6 | n 6= N → WriteTry := true
total method EndRead :: n := n + 1; ReadTry := false
total method EndWrite :: n := N ; WriteTry := false

end {ReaderWriter2}

We show that if WriteTry is ever true it will eventually be fal-
sified, asserting that a write operation will complete eventually, i.e.,
EndWrite will be called. Similarly, if ReadTry is ever true it will
eventually be falsified. To prove the first result, consider the state in
which WriteTry is set true (note that initially WriteTry is false).
Since n 6= N is a precondition for such an assignment, either a read
or a write operation is underway. If it is the latter case, then the
write will eventually be completed by calling EndWrite, thus setting
WriteTry to false . If WriteTry is set when a read is underway
then no further call on StartRead will be accepted and successive
calls on EndRead will eventually establish n = N ∧ ¬ReadTry, i.e.,
n = N ∧ ¬ReadTry ∧ WriteTry will hold. No method other than
StartWrite will execute in this state: none of the alternatives of
StartRead will accept; no call upon EndRead or EndWrite will be
made because no read or write operation is underway, from n = N .
Therefore, a call upon StartWrite will be accepted, which will be
later followed by a call upon EndWrite.

The argument for eventual falsification of ReadTry is similar. The
precondition of the assignment ReadTry := true is n = 0 implying
that either N readers are reading or a write operation is underway.
In the former case, no more readers will be allowed to join, and upon
completion of reading (by any reader) ReadTry will be set false. In the
latter case, upon completion of writing EndWrite will be called and its
execution will establish n = N ∧ReadTry ∧ ¬WriteTry. No method
other than StartRead will execute in this state, and any reader that
succeeds in executing StartRead will eventually execute EndRead,
thus falsifying ReadTry.

Starvation-Freedom for Writers

Our final variation guarantees absence of starvation for the writers,
but no progress guarantees for the readers. We identify a writer by
including its process id as a parameter in the call to StartWrite. A
queue of writer ids is maintained and StartWrite accepts a call only if
n = N and the caller is at the head of the queue. The test on variable
WriteTry is replaced by a test on the queue length. In the following,
the type pid stands for process id.

cat ReaderWriter3
var n : 0..N init N , wq: seq of pid init 〈〉

27

partial method StartRead ::
n > 0 ∧ wq = 〈〉 → n := n− 1

partial method StartWrite(i: pid) ::
n = N ∧ i = wq.head → n := 0; wq := tail.wq

6 | i /∈ wq → wq := wq : i

total method EndRead :: n := n + 1

total method EndWrite :: n := N
end {ReaderWriter3}

A solution that guarantees absence of starvation for both readers
and writers is slightly more involved. One strategy is to create a
single queue in which the list of reader and writer ids are kept for the
calls that have been rejected; subsequent calls are accepted in order
of appearance in this queue. Consecutive readers in the queue are
permitted to have simultaneous access to the resource.

12 Semaphore

A binary semaphore, often called a lock, is typically associated with
a resource, such as a file, device or communication channel[9]. A pro-
cess has exclusive access to a resource only when it has acquired, i.e., it
holds the corresponding semaphore. A process acquires a semaphore
by completing a P operation and it releases the semaphore by execut-
ing a V . We regard P as a partial method and V as a total method.

Traditionally, a semaphore is weak or strong depending on the guar-
antees made about the eventual success (i.e., acceptance) of the indi-
vidual calls on P . For a weak semaphore no guarantee can be made
about the success of a particular process no matter how many times it
attempts a P , though it can be asserted that a call on P by some pro-
cess is accepted if the semaphore is available. Thus, a specific process
may be starved: it is never granted the semaphore even though an-
other process may hold it arbitrarily many times. A strong semaphore
avoids individual (process) starvation: if the semaphore is available in-
finitely often then it is eventually acquired by each process attempting
a P operation. We discuss both types of semaphores and show several
subtle variations in their implementations.

In section 12.3 we introduce a new kind of semaphore, called the
snoopy semaphore. Unlike a typical semaphore that is first acquired
and then released after its associated resource has been used, the
holder of a snoopy semaphore, s, releases s only if there are other
processes requesting it. This is a useful strategy if there is low con-
tention for the resource (and, hence, for its associated semaphore),
because a process may use the resource as long as it is not required
by the other processes.

We restrict ourselves to binary semaphores in all cases; extensions
to general semaphores are straightforward; see section 2.3 for an ex-
ample of a general weak semaphore.

28

12.1 Weak Semaphore

The following cat describes a weak binary semaphore.

cat semaphore
var avail: boolean init true {the semaphore is available}
partial method P :: avail → avail := false
total method V :: avail := true

end {semaphore}

A typical calling pattern on such a semaphore is shown below.

box s : semaphore

box user
partial action :: c; s.P → use the resource for s; s.V
{ other actions of the box}

end {user}

Note that the user can release the semaphore (i.e., execute s.V) in
an action different from the one in which the semaphore was acquired.
Usually, once the precondition c becomes true then it remains true
until the process acquires the semaphore. There is no requirement in
Seuss, however, that c will remain true as described. This feature can
be used to acquire either of the two semaphores, s1 and s2, as shown
below.

box s1 , s2 : semaphore

box user
partial action :: c; s1.P → use s1’s resource; s1.V ; c := false
partial action :: c; s2.P → use s2’s resource; s2.V ; c := false
{ other actions of the cat}

end {user}

The implementation of the weak semaphore does not impose any
restriction on its callers; for instance, a process that does not hold the
semaphore may release it by executing a V operation, thereby causing
the semaphore to be acquired by a process while another process is
still holding the semaphore. The proposed implementation is appro-
priate when the semaphore is shared by processes that are designed
by trustworthy programmers. A more elaborate implementation is
shown below that restricts the V operation to be applied only by the
semaphore holder. If a non-holder attempts a V then there is no effect
(another possibility would be to make the program fail in this case).
In the following, the type pid stands for process id; each caller on P
or V supplies its id as a parameter.

cat semaphore1
var holder: pid init nil {initially the semaphore is not held}
partial method P(i : pid) :: holder = nil → holder := i
total method V (i : pid) ::

if holder = i then holder := nil endif
end {semaphore1}

29

One of the drawbacks of this solution is that a process can not
transfer a semaphore it holds to another process, the latter releasing
the semaphore subsequently. Our next solution treats each semaphore
as a ticket that may freely be passed around among the processes. The
process id is then irrelevant; a P operation returns a ticket (an arbi-
trary positive integer) and a V operation has effect only if attempted
by the appropriate ticket holder. Let AN be a cat that returnds a
natural number j in AN.anat(j). In the following solution we assign
positive integers to tickets.

cat semaphore2
var holder: nat init 0 {initially the semaphore is not held},

j: nat
partial method P(i : nat) ::

holder = 0 → AN.anat(j); i, holder := j + 1, j + 1
total method V (i : nat) ::

if holder = i then holder := 0 endif
end {semaphore2}

This solution still does not guarantee that the holder will have
exclusive access to the resource. A determined intruder could attempt
to guess the holder’s ticket value in a series of attempts. For use in an
environment where malice rules, tickets should carry digital signatures
[7, 20]. The current implementation guards against errors caused by
poor programming or hardware malfunction.

None of the implementations shown in this section guarantees ab-
sence of individual starvation: a cat may have a partial action of the
form c; s.P → ... where s is an instance of a weak semaphore and
the precondition, c, remains true as long as s.P is not accepted. It
cannot be guaranteed that the call on s.P will ever be accepted. We
can, however, assert a simple form of progress: if each accepted P is
subsequently followed by a call upon V then eventually some process’s
call upon P is accepted.

12.2 Strong Semaphore

A strong semaphore guarantees absence of individual starvation; in
Seuss terminology, if a cat contains a partial action of the form,
c; s.P → ..., where the precondition c remains true as long as s.P
is not accepted and s is a strong semaphore, then s.P will eventually
be accepted.

The following cat, shown earlier in section 3.3, implements a strong
semaphore. The call upon P includes the process id as a parameter.
Procedure P adds the caller id to a queue, q, if the the id is not in
q, and it grants the semaphore to a caller provided the semaphore is
available and the caller id is at the head of the queue.

cat StrongSemaphore
var q: seq of id init 〈〉,

avail: boolean init true

partial method P(i : id) ::
avail ∧ i = q.head → avail, q := false , tail.q

30

6 | i 6∈ q → q := q : i {i is appended at the end of q}

total method V :: avail := true
end {StrongSemaphore}

The sequence q may be replaced by a fair bag, as was done for the
unordered channel, nch (see section 6.3). Note that a call upon P is
rejected even when the queue is empty and the semaphore is available.
It is straightforward to add an alternative to grant the semaphore in
this case.

The variations shown for the weak semaphore may also be applied
to the strong semaphore. We consider a variation that employs a ticket
instead of the process id as a parameter.

A process calls P with a parameter t that is initially 0. Procedure
P rejects the call; however, it sets t to the position of this process in
the queue. If a call upon P has a parameter value equaling the head
position of the queue and the semaphore is available then the call is
accepted. A V operation makes the semaphore available provided the
caller shows the appropriate ticket, otherwise the call has no effect.
Since the tickets have consecutive values as integers, we need two vari-
ables, f and r, to keep the front and rear positions in the queue, i.e.,

f= the value of the lowest issued ticket that is still outstanding
if f < r

r= the value to be assigned to the next ticket

We have the invariant f ≤ r. Note that f = r implies that there
is no outstanding ticket.

cat StrongSemaphore1
var f, r: nat init 1, avail: boolean init true
{initially the semaphore is available}
partial method P(t : nat) ::

avail ∧ f = t ∧ f < r → avail, f := false , f + 1
6 | t = 0 → t, r := r, r + 1

total method V (t : nat)::
if t = f − 1 then avail := true endif

end {StrongSemaphore1}

This solution can be made slightly more secure by assigning ran-
dom integers as ticket values, as was done for the weak semaphore.
Then, the order in which the tickets are issued has to be stored in a
queue to guarantee absence of starvation. Such a solution is shown
below.

cat StrongSemaphore2
var q: seq of nat init 〈〉, holder: nat init 0
{initially the semaphore is available}
partial method P(t : nat) ::

holder = 0 ∧ t = q.head → holder, q := t, tail.q
6 | t = 0 → t := a positive integer not in q; q := q : t
total method V (t : nat)::

if holder = t then avail := true endif
end {StrongSemaphore2}

31

A process requesting a semaphore is a persistent caller if it calls
the P operation infinitely often as long as it has not acquired the
semaphore, otherwise it is a transient caller. Our solutions for the
strong semaphore work only if all callers are persistent. If there is
a transient caller, it will block all other callers from acquiring the
semaphore. Unfortunately, there exists no solution for this case: there
can be no guarantee that every persistent caller will eventually acquire
the semaphore (given that every holder of the semaphore eventually
releases it) in the presence of transient callers. A reasonable compro-
mise is to add a new total method to the strong semaphore which a
transient caller may call to remove its process id from the queue of
callers.

12.3 Snoopy Semaphore

Traditionally, a semaphore associated with a resource is first acquired
by a process executing a P , the resource is used and then the semaphore
is released by executing a V . We consider a variation of this tradi-
tional model in which the resource is not released unless there are
outstanding requests for the resource by the other processes. This
is an appropriate strategy if there is low contention for the resource,
because a process may use the resource as long as it is not required
by the others. We describe a new kind of semaphore, called a Snoopy-
Semaphore, and show how it can be used to solve this problem. In
a later section, we employ the snoopy semaphore to solve a multiple
resource allocation problem in a starvation-free fashion.

We adopt the strategy that a process that has used a resource
snoops to see if there is demand for it, from time to time. If there is
demand, then it releases the semaphore; otherwise, it may continue to
access the resource.

A weak snoopy semaphore is shown below. We add a new method,
S (for snoop), to semaphore. Thus, a SnoopySemaphore has three
methods: P , V , and S. Methods P and V have the same mean-
ing as for traditional semaphores: a process attempts to acquire the
semaphore by calling the partial method P , and releases it by calling
V . The partial method S accepts if the last call upon P by some
process has been rejected. A process typically calls S after using the
resource at least once, and it releases the semaphore if S accepts. In
the following solution, boolean variable b is set false whenever a call
on P is accepted, and set true whenever a call on P is rejected. Thus,
b is false when a process acquires the semaphore and if it subsequently
detects that b is true then the semaphore is in demand.

cat SnoopySemaphore
var b: boolean init false , avail: boolean init true
{initially the semaphore is available}

partial method P ::
avail → avail, b := false , false

6 | ¬avail → b := true
total method V :: avail := true
partial method S :: b → skip

end {SnoopySemaphore}

32

The proposed solution implements a weak snoopy semaphore; there
is no guarantee that a specific process will ever acquire the semaphore.
Our next solution is similar to StrongSemaphore. Since that solution
already maintains a queue of process ids (whose calls on P were re-
jected), we can implement S very simply.

cat StrongSnoopySemaphore
var q: seq of pid init 〈〉, avail: boolean init true
{initially the semaphore is available}

partial method P(i : pid) ::
avail ∧ i = q.head → avail, q := false , tail.q

6 | i 6∈ q → q := q : i
total method V :: avail := true
partial method S :: q 6= 〈〉 → skip

end {StrongSnoopySemaphore}

The variations employing tickets can be also be used with snoopy
semaphores. Note that the two methods S and V may be combined
into a single method if every process calls V only after a call upon S
is accepted. We have retained them as two separate methods to allow
a process to release the semaphore unconditionally.

13 Multiple Resource Allocation

A typical problem in resource allocation has a set of resources and a
set of processes, where each process is in one of three states: thinking,
hungry, and eating. A thinking process has no need for any resource.
A thinking process may become hungry for exclusive use of a subset
of the resources; the specific subset may differ with each thinking
to hungry transition for a process. A hungry process remains hungry
until it acquires all the resources it needs, then it transits to the eating
state. We assume through out that every eating process eventually
transits to the thinking state.

A solution for this problem specifies the steps to be taken by a
hungry process to acquire all the resources it needs and the proto-
col for releasing the resources. A solution is starvation-free if each
process transits from hungry to eating; a solution is deadlock-free if
some hungry process transits to eating. We will associate a semaphore
with each resource, and henceforth, we shall not distinguish between
the semaphore and the resource it represents. Different kinds of
semaphores will be used to guarantee different properties of the solu-
tions.

The problem stated above is quite general. If there is a single
resource then the problem is equivalent to the mutual exclusion prob-
lem where the critical section corresponds to the eating state: two
processes can not be in the eating state simultaneously because both
would then have exclusive access to the resource. The problem also
subsumes the classical dining philosophers problem and its variations
[9, 3]: there are equal number of processes and resources, numbered 0
through N , and the ith process needs resources i and i ⊕ 1, where ⊕
is addition modulo N , when it is hungry.

33

We show the code for a generic process. The action for tran-
sition from thinking to hungry is not shown; it is accompanied by
setting the array needs, where needs[i] is true if the process needs
resource i. Also, the transition from eating to thinking is not shown.
Throughout this description, N ≥ 0, and variable r is an array [0..N]
of semaphores, one for each resource. Different solutions will em-
ploy different kinds of semaphores. The state of a process – thinking,
hungry or eating – is in variable state. We write thinking as an ab-
breviation for state = thinking; similarly hungry and eating.

13.1 A Deadlock-Free Solution

Our first solution is well known in the operating systems literature: a
hungry process acquires the resources it needs in increasing order of
resource index. In the following solution we have the invariant that
all needed resources up to d have been acquired by the process; i.e.,

(∀i : 0 ≤ i < N :
process holds the ith semaphore ≡ hungry ∧ needs[i] ∧ i < d

)

For our first solution, the semaphores are all weak semaphores,
i.e., of type semaphore from section 12.1. The process releases all
the semaphores it holds when it is in the thinking state; the order of
release is immaterial.

box r[0..N]: semaphore

box user1
var needs[0..N]: boolean init false , d: 0..(N + 1) init 0,

state:(thinking, hungry, eating) init thinking

partial action acquire ::
hungry ∧ d ≤ N ∧ ¬needs[d] → d := d + 1

| hungry ∧ d ≤ N ∧ needs[d]; r[d].P → d := d + 1

partial action eat ::
hungry ∧ d > N → state := eating; use resources

partial action release ::
thinking ∧ d > N →

while d 6= 0 do
d := d− 1; if needs[d] then r[d].V endif

enddo
end {user1}

We argue that this solution is deadlock-free. Assume to the con-
trary that at some point in the computation, a set of processes are
hungry, but no process eats. We may assume that there is no think-
ing to hungry transition beyond this point, because this transition
can happen only a finite number of times before all processes become
hungry. Since no process eats no semaphore is released. Consider a
hungry process j whose d value is dj . Since it is permanently blocked,

34

its calls upon r[dj].P are permanently rejected. Therefore, semaphore
dj is held by a process, k. From the invariant, k is hungry, dj < dk,
and k is blocked for dk. Proceeding in this fashion, we can show an
infinite sequence of increasing d values, an impossibility.

13.2 A Starvation-Free Solution

Our next solution is starvation-free. We employ

box r[0..N]: StrongSemaphore

and everything else remains the same. The proof is along the same
lines as for the weak semaphore case. Suppose there is a process, j,
that remains permanently blocked for semaphore dj . Then semaphore
dj is never released beyond some point in the computation; if it is in-
finitely often released then j will acquire it, according to the properties
of strong semaphore. Let the permanent holder of dj be process k,
and according to the invariant k is hungry, dj < dk, and k is blocked
for dk. We derive an impossibility as before.

13.3 A Deadlock-Free Solution with Snoopy
Semaphores

The next solution employs an array of snoopy semaphores. A semaphore
is not released until there is demand for it. We introduce a new ar-
ray for each process: holds[i] is true if this process holds semaphore
i. Assume that d is set 0 along with the transition from eating to
thinking.

box r[0..N]: SnoopySemaphore

box user2
var needs[0..N], holds[0..N]: boolean init false ,

d: 0..(N + 1) init 0,
state:(thinking, hungry, eating) init thinking

partial action acquire ::
hungry ∧ d ≤ N ∧ (¬needs[d] ∨ holds[d]) → d := d + 1

| hungry ∧ d ≤ N ∧ needs[d] ∧ ¬holds[d]; r[d].P →
holds[d] := true; d := d + 1

partial action eat ::
hungry ∧ d > N →

state := eating; use resources

partial action release ::
([]j : 0 ≤ j ≤ N :

holds[j] ∧ (¬needs[j] ∨ j ≥ d); r[j].S →
r[j].V ; holds[j] := false

)
end {user2}

35

14 Related Work

Our work incorporates ideas of serializability from databases[2], ob-
jects and inheritance[16], Communicating Sequential Processes[12],
i/o automata[14], and Temporal Logic of Actions[13]. A partial pro-
cedure is similar to a database (nested) transaction that may commit
or abort; the procedure commits (to execute) if its precondition holds
and its preprocedure commits, and it aborts otherwise. A typical
abort of a database transaction requires a rollback to a valid state. In
Seuss, if there are no negative alternatives, a partial procedure does
not change the program state until it commits, and therefore, there is
no need for a rollback. The form of a partial procedure is inspired by
Communicating Sequential Processes[12]. Our model may be viewed
as a special case of CSP because we disallow nested partial procedures.

Seuss is an outgrowth of our earlier work on UNITY [5]. A UNITY
program consists of statements each of which may change the program
state. A program execution starts in a specified initial state. State-
ments of the program are chosen for execution in a non-deterministic
fashion, subject only to the (fairness) rule that each statement be cho-
sen eventually. The UNITY statements were particularly simple – as-
signments to program variables – and the model allowed few program-
ming abstractions besides asynchronous compositions of programs.

Seuss is an attempt to build a compositional model of multipro-
gramming, retaining some of the advantages of UNITY. An action is
similar to a statement, though we expect actions to be much larger
in size. We have added more structure to UNITY, by distinguishing
between total and partial procedures, grouping the actions in cats,
and allowing procedure calls among cats. Executing actions as indi-
visible units would extract a heavy penalty in performance; therefore,
we have developed a theory that permits interleaved executions of the
actions. Programs in UNITY interact by operating on a shared data
space; Seuss cats, however, have no shared data and they interact
through procedure calls only. As in UNITY, the issues of deadlock,
starvation, progress (liveness), etc., can be treated by making asser-
tions about the sequence of states in every execution. Also, as in
UNITY, program termination is not a basic concept. A program has
reached a fixed point when preconditions of all actions are false ; fur-
ther execution of the program does not change its state then, and an
implementation may terminate a program execution that reaches a
fixed point. We have developed a simple logic for UNITY (for some
recent developments, see [19], [18], [4]) that is applicable to Seuss as
well.

A practical programming language needs (1) scope rules for names,
(2) ways to combine programs written by different people, in partic-
ular, features for importing and exporting cats and boxes, and (3)
features for a program to interact with programs written in other no-
tations, particularly for input and output. These issues have been
addressed in two implementations of Seuss on C++ and Java. The
implementations support the building of libraries as cats.

Acknowledgment I am indebted to Rajeev Joshi and Will Adams
for significant interactions in the development of Seuss.

36

References

[1] K. Batcher. Sorting networks and their applications. In Proc.
AFIPS Spring Joint Computer Conference, volume 32, pages
307–314, Reston, VA, 1968. AFIPS Press.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley,
Reading, Mass., 1987.

[3] K. M. Chandy and J. Misra. The drinking philosophers prob-
lem. ACM Transactions on Programming Languages and Sys-
tems, 6(4):632–646, 1984.

[4] K. M. Chandy and B. A. Sanders. Towards Compositional Spec-
ifications for Parallel Programs. In DIMACS Workshop on Spec-
ifications of Parallel Algorithms, Princeton, NJ, May 9-11 1994.

[5] K. Mani Chandy and Jayadev Misra. Parallel Program Design:
A Foundation. Addison Wesley, 1988.

[6] P.J. Courtois, F. Heymans, and D.L. Parnas. Concurrent con-
trol with readers and writers. Communications of the ACM,
14(10):667–668, October 1967.

[7] W. Diffie and M. Hellman. New directions in cryptography. IEEE
Trans. Inform. Theory, 22(6):644–654, 1976.

[8] E. W. Dijkstra. Solution of a problem in concurrent programming
control. Communications of the ACM, 8(9):569, 1965.

[9] E. W. Dijkstra. Cooperating sequential processes. In F.Genuys,
editor, Programming Languages, pages 43–112. Academic press,
1968.

[10] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall,
Englewood Cliffs, New Jersey, 1976.

[11] C.A.R. Hoare. Communicating sequential processes. Communi-
cations of the ACM, 21(8):666–677, Aug 1978.

[12] C.A.R. Hoare. Communicating Sequential Processes. Prentice
Hall International, London, 1984.

[13] L. Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3):872–923, May 1994.

[14] N. Lynch and M. Tuttle. An introduction to input/output au-
tomata. CWI-Quarterly, 2(3):219–246, Sept. 1989.

[15] Zohar Manna and Amir Pnueli. The temporal logic of reactive
and concurrent systems. Springer-Verlag, 1991.

[16] Bertrand Meyer. Object-Oriented Software Construction. Pren-
tice Hall PTR, Upper Saddle River, NJ, 1997.

[17] R. Milner. Communication and Concurrency. International Series
in Computer Science, C. A. R. Hoare, Series Editor. Prentice-Hall
International, London, 1989.

[18] Jayadev Misra. A logic for concurrent programming: Progress.
Journal of Computer and Software Engineering, 3(2):273–300,
1995.

37

[19] Jayadev Misra. A logic for concurrent programming: Safety.
Journal of Computer and Software Engineering, 3(2):239–272,
1995.

[20] R.L. Rivest, A.Shamir, and L. Adelman. A method for obtaining
digital signatures and public key cryptosystems. Communications
of the ACM, 21(2):120–126, February 1978.

[21] R. A. Scantlebury, K. A. Bartlett, and P.T. Wilkinson. A note
on reliable full-duplex transmission over half-duplex links. Com-
munications of the ACM, 12(5):260–261, May 1969.

38

