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1. Introduction

Object-based sequential programming has had a major impact on software engineer-
ing. However, object-based concurrent programming remains elusive as an effective
programming tool. The class of applications that will be implemented on future
high-bandwidth networks of processors will be significantly more ambitious than
the current applications (which are mostly involved with transmissions of digital
data and images), and object-based concurrent programming has the potential to
simplify designs of such applications. Many of the programming concepts devel-
oped for databases, object-oriented programming and designs of reactive systems
can be unified into a compact model of concurrent programs that can serve as the
foundation for designing these future applications.

1.1. Motivation

Research in multiprogramming has, traditionally, attempted to reconcile two appar-
ently contradictory goals: (1) it should be possible to understand a module (e.g., a
process or a data object) in isolation, without considerations of interference by the
other modules, and (2) it should be possible to implement concurrent threads at a
fine level of granularity so that no process is ever locked out of accessing common
data for long periods of time. The goals are in conflict because fine granularity,
in general, implies considerable interference. The earliest multiprograms (see, for
instance, the solution to the mutual exclusion problem in Dijkstra [8]) were trivially
small and impossibly difficult to understand, because the behaviors of the individual
processes could not be understood in isolation, and all possible interactions among
the processes had to be analyzed explicitly. Since then, much effort has gone into
limiting or even eliminating interference among processes by employing a variety
of synchronization mechanisms: locks or semaphores, critical regions, monitors and
message communications.

Constraining the programming model to a specific protocol (binary semaphores
or message communication over bounded channels, for instance) will prove to be
short-sighted in designing complex applications. More general mechanisms for in-
teractions among modules, that include these specific protocols, are required. Fur-
ther, for the distributed applications of the future, it is essential to devise a model
in which the distinction between computation and communication is removed; in
particular, the methods for designing and reasoning about the interfaces should be
no different from those employed for the computations at the nodes of the network.

1.2. Seuss

We have developed a model of multiprogramming, called Seuss. Seuss fosters a
discipline of programming that makes it possible to understand a program execu-
tion as a single thread of control, yet it permits program implementation through
multiple threads. As a consequence, it is possible to reason about the properties of
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a program from its single execution thread, whereas an implementation on a spe-
cific platform (e.g., shared memory or message communicating system) may exploit
the inherent concurrency appropriately. A central theorem establishes that multi-
ple execution threads implement single execution threads, i.e., for any interleaved
execution of some actions there exists a non-interleaved execution of those actions
that establishes an identical final state starting from the same initial state.

A major point of departure in Seuss is that there is no built-in concurrency and no
commitment to either shared memory or message-passing style of implementation.
No specific communication or synchronization mechanism, except the procedure
call, is built into the model. In particular, the notions of input/output and their
complementary nature in rendezvous-based communication [9, 17] is outside this
model. There is no distinction between computation and communication; process
specifications and interface specifications are not distinguished. Consequently, we
do not have many of the traditional multiprogramming concepts such as, processes,
locking, rendezvous, waiting, interference and deadlock, as basic concepts in our
model. Yet, typical multiprograms employing message passing over bounded or
unbounded channels can be encoded in Seuss by declaring the processes and chan-
nels as the components of a program; similarly, shared memory multiprograms can
be encoded by having processes and memories as components. Seuss permits a
mixture of either style of programming, and a variety of different interaction mech-
anisms – semaphore, critical region, 4-phase handshake, etc. – can be encoded as
components.

Seuss proposes a complete disentanglement of the sequential and concurrent as-
pects of programming. We expect large sections of code to be written, understood
and reasoned-about as sequential programs. We view multiprogramming as a way
to orchestrate the executions of these sequential programs, by specifying the con-
ditions under which each program is to be executed. Typically, several sequential
programs will execute simultaneously; yet, we can guarantee that their executions
would be non-interfering, and hence, each program may be regarded as atomic. We
propose an efficient implementation scheme that can, under user directives, inter-
leave the individual sequential programs with fine granularity without causing any
interference.

2. Seuss Programming Model

The Seuss programming model is sparse: a program is built out of cats (cat is short
for category) and boxes, and a cat is built out of procedures. A cat is similar in many
ways to a process/class/monitor type; a cat denotes a type and a box is an instance
of a cat. A box has a local state and it includes procedures by which its local state
can be accessed and updated. Procedures in a box may call upon procedures of other
boxes. Cats are used to encode processes as well as the communication protocols
for process interactions; therefore, it is necessary only to develop the methodology
for programming and understanding cats and their component procedures.

We propose two distinct kinds of procedures, to model terminating and potentially
non-terminating computations – representing computations of wait-free programs
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and multiprograms, respectively. The former can be assigned a semantic with pre-
and post-conditions, i.e., based on its possible inputs and corresponding outputs
without considerations of interference with its environment. Multiprograms, how-
ever, cannot be given a pre- and post-condition semantic because on-going interac-
tion with the environment is of the essence. We distinguish between these two types
of computations by using two different kinds of procedures: a total procedure never
waits (for an unbounded amount of time) to interact with its environment whereas
a partial procedure may wait, possibly forever, for such interactions. In this view, a
P operation on a semaphore is a partial procedure – because it may never terminate
– whereas a V operation is a total procedure. A total procedure models wait-free,
or transformational , aspects of programming and a partial procedure models con-
current, or reactive, aspects of programming[15]. Our programming model does not
include waiting as a fundamental concept; therefore, a (partial) procedure does not
wait, but it rejects the call, thus preserving the program state. We next elaborate
on the main concepts: total and partial procedure, cat and program.

2.1. Total procedure

A total procedure can be assigned a meaning based only on its inputs and outputs;
if the procedure is started in a state that satisfies the input specification then it
terminates eventually in a state that satisfies the output specification. Procedures
to sort a list, find a minimum spanning tree in a graph or send a job to an unbounded
print-queue, are examples of total procedures. A total procedure need not be
deterministic; e.g., any minimum spanning tree could be returned by the procedure.
Furthermore, a total procedure need not be implemented on a single processor, e.g.,
the list may be sorted by a sorting network[1], for instance. Data parallel programs
and other synchronous computation schemes are usually total procedures. A total
procedure may even be a multiprogram in our model admitting of asynchronous
execution, provided it is guaranteed to terminate, and its effect can be understood
only through its inputs and outputs; therefore, such a procedure never waits to
receive input, for instance. An example of a total procedure that interacts with its
environment is one that sends jobs to a print-queue (without waiting) and the jobs
may be processed by the environment while the procedure continues its execution.
Almost all total procedures shown in this manuscript are sequential programs.

A total procedure may call only total procedures. When a total procedure is called
(with certain parameters, in a given state) it may (1) terminate normally, (2) fail,
or (3) execute forever. A failure is caused by a programming error; it occurs when
the procedure is invoked in a state in which it should not be invoked, for instance,
if the computation requires a number to be divided by 0 or a natural number to
be reduced below 0. Failure is a general programming issue, not just an issue in
Seuss or multiprogramming. We interpret failure to mean that the resulting state
is arbitrary; any step taken in a failed state results in a failed state. Typically, a
hardware or software trap terminates the program when a failure occurs.
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Non-termination of a total procedure is also the result of a programming error.
We expect the programmer to establish that the procedure is invoked only in those
states where its execution is finite.

2.2. Partial procedure

We first consider a simple form for a partial procedure, g:

g :: p; h → S

where p is the precondition, h is the preprocedure and S is the body of the procedure.
The precondition is a predicate on the state of the box to which g belongs. The
preprocedure is the name of a partial procedure in another box; the preprocedure is
optional. The body, S, consists of local computations affecting the state of g’s box
and calls on total procedures of other boxes. A partial procedure can call another
partial procedure only as a preprocedure.

A partial procedure accepts or rejects each call made upon it. A partial procedure
of the form p → S, where the preprocedure is absent, accepts a call whenever
p holds. A partial procedure, g, of the form p; h → S accepts a call if its pre-
condition, p, holds and its preprocedure, h, accepts the call made by g (we will
impose additional restrictions on the program structure so that this definition is
well-founded). When a call is accepted, the body of the procedure, S, is executed,
potentially changing the state of the box and returning computed values in the
parameters. When a call is rejected, the procedure body is not executed and the
state does not change. The caller is made aware of the outcome of the call in both
cases; if the call made by g to h is rejected then the caller, g, also rejects the call
made upon it, and if the call to h is accepted then g accepts the call and executes its
body, S. In this sense, partial procedures differ fundamentally from the total ones
because all calls are accepted in the latter case. Examples of partial procedures are
P operation on a semaphore and a get operation on a print-queue performed by a
printer; the call upon P is accepted only if the semaphore value is non-zero, and for
the get if the print-queue is non-empty. Observe that whenever a call is rejected,
the caller’s state does not change, and whenever a call is accepted by a procedure
that has the form p; h → S, the body of the preprocedure, h, is executed before
the execution of the procedure body, S.

We require that the execution of the body, S, terminate whenever the partial
procedure, g, accepts a call.

Alternative Now, we introduce a generalization: the body of a partial procedure
consists of one or more alternatives where each alternative is of the form described
previously for partial procedures. Each alternative is positive or negative: the first
alternative is positive; an alternative preceded by | is positive and one preceded by
6 | is negative. The precondition of at most one alternative of a partial procedure
holds in any state, i.e., the preconditions are pairwise disjoint.

The rule for execution of a partial method with alternatives is as follows. A
partial-method accepts or rejects each call; it accepts a call if and only if one of
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its positive alternatives accepts the call, and it rejects the call otherwise. An
alternative, positive or negative, accepts a call in a given state as follows. An
alternative of the form p → S accepts the call if p holds; then its body, S, is
executed and control is returned to its caller. An alternative of the form p; h → S
accepts a call provided p holds and h accepts the call made by this procedure
(using the same rules, since h is also a partial procedure); upon completion of the
execution of h the body S is executed, and control is returned to the caller. Thus,
an alternative rejects a call if the precondition does not hold, or if the preprocedure,
provided it is present, rejects the call. Note that, since the precondition of at most
one alternative of a partial procedure holds in a given state, at most one alternative
will accept a call (if no alternative accepts the call, the call is rejected). It follows
that the state of the caller’s box is unchanged whenever a call is rejected, though
the state of the called box may be changed because a negative alternative may have
accepted the call.

Alternatives are essential for programming concurrent systems; negative alterna-
tives are especially useful in coding strong semaphores, for instance.

2.3. method and action

A procedure is either a method or an action. An action is executed autonomously
an infinite number of times during a (tight) program execution; see section 2.4.1.
A method is not executed autonomously but only by being called from another
procedure. Declaration of a procedure indicates if it is partial or total, and if it is
an action or a method.

Example (Semaphore) A ubiquitous concept in multiprogramming is a semaphore.

cat semaphore
var n: nat init 1 {initially, the semaphore value is 1}
partial method P :: n > 0 → n := n− 1
total method V :: n := n + 1

end {semaphore}

A binary semaphore may be encoded similarly except that the V fails if n 6= 0
prior to its execution. Next, we show a small example employing semaphores. Let
s, t be two instances of semaphore, declared by

box s, t : semaphore

Cat user, shown below, executes its critical section only if it holds both s and t,
and it releases both semaphores upon completion of its critical section. The code
for user dealing with accesses to s and t is shown below. Boolean variables hs and
ht are true only when the user holds the semaphores s and t, respectively.

cat user
var hs, ht: boolean init false
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partial action s.acquire:: ¬hs; s.P → hs := true
partial action t .acquire:: ¬ht; t.P → ht := true
partial action execute::

hs ∧ ht → critical section; s.V ; t.V ; hs := false; ht := false
end {user}

This solution permits acquiring s and t in arbitrary order. If it is necessary to
acquire them in a specific order, say, first s and then t, the precondition of action
t .acquire should be changed to hs ∧ ¬ht.

2.4. Program

A program consists of a finite set of boxes (cat instances). We restrict the manner
in which a procedure calls other procedures: all the procedures executing at any
time belong to different boxes. We impose a condition, Partial Order on Boxes,
below that ensures this restriction.

Definition: For procedures p, q, we write p calls q to mean that in some execution
of p a call is made to q. Let calls+ be the transitive closure of calls, and calls∗ the
reflexive transitive closure of calls. Define a relation callsp over procedures where,

(x callsp y) ≡ (p calls∗ x) ∧ (x calls y).

In operational terms, x callsp y means procedure x calls procedure y in some ex-
ecution of procedure p. Each program is required to satisfy the following condition.

Partial Order on Boxes Every procedure p imposes a partial order ≥p over the
boxes; during the execution of p a procedure of box b can call a procedure of box b′

provided b >p b′ (i.e., b ≥p b′ ∧ b 6= b′). Thus, calls are made from the procedures
of a higher box to that of a lower box.

Note: Observe that ≥p is reflexive and >p is irreflexive.

Observation 1:

p calls∗ x ⇒ p.box ≥p x.box
p calls+ x ⇒ p.box >p x.box

It follows from Observation 1 that all the procedures that are part of a call-chain
belong to different boxes.

Observation 2: calls+ is an acyclic (i.e., irreflexive, asymmetric and transitive)
relation over the procedures.

The definition of a program is in contrast to the usual views of process networks
in which the processes communicate by messages or by sharing a common mem-
ory. Typically, such a network is not regarded as being partially ordered. For
instance, suppose that process P sends messages over a channel chp to process Q



286 JAYADEV MISRA

and Q sends over chq to P . The processes are viewed as nodes in a cycle where
the edges (channels), chp and chq, are directed from P to Q and from Q to P ,
respectively, representing the direction of message flow. Similar remarks apply to
processes communicating through shared memory. We view communication media
(message channels and memory) as boxes. Therefore, we would represent the sys-
tem described above as a set of four boxes: P , Q, chp and chq with the procedures
in chp, chq being called from P and Q, respectively. The direction of message flow
is immaterial in this hierarchy; what matters is that P , Q call upon chp and chq
(though chp and chq do not call upon P , Q). A partial order is extremely useful
in deducing properties by induction on the “levels” of the procedures.

The restriction that procedure calls are made along a partial order implies that a
partial procedure at a lowest level consists of one or more alternatives of the form
p → S, where the preprocedure is absent and the body S contains no procedure
calls. A total procedure at a lowest level contains no procedure calls.

2.4.1. Program Execution We prescribe an execution style for programs, called
tight execution. A tight execution consists of an infinite number of steps; in each
step, an action of a box is chosen and executed. If that action calls upon a pre-
procedure that accepts the call, then the preprocedure is first executed followed
by the execution of the action body. If the action calls upon a preprocedure that
rejects the call then the state of the caller does not change. The choice of the action
to execute in a step is arbitrary except for the following fairness constraint: each
action of each box is chosen eventually.

A tight execution is easy to understand because execution of an action is com-
pleted before another action is started. Each procedure, total or partial, may be
understood from its text alone given the meanings of the procedures that it calls,
without consideration of interference by other procedures. A simple temporal logic,
such as UNITY-logic [19, 18], is suitable for deducing properties of a program in this
execution model. Later, we show how a program may be implemented on multiple
asynchronous processors with a fine grain of interleaving of actions that preserves
the semantics of tight execution.
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3. Small Examples

A number of small examples are treated in this section. The goal is to show that typ-
ical multiprogramming examples from the literature have succinct representations
in Seuss; additionally, that the small number of features of Seuss is adequate for
solving many well-known problems: communications over bounded and unbounded
channels, mutual exclusions and synchronizations. We show a number of variations
of some of these examples, implementing various progress guarantees, for instance.
For operational arguments about program behavior, we use tight executions of
programs as defined in section 2.4.1.

3.1. Channels

Unbounded Channels An unbounded fifo channel is a cat that has two methods:
put (i.e., send) is a total method that appends an element to the end of the mes-
sage sequence and get (i.e., receive) is a partial method that removes and returns
the head element of the message sequence, provided it is non-empty. We define
polymorphic version of the channel where the message type is left arbitrary. In the
method put, we use : in the assignment to denote concatenation.

cat FifoChannel of type
var r: seq of type init 〈〉 {initially r is empty}
partial method get(x: type):: r 6= 〈〉 → x, r := r.head, r.tail
total method put(x: type):: r := r : x

end {FifoChannel of type }

An instance of this cat may be interposed between a set of senders and a set of
receivers.

Unordered Channels The fifo channel guarantees that the order of delivery of
messages is the same as the order in which they arrived. Next, we consider an
unordered channel that returns any message from the channel in response to a call
on get when the channel is non-empty. The channel is implemented as a bag and
get is implemented as a non-deterministic operation. We write x :∈ b to denote that
x is assigned any value from bag b (provided b is non-empty). The usual notation
for set operations are used for bags in the following example.

cat uch of type
var b: bag of type init {} {initially b is empty}
partial method get(x: type):: b 6= {} → x :∈ b; b := b− {x}
total method put(x: type):: b := b ∪ {x}

end {uch of type}

This channel does not guarantee that every message will eventually be delivered,
given that messages are removed from the bag an unbounded number of times. Such
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a guarantee is, of course, established by the fifo channel. We propose a solution
below that implements this additional guarantee. In this solution every message is
assigned an index, a natural number, and the variable t is less than or equal to the
smallest index. A message is assigned an index strictly exceeding t whenever it is
put in the channel. The indices need not be distinct. The get method removes any
message with the smallest index and updates t.

cat nch of type
var b: bag of (index: nat, msg: type) init {} {initially b is empty},

t: nat init 0, s: nat, m: type
partial method get(x: type)::

b 6= {} → remove any pair (s, m) with minimum index, s, from b;
t, x := s,m

total method put(x: type)::
b := b ∪ {(s, x)}, where s is a natural number strictly exceeding t

end {nch of type}

We now show that every message is eventually removed given that there are an
unbounded number of calls on get. For a message with index i we show that the pair
(i−t, p), where p is the number of messages with index t, decreases lexicographically
with each execution of get, and it never increases. Hence, eventually, i = t and p = 0
implying that this message has been removed. An execution of put does not affect
i, t or p, because the added message receives an index higher than t; thus, (i− t, p)
does not change. A get either increases t, thus decreasing i − t, or it keeps t the
same and decreases p, thus, decreasing (i− t, p).

3.2. Broadcast

We show a cat that implements broadcast-style message communication. Processes,
called writers, attempt to broadcast a sequence of values to a set of N processes,
called readers. We introduce a cat, broadcast, into which a writer writes the next
value and from which a reader reads. The structure of the cat is as follows.

Internally, the value to be broadcast is stored in variable v; and n counts the
number of readers that have read v. Both read and write are partial methods. The
precondition for write is that the counter n equals N , i.e., all readers have read the
current value. The precondition for read is that this particular reader has not read
the current value of v. To implement the precondition for reading, we associate a
sequence number with the value stored in v. It is sufficient to have a 1-bit sequence
number, a boolean variable t, as in the Alternating Bit Protocol for communication
over a faulty channel [21]. A read operation has a boolean argument, s, that is
the last sequence number read by this reader. If s and t match then the reader
has already read this value and, hence, the call upon read is rejected. If s and t
differ then the reader is allowed to read the value and both s and n are updated.
The binary sequence number, t, is reversed whenever a new value is written to v.
It is easy to show that n equals the number of readers whose s-value equals the
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cat’s t-value. Initially, the local variable s for each reader is true. In the following
definition, N is a parameter of the cat.

cat broadcast of data
var v: data, n : 0..N init N, t: boolean init true
partial method read(s: boolean, x: data):: s 6= t → s, x, n := t, v, n + 1
partial method write(x: data):: n = N → t, v, n := ¬t, x, 0

end {broadcast of data}

3.3. Barrier Synchronization

The problem and solution in this section are due to Rajeev Joshi[10]. In barrier
synchronization, each process in a group of concurrently executing processes per-
forms its computation in a sequence of stages. It is required that no process begin
computing its (k + 1)th stage until all processes have completed their kth stage,
k ≥ 0. We propose a cat that includes a partial method, sync, that is to be called
by each process in order to start computation of its next stage; the call is accepted
only if all processes have completed the stage that this process has completed, and
then the caller may advance to the next stage.

From the problem description, we see that at any point during the execution, all
users have completed execution upto stage k and some users may be executing (or
may have completed) stage k + 1, for some k, k ≥ 0. Initially, k = 0. As in the
problem of Broadcast, each user has a boolean s, and barrier has a boolean t. We
maintain the invariant that for any user s = t means that the user has not yet
entered stage k + 1, and n is the number of ticket holders with s = t.

box user
var s: boolean init true
partial action ::

; barrier.sync(s) → do next phase
end {user}

box barrier
n : 0..N init N ,
t: boolean init true
partial method sync(s: boolean)::

s = t → s, n := ¬s, n− 1; if n = 0 then t, n := ¬t,N
end {barrier}

3.4. Readers and Writers

We consider the classic Readers Writers Problem [7] in which a common resource
– say, a file – is shared among a set of reader processes and writer processes. Any
number of readers may have simultaneous access to the file where as a writer needs
exclusive access. The following solution includes two partial methods, StartRead
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and StartWrite, by which a reader and a writer gain access to the resource, respec-
tively. Upon completion of their accesses, a reader releases the lock by calling the
total method EndRead, and a writer by calling EndWrite. We assume throughout
that read and write operations are finite, i.e., each accepted StartRead is eventually
followed by a EndRead and a StartWrite by EndWrite.

We employ a parameter N in our solution that indicates the maximum number
of readers permitted to have simultaneous access to the resource; N may be set ar-
bitrarily high to permit simultaneous access for all readers. The following solution,
based upon one in section 6.10 of [5], uses a pool of tokens. Initially, there are N
tokens. A reader needs 1 token and a writer N tokens to proceed. It follows that
many (up to N) readers could be active simultaneously where as at most one writer
will have access to the resource at any time. Upon completion of their accesses,
the readers and the writers return all tokens they hold, 1 for a reader and N for a
writer, to the pool. In the following program n is the number of available tokens.

cat ReaderWriter
var n : 0..N init N
partial method StartRead :: n > 0 → n := n− 1
partial method StartWrite :: n = N → n := 0
total method EndRead :: n := n + 1
total method EndWrite :: n := N

end {ReaderWriter}

The solution given above can make no guarantee of progress for either the readers
or the writers. Our next solution guarantees that readers will not permanently
overtake writers: if there is a waiting writer then some writer gains access to the
resource eventually. The strategy is as follows: A boolean variable, WriteAttempt,
is set true , using a negative alternative, if a call upon StartWrite is rejected.
Once WriteAttempt holds calls on StartRead are rejected; thus no new readers
are allowed to start reading. All readers will eventually stop reading – n = N then
– and the next call on StartWrite will succeed.

cat ReaderWriter1
var n : 0..N init N, WriteAttempt : boolean init false
partial method StartRead :: n > 0 ∧ ¬WriteAttempt → n := n− 1
partial method StartWrite ::

n = N → n := 0
6 | n 6= N → WriteAttempt := true

total method EndRead :: n := n + 1
total method EndWrite :: n := N ; WriteAttempt := false

end {ReaderWriter1}

The next solution guarantees progress for both readers and writers; it is similar to
the previous solution – we introduce a boolean variable, ReadAttempt, analogous
to WriteAttempt. However, the analysis is considerably more complicated in this
case. We outline an operational argument for the progress guarantees.
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cat ReaderWriter2
var n : 0..N init N, WriteAttempt,ReadAttempt : boolean init false
partial method StartRead ::

n > 0 ∧ ¬WriteAttempt → n := n− 1
6 | n = 0 → ReadAttempt := true

partial method StartWrite ::
n = N ∧ ¬ReadAttempt → n := 0

6 | n 6= N → WriteAttempt := true
total method EndRead :: n := n + 1; ReadAttempt := false
total method EndWrite :: n := N ; WriteAttempt := false

end {ReaderWriter2}
We show that if WriteAttempt is ever true it will eventually be falsified, assert-

ing that a write operation will complete eventually, i.e., EndWrite will be called.
Similarly, if ReadAttempt is ever true it will eventually be falsified. To prove the
first result, consider the state in which WriteAttempt is set true (note that initially
WriteAttempt is false). Since n 6= N is a precondition for such an assignment, ei-
ther a read or a write operation is underway. If it is the latter case, then the write
will eventually be completed by calling EndWrite, thus setting WriteAttempt to
false . If WriteAttempt is set when a read is underway then no further call on
StartRead will be accepted and successive calls on EndRead will eventually estab-
lish n = N ∧ ¬ReadAttempt, i.e., n = N ∧ ¬ReadAttempt ∧ WriteAttempt will
hold. No method other than StartWrite will execute in this state: none of the
alternatives of StartRead will accept; no call upon EndRead or EndWrite will be
made because no read or write operation is underway, from n = N . Therefore, a
call upon StartWrite will be accepted, which will be later followed by a call upon
EndWrite.

The argument for eventual falsification of ReadAttempt is similar. The pre-
condition of the assignment ReadAttempt := true is n = 0 implying that either
N readers are reading or a write operation is underway. In the former case,
no more readers will be allowed to join, and upon completion of reading (by
any reader) ReadAttempt will be set false. In the latter case, upon comple-
tion of writing EndWrite will be called and its execution will establish n =
N∧ReadAttempt∧¬WriteAttempt. No method other than StartRead will execute
in this state, and any reader that succeeds in executing StartRead will eventually
execute EndRead, thus falsifying ReadAttempt.

3.5. Semaphore

A binary semaphore, often called a lock, is typically associated with a resource. A
process has exclusive access to a resource only when it holds, the corresponding
semaphore. A process acquires a semaphore by completing a P operation and it
releases the semaphore by executing a V . We regard P as a partial method and V
as a total method.

Traditionally, a semaphore is weak or strong depending on the guarantees made
about the eventual success (i.e., acceptance) of the individual calls on P . For a weak
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semaphore no guarantee can be made about the success of a particular process no
matter how many times it attempts a P , though it can be asserted that some call
on P is accepted if the semaphore is available. Thus, a specific process may be
starved: it is never granted the semaphore even though another process may hold it
arbitrarily many times. A strong semaphore avoids individual (process) starvation:
if the semaphore is available infinitely often then it is eventually acquired by each
process attempting a P operation. We discuss both types of semaphores and show
some variations.

We restrict ourselves to binary semaphores in all cases; extensions to general
semaphores are straightforward.

3.5.1. Weak Semaphore The following cat describes a weak binary semaphore.

cat semaphore
var avail: boolean init true {initially the semaphore is available}
partial method P :: avail → avail := false
total method V :: avail := true

end {semaphore}

A typical calling pattern on such a semaphore is shown below.

box s : semaphore

box user
partial action :: c; s.P → use the resource associated with s; s.V
{ other actions of the box}

end {user}

Usually, once the precondition c becomes true then it remains true until the
process acquires the semaphore. There is no requirement in Seuss, however, that c
will remain true as described.

3.5.2. Strong Semaphore A strong semaphore guarantees absence of individual
starvation; in Seuss terminology, if a cat contains a partial action of the form,
c; s.P → ..., where the precondition c remains true as long as s.P is not accepted
and s is a strong semaphore, then s.P will eventually be accepted. The following
cat implements a strong semaphore. The call upon P includes the process id as
a parameter (pid is the type of process id). Procedure P adds the caller id to a
queue, q, if the the id is not in q, and it grants the semaphore to a caller provided
the semaphore is available and the caller id is at the head of the queue.

cat StrongSemaphore
var q: seq of pid init 〈〉, avail: boolean init true
{initially the semaphore is available}
partial method P(i : pid) ::
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avail ∧ i = q.head → avail, q := false , tail.q
6 | i 6∈ q → q := q : i

total method V :: avail := true
end {StrongSemaphore}

Observe the way a negative alternative is employed to record a caller’s id while
rejecting the call. The sequence q may be replaced by a fair bag, as was done for
the unordered channel, nch.

Note: A call upon P is rejected even when the queue is empty and the semaphore
is available. It is straightforward to add an alternative to grant the semaphore in
this case.

A process requesting a semaphore is a persistent caller if it calls the P operation
infinitely often as long as it has not acquired the semaphore, otherwise it is a
transient caller. Our solution for the strong semaphore works only if all callers are
persistent. If there is a transient caller, it will block all other callers from acquiring
the semaphore. Unfortunately, there exists no solution for this case: there can
be no guarantee that every persistent caller will eventually acquire the semaphore
(given that every holder of the semaphore eventually releases it) in the presence
of transient callers[11]. A reasonable compromise is to add a new total method to
the strong semaphore cat, which a transient caller may call to remove its process
id from the queue of callers.

3.5.3. Snoopy Semaphore Traditionally, a semaphore associated with a resource
is first acquired by a process executing a P , the resource is used and then the
semaphore is released by executing a V . We consider a variation of this traditional
model in which the resource is not released unless there are outstanding requests
for the resource by the other processes. This is an appropriate strategy if there is
low contention for the resource, because a process may use the resource as long as
it is not required by the others. We describe a new kind of semaphore, called a
SnoopySemaphore, and show how it can be used to solve this problem. In a later
section, we employ the snoopy semaphore to solve a multiple resource allocation
problem in a starvation-free fashion.

We adopt the strategy that a process that has used a resource snoops to see if
there is demand for it, from time to time. If there is demand, then it releases the
semaphore; otherwise, it may continue to access the resource.

A weak snoopy semaphore is shown below. We add a new method, S (for snoop),
to the semaphore cat. Thus, a SnoopySemaphore has three methods: P , V , and S.
Methods P and V have the same meaning as for traditional semaphores: a process
attempts to acquire the semaphore by calling the partial method P , and releases it
by calling V . The partial method S accepts if the last call upon P by some process
has been rejected. A process typically calls S after using the resource at least once,
and it releases the semaphore if S accepts. In the following solution, a boolean
variable b is set false whenever a call on P is accepted, and set true whenever a call
on P is rejected. Thus, b is false when a process acquires the semaphore and if it
subsequently detects that b is true then the semaphore is in demand.
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cat SnoopySemaphore1
var b: boolean init false , avail: boolean init true
{initially the semaphore is available}

partial method P ::
avail → avail, b := false , false

6 | ¬avail → b := true
total method V :: avail := true
partial method S :: b → skip

end {SnoopySemaphore1}

The proposed solution implements a weak snoopy semaphore; there is no guar-
antee that a specific process will ever acquire the semaphore. Our next solution
is similar to StrongSemaphore. Since that solution already maintains a queue of
process ids (whose calls on P were rejected), we can implement S very simply.

cat StrongSnoopySemaphore
var q: seq of pid init 〈〉, avail: boolean init true
{initially the semaphore is available}

partial method P(i : pid) ::
avail ∧ i = q.head → avail, q := false , tail.q

6 | i 6∈ q → q := q : i
total method V :: avail := true
partial method S :: q 6= 〈〉 → skip

end {StrongSnoopySemaphore}
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4. Distributed Implementation

We have thus far considered program executions where each action completes before
another one is started. In section 2.4.1, we defined a tight execution of a Seuss
program to be an infinite sequence of steps where each step consists of executing
an action of a box. The choice of actions is arbitrary except that each action of
each box is chosen eventually. This model of execution was chosen because it makes
programming easier. Now, we consider another execution model, loose execution,
where the executions of actions may be interleaved. A loose execution exploits the
available concurrency. We restrict loose executions in such a manner that any loose
execution may be simulated by a tight execution.

Crucial to loose executions is the notion of compatibility among actions: if a set
of actions are pair-wise compatible then their executions are non-interfering, and
their concurrent execution is equivalent to some serial execution of these actions.
The precise definition of compatibility and the central theorem that establishes the
correspondence between loose and tight executions are treated in section 4.4. We
note that compatibility is a weaker notion than commutativity, and it holds for
put, get over channels (see section 4.4), and for P, V operations on semaphores, for
instance.

First, we describe a multiprocessor implementation in which the scheduler may
initiate several compatible actions for concurrent executions. We also describe a
“most general” scheduling strategy for this problem and implementations of the
scheduling strategy on uniprocessors as well as multiprocessors. Then we define
the notion of compatibility and state the fundamental Reduction Theorem that
establishes a correspondence between loose and tight executions.

4.1. Outline of the Implementation Strategy

The implementation consists of (1) a scheduler that decides which action may next
be scheduled for execution, and (2) processors that carry out the actual executions
of the actions. The boxes of a program are partitioned among the processors. Each
processor thus manages a set of boxes and it is responsible for executions of the
actions of those boxes. The criterion for partitioning of boxes into processors is
arbitrary though heuristics may be employed to minimize message transmissions
among processors.

• The scheduler repeatedly chooses some action for execution. The choice is con-
strained by the requirement that only compatible procedures may be executed
concurrently and by the fairness requirement. The scheduler sends a message
to the corresponding processor to start execution of this action.

• A processor starts executing an action upon receiving a message from the sched-
uler. It may call upon methods of other processors by sending messages and
waiting for responses. Each call includes values of procedure parameters, if any,
as part of the message. It is guaranteed that each call elicits a response, which is
either a accept or a reject. The accept response is sent when the call is accepted
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(which is always the case for calls upon total methods), and parameter values,
if any, are returned with the response. A reject response is possible only for
calls upon partial methods; no parameter values accompany such a response.

4.2. Design of the Scheduler

The following abstraction captures the essence of the scheduling problem. Given
is a finite undirected graph; the graph need not be connected. Each vertex in
the graph is black or white; all vertices are initially white. In this abstraction, a
vertex denotes an action and a black vertex an executing action. Two vertices are
neighbors if they are incompatible. We are given that

• (E) Every black vertex becomes white eventually (by the steps taken by an
environment over which we have no control).

It is required to devise a coloring (scheduling) strategy so that

• (S1) No two neighbors are simultaneously black (i.e., only compatible actions
may be executed simultaneously).

• (S2) Every vertex becomes black infinitely often (thus ensuring fairness).

Note that the scheduler can only blacken vertices; it may not whiten a vertex.
A simple scheduling strategy is to blacken a single vertex, wait until the envi-

ronment whitens it, and then blacken another vertex. Such a strategy implements
(S1) trivially because there is at most one black vertex at any time. (S2) may
be ensured by blackening the vertices in some fixed, round-robin order. Such a
protocol, however, defeats the goal of concurrent execution. So, we impose the
additional requirement that the scheduling strategy be maximal: it should allow
all valid concurrent executions of the actions; that is, any infinite sequence that
satisfies (E,S1,S2) is a possible execution of our scheduler. A maximal scheduler is
a most general scheduler, because any execution of another scheduler is a possible
execution of the maximal scheduler. By suitable refinement of our maximal sched-
uler, we derive a centralized scheduler and a distributed scheduler. See [12] for a
formal definition of the maximality condition.

A Scheduling Strategy Assign a natural number, called height, to each vertex; let
x.h denote the height of vertex x. We will maintain the invariant that neighbors
have different heights:

Invariant D: (∀x, y : x, y are neighbors: x.h 6= y.h)

For vertex x, x.low holds if the height of x is smaller than all of its neighbors,
i.e., x.low ≡ (∀y : x, y are neighbors: x.h < y.h). We write v.black to denote that
v is black in a given state. The scheduling strategy is:
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• (C1) Consider each vertex, v, for blackening eventually; if ¬v.black∧v.low holds
then blacken v.

• (C2) Simultaneous with the whitening of a vertex v (by the environment), in-
crease v.h (while preserving the invariant D).

It is shown in [12] that this scheduling strategy satisfies (S1,S2) and, further, it
is maximal in the sense described previously.

4.3. Implementation of the Scheduling Strategy

4.3.1. Central scheduler A central scheduler that implements the given strategy
may operate as follows. The scheduler scans through the vertices and blackens a
vertex v provided v.low ∧ ¬v.black holds. The effect of blackening is to send a
message to the appropriate processor specifying that the selected action may be
executed. Upon termination of the execution of the action, a message is sent to the
scheduler; the scheduler whitens the corresponding vertex and increases its height,
ensuring that no two neighbors have the same height. The scheduler may scan the
vertices in any order, but every vertex must be considered eventually, as required
in (C1).

This implementation may be improved by maintaining a set, L, of vertices that
are both white and low, i.e., L contains all vertices v for which ¬v.black ∧ v.low
holds. The scheduler blackens a vertex of L and removes it from L. Whenever a
vertex x is whitened and its height increased, the scheduler checks x and all of its
neighbors to determine if any of these vertices qualify for inclusion in L; if some
vertex, y, qualifies then y is added to L. It has to be guaranteed that every vertex
in L is eventually scanned and removed; one way is to keep L as a list in which
additions are done at the rear and deletions from the front. Observe that once a
vertex is in L it remains white and low until it is blackened.

4.3.2. Distributed scheduler The proposed scheduling strategy can be distributed
so that each vertex blackens itself eventually if it is white and low. The vertices
communicate by messages of a special form, called token. Associated with each
edge (x, y) is a token. Each token has a value which is a positive integer; the value
of token (x, y) is |x.h− y.h|. This token is held by either x or y, whichever has the
smaller height.

It follows from the description above that a vertex that holds all incident tokens
has a height that is smaller than all of its neighbors; if such a vertex is white, it may
color itself black. A vertex, upon becoming white, increases its height by d, d > 0,
effectively reducing the value of each incident token by d (note that such a vertex
holds all its incident tokens, and, hence, it can alter their values). The quantity d
should be different from all token values so that neighbors will not have the same
height, i.e., no token value becomes zero, after a vertex’s height is increased. If
token (x, y)’s value becomes negative as a result of reducing it by d, indicating that
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the holder x now has greater height than y, then x resets the token value to its
absolute value and sends the token to y.

Observe that the vertices need not query each other for their heights, because a
token is eventually sent to a vertex of a lower height. Also, since the token value
is the difference in heights between neighbors, it is possible to bound the token
values whereas the vertex heights are unbounded over the course of the computa-
tion. Initially, token values have to be computed and the tokens have to be placed
appropriately based on the heights of the vertices. There is no need to keep the
vertex heights, explicitly, from then on.

We have left open the question of how a vertex’s height is to be increased when
it is whitened. The only requirement is that neighbors should never have the same
height. A particularly interesting scheme is to increase a vertex’s height beyond all
its neighbors’ heights whenever it is whitened; this amounts to sending all incident
tokens to the neighbors when a vertex is whitened. Under this strategy, the token
values are immaterial: a white vertex is blackened if it holds all incident tokens and
upon being whitened, a vertex sends all incident tokens to the neighbors. Assuming
that each edge (x, y) is directed from the token-holder x to y, the graph is initially
acyclic, and each blackening and whitening move preserves the acyclicity. This
is the strategy that was employed in solving the distributed dining philosophers
problem in Chandy and Misra [4]; a black vertex is eating and a white vertex is
hungry; the constraint (S1) amounts the well-known requirement that neighboring
philosophers do not eat simultaneously. Our current problem has no counterpart
of the thinking state, which added slight complication to the solution in [4]. The
tokens are called forks in that solution.

As described in section 4.1, the actions (vertices) are partitioned among a group of
processors. The distributed scheduling strategy has to be modified slightly, because
the steps we have prescribed for the vertices are to be taken by the processors on
behalf of their constituent actions. Message transmissions among the vertices at a
processor can be simulated by simple manipulations of the data structures of that
processor.

4.4. Compatibility

A loose execution of a program allows only compatible actions to be executed si-
multaneously. In this section, we give a definition of compatibility and state the
Reduction Theorem, which says, in effect, that a loose execution may be simulated
by a tight execution (in which executions of different actions are not interleaved).
We expect the user to specify the compatibility relation for procedures within each
box; then the compatibility relation among all procedures can be computed effi-
ciently from the definition given below.

The states of a box are given by the values of its variables; the state of a program
is given by its box states. With each procedure (partial and total) we associate
a binary relation over program states. Informally, (u, v) ∈ p, for program states
u, v and procedure p denotes that there is a tight execution of p that moves the
state of the system from u to v. In the following, concatenation of procedure names
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corresponds to their relational product. For strings x, y, we write x ⊆ y to denote
that the relation corresponding to x is a subset of the relation corresponding to y.

Procedures p, q are compatible, denoted by p ∼ q, if all of the following conditions
hold. Observe that ∼ is a symmetric relation.

C0. p calls p′ ⇒ p′ ∼ q, and q calls q′ ⇒ p ∼ q′.

C1. If p, q are in the same box,
(p is total ⇒ qp ⊆ pq), and
(q is total ⇒ pq ⊆ qp).

C2. If p, q are in different boxes, the transitive closure of the relation (≥p ∪ ≥q)
is a partial order over the boxes.

Condition C0 requires that procedures that are called by compatible procedures
be compatible; this condition is well-grounded because, p calls p′ ⇒ p.box >p

p′.box. Condition C1 says that for p, q in the same box, the effect of executing a
partial procedure and then a total procedure can be simulated by executing them
in the reverse order. Condition C2 says that compatible procedures impose similar
(i.e., non-conflicting) partial orders on boxes.

Notes:
(1) For procedures with parameters, compatibility is checked with all possible values
of parameters.
(2) Partial procedures of the same box are always compatible.
(3) Total procedures p, q of the same box are compatible provided pq = qp.

Example of Compatibility Consider the unbounded fifo channel of Section 3.1. We
show that get ∼ put, i.e., for any x, y, get(x) put(y) ⊆ put(y) get(x). Note that
the pair of states (u, v), where u represents the empty channel, does not belong to
the relation get(x).

{r = a : S} put(y) {r = a : S : y} get(x) {x : r = a : S : y}
{r = a : S} get(x) {x : r = a : S} put(y) {x : r = a : S : y}

The final states, given by the values of x and r, are identical.
The preceding argument shows that two procedures from different boxes that call

put and get (i.e., a sender and a receiver) may execute concurrently. Further, since
get ∼ get by definition, multiple receivers may also execute concurrently. However,
it is not the case that put ∼ put, that is,

put(x) put(y) 6= put(y) put(x)

because a fifo channel is a sequence, and appending a pair of items in different
orders result in different sequences. Therefore, multiple senders may not execute
concurrently.
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Lemma 1: Let p ∼ q where p is total (p, q may not belong to the same box).
Then, qp ⊆ pq.

This is the crucial lemma in establishing the Reduction Theorem, given below.
The lemma permits a total procedure p to be moved left over any other procedure
q provided p, q are compatible. This strategy can be employed to bring all the
components of a single procedure together, thereby converting a loose execution
to a tight execution. Observe that the resulting tight execution establishes identi-
cal final state starting from the same initial state as the original loose execution.
Therefore, properties of loose executions may be derived from those of the tight
executions. For a proof of the following theorem, see chapter 10 of [20].

Reduction Theorem: Let E denote a finite loose execution of some set of ac-
tions. There exists a tight execution, F , of those actions such that E ⊆ F .
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5. Concluding Remarks

Traditionally, multiprograms consist of processes that execute autonomously. A
typical process receives requests from the other processes, and it may call upon other
processes for data communication or synchronization. The interaction mechanism
– shared memory, message passing, broadcast, etc. – defines the platform on which
it is most suitable to implement a specific multiprogram.

In the Seuss model, we view a multiprogram as a set of actions where each
action deals with one aspect of the system functionality, and execution of an action
is wait-free. Additionally, we specify the conditions under which an action is to
be executed. Typical actions in an operating system may include the ones for
garbage collection, response to a device failure by posting appropriate warnings
and initiation of communication after receiving a request, for instance. Process
control systems, such as avionics and telephony, may contain actions for processing
of received data, updates of internal data structures, and outputs for display and
archival recordings. The Seuss view that all multiprogramming can be regarded
as (1) coding of the action-bodies, and (2) specifying the conditions under which
each action-body is to be executed, differs markedly from the conventional view;
we consider and justify some of these differences below.

First, Seuss insists that a program execution be understood by a single thread of
control, avoiding interleaved executions of the action-bodies, because it is simpler
to understand a single thread and formalize this understanding within a logic.
An implementation, however, need not be restricted to a single thread as long
as it achieves the same effect as a single-thread execution. We will show how
implementations may exploit the structures of Seuss programs (and user supplied
directives) to run concurrent threads. A consequence of having a single thread
is that the notion of waiting has to be abandoned, because a thread can afford
to wait only if there is another thread whose execution can terminate its waiting;
rendezvous-based interactions [9, 17] that require at least two threads of control to
be meaningful, have to be abandoned in this model of execution. We have replaced
waiting by the refusal of a procedure to execute. For instance, a call upon a P
operation on a semaphore (which could cause the caller to wait) is now replaced by
the call being rejected if the semaphore is not in the appropriate state; the caller
then attempts the call repeatedly during the ensuing execution.

Second, a cat is a mechanism for grouping related actions. It is not a process,
though traditional processes may be encoded as cats (as we have done for the
multiplex and the database). A cat can be used to encode protocols for communi-
cation, synchronization and mutual exclusion, and it can be used to encode objects
as in object-oriented programming. The only method of communication among the
cats is through procedure calls, much like the programming methodology based on
remote procedure calls. The minimality of the model makes it possible to develop
a simple theory of programming.

Third, Seuss divides the multiprogramming world into (1) programming of action-
bodies whose executions are wait-free, and (2) specifying the conditions for orches-
trating the executions of the action bodies. Different theories and programming
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methodologies are appropriate for these two tasks. In particular, if the action-
bodies are sequential programs then traditional sequential programming method-
ologies may be adopted for their developments. The orchestration of the actions
has to employ some multiprogramming theory, but it is largely independent of the
action-bodies. Seuss addresses only the design aspects of multiprograms – i.e., how
to combine actions – and not the designs of the action-bodies. Separation of se-
quential and multiprogramming features has also been advocated in Browne et. al.
[3].

Fourth, Seuss severely restricts the amount of control available to the program-
mer at the multiprogramming level. The component actions of a program can be
executed through infinite repetitions only. In particular, sequencing of two actions
has to be implemented explicitly. Such loss of flexibility is to be expected when
controlling larger abstractions. For an analogy, observe that machine language of-
fers complete control over all aspects of a machine operation: the instructions may
be treated as data, data types may be ignored entirely, and control flow may be
altered arbitrarily. Such flexibility is appropriate when a piece of code is very short;
then the human eye can follow arbitrary jumps, and “mistreatment” of data can
be explained away in a comment. Flow charts are particularly useful in unraveling
intent in a short and tangled piece of code. At higher levels, control structures for se-
quential programs are typically limited to sequential composition, alternation, and
repetition; arbitrary jumps have nearly vanished from all high-level programming.
Flow charts are of limited value at this level of programming, because intricate
manipulations are dangerous when attempted at a higher level, and prudent pro-
grammers limit themselves to appropriate programming methodologies in order to
avoid such dangers. We expect that the rules of combination have to become even
simpler at the multiprogramming level. That is why we propose that the component
actions of a multiprogram be executed using a form of repeated non-deterministic
selection only.

Our work incorporates ideas from serializability and atomicity in databases[2],
notions of objects and inheritance[16], Communicating Sequential Processes[9], i/o
automata[14], and Temporal Logic of Actions[13]. A partial procedure is similar to
a database (nested) transaction that may commit or abort; the procedure commits
(to execute) if its precondition holds and its preprocedure commits, and it aborts
otherwise. A typical abort of a database transaction requires a rollback to a valid
state. In Seuss, a partial procedure does not change the program state until it
commits, and therefore, there is no need for a rollback. The form of a partial
procedure is inspired by Communicating Sequential Processes[9]. Our model may
be viewed as a special case of CSP because we disallow nested partial procedures.

Seuss is an outgrowth of our earlier work on UNITY [5]. A UNITY program
consists of statements each of which may change the program state. A program
execution starts in a specified initial state. Statements of the program are chosen
for execution in a non-deterministic fashion, subject only to the (fairness) rule that
each statement be chosen eventually. The UNITY statements were particularly sim-
ple – assignments to program variables – and the model allowed few programming
abstractions besides asynchronous compositions of programs. Seuss is an attempt
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to build a compositional model of multiprogramming, retaining some of the advan-
tages of UNITY. An action is similar to a statement, though we expect actions
to be much larger in size. We have added more structure to UNITY, by distin-
guishing between total and partial procedures, and imposing a hierarchy over the
cats. Executing actions as indivisible units would extract a heavy penalty in perfor-
mance; therefore, we have developed the theory that permits interleaved executions
of the actions. Programs in UNITY interact by operating on a shared data space;
Seuss cats, however, have no shared data and they interact through procedure calls
only. In a sense, cats may only share cats. As in UNITY, the issues of deadlock,
starvation, progress (liveness), etc., can be treated by making assertions about the
sequence of states in every execution. Also, as in UNITY, program termination is
not a basic concept. A program has reached a fixed point when preconditions of
all actions are false ; further execution of the program does not change its state
then, and an implementation may terminate a program execution that reaches a
fixed point. We have developed a simple logic for UNITY (for some recent devel-
opments, see [19], [18], [6]) that is applicable to Seuss as well.
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