Science of Computer Programming 14 (1990) 159-184 159
North-Holland

SPECIFYING CONCURRENT OBJECTS AS
COMMUNICATING PROCESSES

Jayadev MISRA*
Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712, USA

Received January 1990

1. Introduction

An object and its associated operations may be specified in many ways. One way
is to give an abstract representation of the object data structure (viz., representing
a queue by a sequence) and the effects of various operations on this abstract
representation [3-5]. Another way [2] is to leave the representation aspects
unspecified but to give a set of equations that relate the effects of various operations
(the equations define a congruence relation in a term algebra). The common goal
of a specification, however, is to serve as a legal document that spells out a contract
between a user and an implementer: The user may assume no more about an object
than what is specified and the implementer must satisfy the specification through
his implementation.

We view a specification not merely as a legal contract but additionally as a means
to

(1) deduce properties of a specified object,

(2) deduce properties of other objects in which the specified object is a component
(i.e., inheritance of properties), and

(3) implement the object by stepwise refinement of its specification.

Therefore we require that a specification not merely be formal but also be in a form
that admits of effective manipulation. This requirement rules out specification
schemes in which program fragments (in some high-level language) appear as part
of specifications; typically such program fragments cannot be manipulated
effectively.

In many specification schemes it is assumed that:

(1) each operation on an object is deterministic (i.e., applying the operation to
a given state of the object results in a unique next state and/or unique values
being returned),

(2) an operation once started always terminates in every state of the object, and

* Partially supported by the ONR Contract N00014-90-J-1640 and by the Texas Advanced Research
Program under Grant No. 003658-065.

0167-6423/90/$03.50 © 1990—Elsevier Science Publishers B.V. (North-Holland)

160 J. Misra

(3) operations are not applied concurrently.

In many cases of interest arising in applications such as operating systems, process
control systems and concurrent databases, these assumptions are rarely met. For
instance, a ‘“‘queue object” acts as an intermediary between a producer and a
consumer, temporarily storing the data items output by the producer and later
delivering them to the consumer. The queue object is required to:

(1) deliver data in the same order to the consumer as they were received from
the producer,

(2) receive data from the producer provided its internal queue spaces are nonfull,
and :

(3) upon demand, send data to the consumer provided its internal queue spaces
are nonempty.

Requests from the producer and the consumer may be processed concurrently: The
producer is delayed until there is some space in the queue and the consumer is
delayed until there is some data item in the queue. Observe that a request from the
producer, to add a data item to the queue, may not terminate if the queue remains
full forever, and similarly, a request from the consumer may not terminate if the
queue remains empty forever.

In this paper, we propose a specification scheme for concurrent objects that allows
effective manipulations of specifications and admits nondeterministic, nonterminat-
ing and concurrent operations on objects. Our approach is to view a concurrent
object as an asynchronous communicating process. Such a process can be specified
by describing its initial state, how each communication—send or receive—alters the
state, and the conditions under which a communication action is guaranteed to take
place. On the other hand, since the internal state can be determined from the
sequence of communications (provided the process is deterministic), the process
can also be specified in terms of the sequence of communications in which it engages.
The point to note is that the internal state and the sequence of communications can
be viewed as auxiliary variables which may be altered as a result of communications.
Our specification scheme allows us to define auxiliary variables and state properties
using these variables. We advocate using any auxiliary variable that allows a simple
and manipulable specification, leaving open the question whether it is preferable
to use ‘“observable’ input-output sequences or “unobservable” internal states.

The specification mechanism is based on “UNITY logic” [1]. Auxiliary variables
can be defined directly using the constructs in this logic. The inference rules of the
logic can be applied to deduce various properties of an object from its specification.
Also, we may use the logic to prove that one specification refines (i.e., implements)
another specification and that an implementation meets a specification.

1.1. Outline of the paper

We give a brief introduction to UNITY in Section 2 including all the notations
and logic to understand this paper. The main example treated in this paper is a

Specifying concurrent objects 161

bounded bag (or multiset). Section 3 contains an informal description and a formal
specification of this object. We demonstrate the usefulness of the specification by
showing that concatenation of two bags results in a bag of the appropriate size. The
specification in Section 3 is based on an auxiliary variable that encodes the internal
~ state. We provide an alternative specification in Section 4 that uses input-output
sequences as auxiliary variables; we show that this specification is a refinement of
the earlier one. Section 5 contains specifications for a “queue” and a “stack”. We
show that a queue implements a bag and a stack implements a bag, showing in each
case that the specification of the former implies the specification of the latter. Section
6 contains a refinement of the bag specifications of Section 4, and Section 7 gives
an implementation of the specification of Section 6. The usefulness of the method
is discussed in Section 8. ‘

All the proofs are given in complete detail to emphasize that such proofs need
not be excessively long or tedious, as is often the case with formal proofs.

A preliminary version of this paper appears in [7]. The specifications and the
proofs have been considerably simplified in the current version.

2. A brief introduction to UNITY

A UNITY program consists of:

(1) declarations of variables,
(2) a description of their initial values, and
(3) a finite set of statements.

We shall not describe the program syntax except briefly in Section 7 of this paper
because it is unnecessary for understanding this paper. However an operational
description of the execution of a program is helpful in understanding the logical
operators introduced later in this section.

An initial state of a program is a state in which all variables have their specified
initial values (there can be several possible initial states if the initial values of some
variables are not specified). In a step of program execution an arbitrary statement
is selected and executed. Execution of every statement terminates in every program
state. (This assumption is met in our model by restricting the statements to assignment
statements only, and function calls, if any, must be guaranteed to terminate.) A
program execution consists of an infinite number of steps in which each statement
is executed infinitely often.

This program model captures many notions useful for programming such as:
synchrony, by allowing several variable values to be modified by a single (atomic)
statement; asynchrony, by specifying little about the order in which the individual
statements are executed; processes communicating through shared variables, by
partitioning the statements of the program into subsets and identifying a process
with a subset; processes communicating via messages, by restricting the manner in

162 J. Misra

which shared variables are accessed and modified, etc. We shall not describe these
aspects of the model; however, it will become apparent from the bag example in
this paper that process networks can be described effectively within this model.

2.1. uNITY logic

A fragment of UNITY logic that is used in this paper is described in this section.
Three logical operators, unless, ensures and leads-to, are at the core of uNITY
logic. Each of these is a binary relation on predicates; unless is used to describe
the safety properties, and the other two to describe progress properties of a program.

Notation 2.1. Throughout this section p, g and r denote predicates which may name
program variables, bound variables and free variables (free variables are those that
are neither program variables nor bound variables). ‘

2.1.1. unless
For a given program,
p unless q

denotes that once predicate p is true it remains true at least as long as q is not true.
Formally (using Hoare’s notation)

{for all statements s of the program :: {p A—g} s {pv q})

punless q

i.e., if p A g holds prior to execution of any statement of the program, then pv q
holds following the execution of the statement.

It follows from this definition that if p holds and g does not hold in a program
state then in the next state either q holds, or p A g holds; hence, by induction on
the number of statement executions, p A g continues to hold as long as q does not
hold. Note that it is possible for p A—1g to hold forever. Also note that if -1)pv g
holds in a state then p unless q does not tell us anything about future states.

Notation 2.2. We write (Vu :: P.u) and (3u :: P.u) for universal quantification of u
in P.u and existential quantification of u in P.u, respectively. The dummy u could
denote a variable, a statement in a program, or even a program. Any property having
a free variable (i.e., a variable that is neither bound nor a program variable) is
assumed to be universally quantified over all possible values of the variable. Thus,

u=k unless u>k
where k is free, is a shorthand for

(Vk :: u=k unless u> k).

Specifying concurrent objects 163

Examples 2.3.
(1) Integer variable u does not decrease:

u=k unlessu>k
or
u = k unless false

(2) A message is received (i.e., predicate rcvd holds) only if it had been sent
earlier (i.e., predicate sent already holds):

—ircvd unless sent

Example 2.4 (Defining auxiliary variables). Let u be an integer-valued variable and
- let v count the number of times u’s value has been changed during the course of a
program execution. The value of v is completely defined by

initially v =0
u=m A v=nunlessu#m A v=n+1

The traditional way to define v, given a program in which u is a variable, is to
augment the program text with the assignment,

v=ov+1

whenever u’s value is changed; v is called an auxiliary variable. Our way of defining
v, without appealing to the program text, is preferable because it provides a direct
relationship between u and v which may be exploited in specifications and proofs.

2.1.2. Stable, constant, invariant '

Some special cases of unless are of importance. The predicate p unless false, by
definition, denotes that p remains true forever once it becomes true; we write, “p
stable” as a shorthand for ““p unless false”. An expression e is constant means e = x
is stable, for all possible values x of e; then e never changes value. If p holds in
every initial state and p is stable, then p holds in every state during any execution;
we then say that “p is invariant”.

2.1.3. ensures
For a given program,
p ensures q

implies that p unless g holds for the program, and if p holds at any point in the
execution of the program then g holds eventually. Formally,

punlessq an (3 statement s :: {p A g} s {q})
p ensures q ’

It follows from this definition that once p is true it remains true at least as long
as ¢ is not true (from p unless q). Furthermore, from the rules of program execution,
statement s will be executed some time after p becomes true. If q is still false prior
to the execution of s, then p A g holds, and the execution of s establishes g.

164 J. Misra

2.1.4. leads-to

For a given program, p leads-to g, abbreviated as p — g, denotes that once p is
true, q is or becomes true. Unlike ensures, p may not remain true until g becomes
true. The relation leads-to is defined inductively by the following rules. The first
rule is the basis for the inductive definition of leads-to. The second rule states that
leads-to is a transitive relation. In the third rule, p.m, for different m, denotes a set
of predicates. This rule states that if every predicate in a set leads-to q then their
disjunction also leads-to q.

Basis.
p ensures q
p—4q
Transitivity.
p—4q g
p—r

Disjunction. In the following m ranges over any arbitrary set, and m is not free in
q:

(Vm: pm— q)

(3m::pm)y—gq

Remark 2.5 (Inference rules). We have explained the meaning of each logical
operator in terms of program execution. However, neither the definitions nor our
proofs make any mention of program execution. We use only the definitions, and
a few rules derived from these definitions, in proofs; we believe that our proofs are
succinct because we avoid operational arguments about program executions.

2.1.5. Derived rules
The following rules for unless are used in this paper; for their proofs, see [1].
Reflexivity, antireflexivity.

p unless p, p unless —p

Consequence weakening.

p unless q, q=>r
p unless r

Stable conjunction.

p unless q, r stable

pArunlessqnar

Specifying concurrent objects 165

We need the following facts about constants; see [6] for proofs.

Constant formation. Any expression built out of constants and free variables is a
constant.

Constant introduction. For any function f over program variables u,

u=kunlessu#k n f(u)=f(k)
f constant

Corollary 2.6. For any predicate p over program variables u,

u=kunlessu#k n p
p stable

We use the following results about leads-to.

Implication.

P=4q

p—q

The following rule allows us to deduce a progress property from another progress
property and a safety property.

PSP.

pr>q, runless b

par— (gar)vb

2.1.6. Substitution axiom
The substitution axiom allows us to replace an invariant by true and vice versa,
in any predicate. Thus, if I is an invariant and it is required to prove that

p—gnl
it suffices to prove
p—q

It is important to note that when several programs are composed (see Section
2.2), the substitution axiom can be applied only with an invariant of the composite
program.

166 J. Misra

2.2. Program composition through union

Given two programs F and G, their union, written F 0 G, is obtained by appending
their codes together: The initial conditions of both F and G are satisfied in FOG
(and hence, we assume that initial conditions of F and G are not contradictory)
and the set of statements of FOG is the union of the statements of F and G.

Programs F and G may be thought of as executing asynchronously in FOG. The
union operator is useful for understanding process networks where each process
may be viewed as a program and the entire network is their union; in this view, the
bag program, the producer, and the consumer are composed through the union
operator to form a system.

The following theorem is fundamental for understanding union. It says that an
unless property holds in FOG iff it holds in both F and G; an ensures property
holds in FOG iff the corresponding unless property holds in both components and
the ensures property holds in at least one component. (When there are multiple
programs we write the program name with a property, such as p unless q in F.)

Union Theorem.

punlessq in FOG
=punlessq inF A punlessq in G

pensuresq in FOG
=(punlessq in F A pensuresq in G)
v(pensuresq in F A punlessq in G)

Corollary 2.7.

punless q in F, p stable in G
punlessq in FOG

Corollary 2.8.
e constant in F, e constant in G
e constant in FOG

Corollary 2.9.

p stable in F, p invariant in G

p invariant in FOG

Corollary 2.10.

p ensures q in F, p stable in G
p ensures q in FOG

Specifying concurrent objects 167

If variable x cannot be accessed by a program F (i.e., x is local to some other
program), then x is constant in F; hence—using the constant formation rule—any
expression, e(x), over x is constant in F. This fact is expressed in Corollary 2.11.
We write “x is not accessed in F”’ in quotes because this is not a proposition in
our logic.

Corollary 2.11.

“x is not accessed in F”
e(x) constant in F

We shall also use properties of the following form in the specification of F, where
P and Q are arbitrary properties. In the following, G is quantified over programs:

(VG:: (P in G) = (Q in FOG))

This says that if P is a property of any program G then Q is a property of FOG.
This is a convenient way of specifying the properties of the environment with which
F may be composed and the resulting properties of the composite program. This
kind of formula will be crucial in specifications of concurrent objects, because the
objects typically assume certain properties of their environments.

3. Specification methodology and bag specification

3.1. Specification methodology

We treat a concurrent object as an asynchronous communicating process. A
process and its environment communicate over channels that can typically hold
several items of data. To simplify matters, we dispense with channels; we assume
that communications are through certain shared variables each of which can hold
at most one item of data. The access protocol to the shared variables is as follows:
An “input shared variable” of the object can be written only by the environment
and read by the object; an “output shared variable” of the object can be written
only by the object and read by the environment. Typically, we will have a shared
variable corresponding to each operation on the object (if an operation also delivers
a result, we may require two shared variables—one to request the operation and
the other to store the result).

InFig. 1, Bimplements a bag that is shared by a group of producers and consumers.
Producers add items to the bag by successively storing them in r; consumers remove
successive items from w. Program F is the environment of B, representing the
producers and the consumers. There might be multiple producers and consumers
or even a single process that is both the producer and the consumer; the exact
number is irrelevant for the specification. The values that can be written into r and
w are, again, irrelevant for specification. However we do postulate a special value,
¢, which is written into a variable to denote that it is “empty”, i.e., it contains no

168 J. Misra

B

Fig. 1. A program B and its environment F.

useful data. The protocol for reading and writing is as follows. Program F writes
into r only if r = ¢; program B reads a value from r only if r# ¢ and then it may
set r to ¢. Program B stores a value in w only if w is ¢; program F reads from w
and it may set w to ¢ to indicate that it is ready to consume the next piece of data.

To formalize the access protocol of the last paragraph, we introduce an ordering
relation, <, over the data values and ¢ as follows: ¢ is ‘“‘smaller than” all non-¢
values, i.e.,

X<Y = X=¢ A Y#oP
Then it follows that
X<Y =X=¢ v X=Y

Property P1, below, states that B removes only non-¢ data from r, and it may set
r to ¢. Property P2 states that B writes only non-¢ values into w provided w is ¢.
In the following, R and W are free variables (of type, data or ¢).

P1. r=< R stable in B.
P2. W < w stable in B.

The access protocol specification as given by P1 and P2 is identical for all
concurrent objects. The initial conditions can usually be specified for output shared
variables; for this example:

Po. initially w=¢ in B.

Next, we specify the safety properties—the effect of reading inputs or how the
outputs are related to the current state—and progress properties—the conditions
under which inputs are read and outputs are written. These properties are specific
to each object. They are explored next for bags.

3.2. Internal state as an auxiliary variable (an informal specification)

In the following specification we introduce an auxiliary variable, b, that represents
the bag of data items internally stored by B. Variable b is local to B. The size of b
does not exceed N, a given positive integer (Property P3). Property P4 states that
any item read from r is added to b or stored in w (and r is then set to ¢) and any
item removed from b is stored in'w (w was ¢ previous to this step); hence the

Specifying concurrent objects 169

union of r, b and w remains constant. Property P5 states that, independent of the
environment, if the bag is nonfull (|b| < N), an item—if there is any—will be removed
from r and analogously, if the bag is nonempty (|b|> 0), w is or will become non-¢.

Notation 3.1. All bags in this paper are finite. We treat r and w to be bags of size
at most 1. Union of bags u and v is written as u + v; the bag u — v is the bag obtained
by removing as many items of v as possible from u. The value ¢ is treated as an
empty bag.

Combining with PO, P1, P2 defined previously, we obtain the following
specification.

3.3. Specification of a concurrent bag of size N, N >0

There exists a variable b, local to B, of type bag such that:
Po. initially b+w=¢ in B
P1. r<R stable in B

P2. W<w stable in B

P3. |b|< N invariant in B
P4. r+b+w constant in B
P5. (VF ::

(P5.1) |b|<N — r=¢ in BOF
(P5.2) |b|>0 > w#¢ in BOF
)

Remark 3.2. A program that implements B may not have a variable named b. It is
merely required that b be computable from the internal variables of B; in this sense,
b is an auxiliary variable of B.

Remark 3.3. Since b is a local variable of B, it is not accessed by the environment
F. Using Corollary 2.11, |b|< N stable in F. Since |b|< N is invariant in B, using
Corollary 2.9:

P6. (VF ::|b|< N invariant in BOF)

Observe that PS5 is a property of program B; it says that if B is composed with
any program F then certain properties hold in the composite program, BOF. In
particular, P5 does not require F to obey the appropriate protocols in accessing r
and w. A different bag specification is given in Section 4.2 where F is assumed to
access r and w appropriately.

3.4. Deducing properties from the specification

We deduce one safety and one progress property from the specification given in
Section 3.3.

170

P7.

J. Misra:

w=¢ unless |b|<N v r=¢ in B

Proof. In the following proof all properties are in B.

P8.

|r+b+w|< N+1 constant
, constant formation rule applied to P4
|r+b+w|< N +1 stable
, a constant predicate is stable
w=¢ unless w# ¢
, antireflexivity (see Section 2.1.5)
w=¢ A |r+b+w|<N+1lunlessw#¢ A [r+b+w|<N+1
, stable conjunction (Section 2.1.5) applied to the above two
w=¢ A |[r+b|<N+1 unless |r+b|<N
, rewriting the left-hand side and weakening the consequence
(Section 2.1.5)
w=¢ unless |[r+b|<N
, substitution axiom applied to the left-hand side with invariant |r+ b|
< N +1 (see P6)
w=¢ unless |b|<N v r=¢
, consequence weakening (Section 2.1.5) O

If w=¢ stable in F then
w=¢ — |b|]<N v r=¢ in BOF

Proof. In the following proof all properties-are in B[F unless otherwise stated.

w=¢ stable in F
, given
w=¢ unless |b|]<N v r=¢ inB
, from P7
w=¢ unless |b|<N v r=¢ in BOF
, Corollary 2.7
|b|>0 — w#¢
, from P5.2
|b|>0 A w=¢ — |b|<N v r=¢
, PSP on the above two
|[b]<0 A w=¢ — |b|<N
, implication rule and using N > 0.
w=¢ — |[b|<N v r=¢
, disjunction on the above two Od

3.5. Bag concatenation

Let B; implement a bag of size M, M > 0, with input and output variables, r and
v, respectively, and B, implement a bag of size N, N >0, with input and output

Specifying concurrent objects ’ 171

variables v and w, respectively. We show that B = B, B, implements a bag of size
M + N +1 with input and output variables r and w, respectively. The arrangement
is shown pictorially in Fig. 2. Observe that r and w are different variables (i.e., B;,
B, are not connected cyclically) and hence, r cannot be accessed by B, nor can w
be accessed by B,.

We first rewrite the specification from Section 3.3 for B, and B,. In the following,
R, V and W are free variables.

There exists b,, local to B,, such that
Po. initially b,+v=¢ in B,
P1. r<R stable in B,
P2. V=<v stable in B,

P3. |by]< M invariant in B,
P4. r+b,+v constant in B,
P5. (VG ::

(P5.1) |b)<M +— r=¢ in B,0G
(P5.2) |by|>0 — v#¢ in B,O0G
)

There exists b,, local to B,, such that

PO. initially b,+w=¢ in B,

P1. v=<XV stable in B,

P2. W=<w stable in B,

P3. |b,|< N invariant in B,
P4. v+b,+w constant in B,
Ps. (VH ::

(PS.I) |b2'<N e d U=¢ in BzDH
)

r Bl (v) >l B2

Size M Size N
Fig. 2. Concatenation of bags B,, B,. B= B, B, has size M+ N +1.

172 J. Misra

The properties of B, to be proven, are (again from Section 3.3):

There exists b, local to B, such that

Po. initially b+w=¢ in B

P1. r=<R stable in B

P2. W=<w stable in B

P3. |bj< M+ N+1 invariant in B
P4. r+b+w constant in B

P5. (VF ::

(P5.1) |b|<M+N+1+— r=¢ in BOF
(P5.2) |b|>0 > w+#¢ in BOF
)

We start the proof by defining b to be b, +v+b,. To show that b is local to B
observe that b, + v + b, is constant in the environment F since none of the variables,
b,, v or b,, can be accessed by F.

Proof of P0. All properties in this proof are in B.

initially b, +v=¢

, from PO of B,
initially b,+w=¢

, from PO of B,
initially b;+v+b,+w=¢

, from the above two
initially b+w = ¢

, definition of b O

Proof of P1.

r constant in B,
, I cannot be accessed by B,
r<R stable in B,
, constant formation; a constant predicate is stable
r<R stable in B,
, from P1 of B,
r<R stable in B,0B,
, from Corollary 2.7 O

Proof of P2. Similar to the proof of P1. [

Specifying concurrent objects 173

Proof of P3.

|by/< M invariant in B,0B,
, from P6 applied to B, (with F= B,)
|v|<1 invariant in B,0B,
, definition of v
|b,]< N invariant in B,0B,
, from P6 applied to B, (with F= B,)
|by+v+by]<M+ N+1 invariant in B,0B,
, from the above three O

Proof of P4. r+b+w=r+b,+v+b,+w:

r+b,+v constant in B,
, from P4 of B,
b,+w constant in B,
, b, and w cannot be accessed by B,
r+b,+v+b,+w constant in B,
, constant formation rule
r+b,+v+b,+w constant in B,
, similarly
r+b,+v+b,+w constant in ‘Bl 0B,
, Corollary 2.8 O

Proof of P5. Consider any arbitrary F. Setting G to B,0F in P5 for B, we get:
|b)j]<M — r=¢ in B,O0B,0F (1)
|by)>0 — v#¢ in B,0B,OF (2)
Similarly, setting H to B,0F in P5 for B, we get:
|b)j<N + v=¢ in B,0B,0F (3)
|b)>0 — w#¢ in B,0B,0F (4)
We will only show P5.1 for B, i.e.
[b|<M+N+1+ r=¢ in BOF

We use the following fact that is easily seen from the implication and disjunction
rules for leads-to:

q9—9q
pvqg = pvg

In the following proof all properties are in BOF,i.e., B,0B,0F:

174 J. Misra

|bl<M+N+1

S|b|<M v v=¢ v |[b|<N

, since b=b,+v+b,
= |b|<M v v=¢

, above fact about — and (3)
= |b|<M v r=¢

, above fact about — and P8 for B, (v= ¢ stable in B,0F)
—r=d¢

, above fact about — and (1) O

3.6. A note on the bag specification

It is interesting to note that the specification of Section 3.3 does not apply if
N =0, i.e., the internal space for storing bag items is empty. In such a case, we
would expect program B to move data from r to w whenever r# ¢ and w=¢.
However, the progress condition P5 becomes,

(VF ::
|b|<0 — r=¢ in BOF
|b|>0 —» w#¢ in BOF
)

Since N =0, it follows (from P6 and the definition of b) that |b| =0 is an invariant
in BOF. Hence, using the substitution axiom, the antecedent of each progress
condition is false. In uNITY, false — p, for any p. Therefore, for N =0, the
specification provides no guarantees on progress. In particular, the specification
allows a state (r # ¢) A (w = ¢) to persist. It may seem that the following strengthen-
ing of the progress specification could generalize the specification to N =0.

(VF a0
|b|]<N v w=¢ — r=¢ in BOF
[b|>0 v r#¥¢ — w#¢ in BOF
)

However since nothing is assumed about F, program F could conceivably change
(r#d)A(w=¢) to (r# ¢) A (w# @) (by storing data in w), thus making it impos-
sible for B to implement the first progress condition (while satisfying P4: r+b+w
is constant in B). Thus, such a specification cannot be implemented unless we
assume something more about the way F behaves, in particular that it never removes
data from r nor stores into w. A specification along this line is given in the next section.

4. Alternative specification of a bag

4.1. Communication sequences as auxiliary variables

We propose another bag specification in this section. We take as auxiliary variables

Specifying concurrent objects 175

the bags # and W, where 7 is the bag of data items written into r (and similarly w).
Such a bag is typically defined by augmenting the program text appropriately:
whenever r is changed, 7 is altered by adding the new value of r to it. As shown
in Example 2.4, our logic provides a direct way of defining 7 and W without appealing
to the program text. In the following, R and W are free variables (of the same type
as data) and X and Y are free variables that are of type bag:

AO0. initially (w)=(r,w) in BOF
Al. f=X A r=Runlesst=X+r A r#R in BOF
A2. w=Y A w=Wunless w=Y+w A w# W in BOF

To understand the relationship between 7 and r and (similarly for w and w), note
that 7 remains unchanged as long as r is unchanged and 7 may be modified by
adding the (new) value of r to it whenever r is changed. Furthermore, in our case,
since the values of r will alternate between ¢ and non-¢, successive values assumed
by r are different. (Note that whenever r is set to ¢, 7 remains unchanged.)

We deduce two simple facts. (Here “<” is the subbag relation.)

A3. rc 7 invariant in BOF

Ad, wc W invariant in BOF
We prove A3; proof of A4 is similar.

Proof of A3. All properties in the following proof are in BOF.

f=X A r=Runlesst=X+r n r#R
, from Al

(7,r)=(X, R) unless (7,r)#(X,R) A rct
, consequence weakening

r < 7 stable
, Corollary 2.6

Initially r < 7 because r=7. Hence r < 7 invariant. [J

4.2. Bag specification

The following specification is for a bag of size N, N =0. Properties R1 and R2
are the same as P1 and P2. In order to overcome the problems described in Section
3.6, we make some assumptions about the environment F. Specifically, we require
F to obey a similar access protocol to w and r as the ones obeyed by B for access
to r and w: Environment F may write into r only if r = ¢ and it may change w, to
¢, only if w# ¢. Property R3 states that under these conditions on F, the bag w is
a subbag of 7 —r (Property R3.1); these two bags differ by no more than N (Property

176 J. Misra

R3.2); if 7 and W differ by no more than N, then r is or will be set to ¢ (Property
R3.3); if |7] exceeds |W|, then w is or will be set to non-¢ (Property R3.4).

RO. initially w=¢ in B

R1. r<R stable in B

R2. W=<w stable in B

R3. (VF::(B.hypo in F) = (B.conc in BOF))
where

B.hypo :: R=<r stable, w=< W stable
B.conc ::
(R3.1) W< 7—r invariant
(R3.2) |f—r—Ww|< N invariant
(R3.3) |F—-W|sN > r=¢
(R3.4) |f|>|W| —» w#¢

We show, in Section 4.3, that under certain conditions the proposed specification
is a refinement of the specification in Section 3.3. Now we deduce a few properties
from the given specification. Assuming B.hypo in F

R4. f—Ww+w constant in B

RS. 7—w—r constant in F.

The proof of RS is similar to that of R4 by interchanging the roles of r and w.
We prove R4.

Proof of R4. All properties in the following proof are in B.

f=X A r=Runlesst=X+r A r#R
, union theorem on Al
r =< R stable
, from R1
f=X A r=Runlesst=X+r n r<R
, stable conjunction on the above two
(7, ry=(X, R) unless (7, r)#(X,R) n =X
, consequence weakening
7 constant
, constant introduction

Similarly, we can show—starting from A2 and R2 and applying stable conjunc-
tion—that W — w is constant in B. Using the constant formation rule, # — (W —w) is
constant in B. Since w< w (from A4) and w c 7 (from R3.1, which can be assumed
since B.hypo holds in F), 7 —(Ww—w)=7—w+w, which is then constant in B. [

Specifying concurrent objects - 177

4.3. Proof of refinement

We show that for N > 0, the specification of Section 4.2 is a refinement of the
specification of Section 3.3, provided that B.hypo holds in the environment F. In the
absence of such a requirement on F, the specification of Section 4.2 does not
prescribe B’s behavior (that is when B is composed with an arbitrary F) whereas
the specification of Section 3.3 prescribes B’s behavior even when it is composed
with an arbitrary F. Hence, our proof obligation for the refinement is to show that,
given :

B.hypo in F, N >0, and the properties RO-R3 of Section 4.2
there exists b, local to B, satisfying properties PO-P5 of Section 3.3. We let
b=F-w-r

Observe that b is local to B since b is constant in F (from RS5).

Proof of PO. b+w=F—Ww—r+w
initially (7, w) = (r, w).
Hence

initially b+w = ¢. O
Proofs of P1 and P2. Directly from R1 and R2. [

Proof of P3.

|F—Ww—r|< N invariant
, from R3.2
|b]< N invariant
, using the definition of b O

Proof of P4. r+b+w=F—w+w
7 —w-+w constant
, from R4 Od

Proof of P5.1.

[b|<N A r#¢
S|IF-Ww—r|[<N A r#¢
, using the definition of b

S|F-w|<N
,r< 7 (A3)
—r=d¢

, from R3.3

178 J. Misra

Hence
|| <N A r#¢ - r=¢
also
|[b|<N A r=¢ — r=¢
, implication

The result follows using disjunction on the above two. [

Proof of P5.2. Similar to that of P5.1. O

5. Specifications of concurrent queue and concurrent stack

We consider two other concurrent data objects—queue and stack—in this section.
Each has variables r and w which are accessed similarly as in the case of the bag.
Our interest in these specifications is mainly to show that each of these specifications
refines a bag specification, i.e., each implements a bag (of the appropriate size).

5.1. A specification of a concurrent queue

~ The operation of a concurrent queue is analogous to that of a concurrent bag.
The important difference is that in the former case the items are written into w in
the same order in which they were read from r. We propose a specification analogous
to that of Section 3.3. In the following “uv” denotes concatenation of sequences u
and v and ¢ denotes the null sequence. A queue of size N, N >0, is defined by a
program Q where:

There exists a variable g, local to Q, of type sequence such that:
QoO. initially g=¢ A w=¢ in Q
Q1. r=<R stable in Q
Q2. W=<w stable in Q
Q3. lg|=< N invariant in Q
Q4. rqw constant in Q
Qs. (VF ::
(Q5.1) |gl<Nw—> r=¢ inQOF
(Q5.2) |q|>0 —~ w#¢ InQOF
)

5.1.1. Queue implements bag
We show that from the specification of Section 5.1 we can deduce the specification
in Section 3.3 for an appropriate b. Denote the bag of items in g by [q]. Let b=[gq].
Proofs of PO, P1 and P2 are trivial. Property P3 follows from Q3 and P5 from Q5
by noting that

|bl=1[q]=1ql.

Specifying concurrent objects 179

To prove P4—that r+b+w constant in B—we observe (below all properties are
in B):
rqw constant
, from Q4
[rgqw] constant
, constant introduction
[r]+[q]+[w] constant
, [rgw]=[r]+[q]+[w]
r+b+w constant
,[rl=r[q]=0, [wl=w

5.2. A specification of a concurrent stack

The operation of a concurrent stack is distinguished from that of a concurrent.
bag by the requirements that the items read from r be pushed onto a stack (read is
permitted only if there is room in the stack) and the item written into w at any
point be the top of the stack which is then removed from the stack. A stack is seldom
accessed concurrently because speed differences between the producer—process
that writes into the stack—and the consumer—that reads from the stack—affects
the outcome of the reads.

We propose a specification, analogous to that of Section 4.2, for a program S
that implements a stack of sizeN, N > 0. Let 7 and w denote the sequences of data
items written into r and w respectively. Analogous to the definitions of 7 and W by
(A0, Al and A2) we define 7 and w in SO F (where F is any arbitrary environment
of S) by (A0’, Al’, A2’) below. As in Section 5.1, concatenations of sequences are
shown by juxtapositions and ¢ denotes the null sequence.

A0, initially (7, w)=(r,w) in SOF
Al F=X A r=Runlesst=Xr n r#R in SOF
A2, w=Y A w=Wunless w=Yw A w#W in SOF

Now, we define X N Y—a binary relation between sequences X and Y expressing
that Y is the complete output sequence of a stack of size N given X as the input
sequence. For N =0, it is the strongest relation satisfying

¢ No
and
XNX', Y(N+1)Y = aXY (N+1) X'aY’

where a is any arbitrary data item. The second rule states that given an input string
aXY to astack of size N +1, the item a appears in the output at some point. Prior
to output of g, item a is at the bottom of the stack and hence, the stack behaves as
if its size is N in converting some portion of the input, X, to X'. Following the
output of a, the stack is empty and hence the remaining input sequence Y is
converted to Y’ using a stack of size N+1.

180 J. Misra

Several interesting properties—using induction on the length of X—can be proven
about this relation. In particular,

XNY = [X]=[Y]

where [X] is the bag of items in X.

Now we specify program S that implements a concurrent stack of size N, N >0,
with shared variables r and w as before. Note that S3.1 is the only property that
differs substantially from the corresponding property of the bag in Section 4.2.

S0. initally w=¢ in S
S1. r=<R stable in S

S2. W=<wstable in S
S3. (VF::(B.hypo in S = (B.conc in SOF))
where

B.hypo::R <r stable, w=< W stable
B.conc:: {In S3.1, F—r is the prefix of 7 excluding r (if r=¢, F—r=7F).
Also, T is the prefix relation over sequences}
(83.1) (3z::(F—r) Nz A w=2Z) invariant
(83.2) |F|<|r|+|W|+ N invariant
(83.3) |F<|W|+Nw r=¢
(S3.4) |F>|w| — w#o

5.2.1. Stack implements a bag

We show that from the specification of a concurrent stack we can deduce the bag
specification in Section 4.2 for N >0. Note that 7 =[F], w=[w]. It follows that
Ff—r=[F—r]. Proofs of Properties RO-R3 are entirely straightforward, except for
R3.1: werF—r

(F-=r)Nz
=>[r-r]=[z]
, property of the binary relation stated earlier
wEzZ
=[w]lc[Z] A
, fact about building a bag from a sequence
(F=r)NZ A weZ
=[wlc[F—r]
, from the above two
(3z::(F—r) Nz A wE2)
S>wcri-r
, from the above using [W]=W and [F—r]=7—r.

We leave it as an exercise for the reader to show that a queue of size 1 implements
a stack of size 1, and vice versa.

Specifying concurrent objects 181
6. Refinement of the bag specification

We refine the specification of Section 4.2 as a step toward implementing a bag.
It can be shown from that specification that concatenation of two bags of size M
and N, where M and N are nonnegative, results in a bag of size M+ N +1; the
proof is similar in structure to the proof in Section 3.5; also, a similar proof for a
queue appears in [7]. Hence a bag of size N, N>0, can be implemented by
concatenating (N +1) bags of size 0 each. Therefore we restrict our attention to
bags of size 0 and propose a refinement. If a bag has size 0, the only possible action
is to move data items from r to w directly. The effect of this action is to keep r+w
constant (Property T3), and such an action is guaranteed to take place provided
(r# ¢) A (w= @) resulting in w# ¢ (Property T4).

TO. initially w=¢ in B
T1. r=<R stable in B

T2. W=<w stable in B
T3. r+w constant in B
T4. r# ¢ ensures w# ¢ in B

6.1. Proof of the refinement

We show that Properties RO-R3 of Section 4.2, for N =0, can be deduced from
TO-T4. Proofs of RO, R1 and R2 are immediate from TO, T1 and T2. Property R3
is of the form,

(VF::(B.hypo in F) = (B.conc in BOF))
We first show that

T5: (VF::
(B.hypo in F) A (TOAT3) = (#=W+rinvariant in BOF))
Proof.
F—Ww+w constant in B
, from R4
r+w constant in B
, from T3

F—w+w—(r+w) constant in B

, constant formation
F—W—r constant in B

, simplifying the above expression
F—Ww—r constant in F

, from R5 assuming B.hypo in F
F—Ww—r constant in BOF

, Corollary 2.8

182 J. Misra

Initially
f—w—-r=¢ in BOF
,from f=rand w=w=¢
Hence
f—Ww—r=¢ invariant in BOF,
ie.,

=w+r invariant in BOF. O

~>

Next we prove the four properties in B.conc, from B.hypo in F, Ti, T2, and
#=Ww+r invariant in BOF.

Proof of R3. Consider an arbitrary F in which B.hypo holds. The proof of R3.1 is
immediate given T5. The proof of R3.2 is immediate given T5 and that N =0. To
prove R3.3 we have to show that

|f|<|W| » r=¢ inBOF.
In the following all properties are in BOF:

|Al<|W| = r=4¢
, from T5
[Fl<|W¥| » r=¢
, using implication rule on the above

To prove R3.4 we have to show that (|7|>|W|—>w# ¢) in BOF:

r=Runlessr#R in F

, antireflexivity of unless
r=Runlesstr#R A r#¢ in F

, stable conjunction with R < r stable (from B.hypo)
r# ¢ stable in F

, Corollary 2.6
r#¢ ensures w# ¢ in B

, from T4
r# ¢ ensures w# ¢ in BOF

, using Corollary 2.10 on the above two
r£#¢ —> w#¢ in BOF

, definition of —
|f|>|W| —» w#¢ in BOF

, from TS5 |F|>|W| = r# ¢ O

7. An implementation

The specification of Section 6 can be implemented by a program whose only
statement moves data from r to w provided w= ¢ (if r = ¢, the movement has no

Specifying concurrent objects 183

effect):
rrw=g¢,r ifw=¢

The proof that this fragment has Properties T1-T4 is immediate from the definition
of unless and ensures. The initial condition of this program is w = ¢, and hence T0
is established.

An implementation for a bag of size N, N >0, uses the union of N+1 such
statements: One statement each for moving data from a location to an adjacent
location (closer to w) provided the latter is ¢. We show how this program may be
expressed in the UNITY programming notation.

Rename the variables r and w to be b[0] and b[N + 1], respectively. The internal
bag words are b[1] through b[N]. In the following program we write (Ji: 0<i< N +
1::1(i)) as a shorthand for #(1)0#(2)0- - - Ot(N+1), where #(1), for instance, is
obtained by replacing every occurrence of i by 1 in #(i). The program specifies the
initial values of b[1] through b[N+1] to be ¢ (in the part after initially). The
statements of the program are given after assign; the generic statement shown moves
b[i—1] to b[i] provided the latter is ¢.

Program bag {of size N, N> 0}

initially (0i:0<i< N+1::b[i]= ¢)

assign (0i:0<i< N+1::b[i—1], b[i]:= ¢, b[i—1] if b[i]= ¢)
end {bag}

8. Evaluation of the proposed methodology

Equational notation, as in [2], is generally preferred for specifications because it
enables a programmer to separate two concerns: deducing facts about an object
independent of its implementation and implementing the given equations to minim-
ize time or storage. As we have argued, the objects that are concurrently accessed
are, as yet, not amenable to equational specifications. An important research problem
is to determine the conditions under which an object can be specified equationally,
and yet accessed concurrently.

Our specification of the bag illustrates how some of the requirements described
in the introduction are met. The specification is concise even though it makes
concurrent access explicit. The notation admits of efficient manipulation—see, for
instance, the lengths of the refinement proofs in Sections 4, 5 and 6. We believe
that one of the most important applications of formal specifications is reasoning
about an object; a cumbersome notation—such as a programming notation—defeats
the main purpose of specification.

It may seem from our specification that we have artificially simplified the problem
by introducing shared variables—r and w in case of bag, queue, and stack—through
which the object communicates with this environment. How about multiple processes

184 J. Misra

accessing an object through remote procedure calls, for instance? First, remote
procedure call by a process is equivalent to the process storing the procedure
parameters in certain (shared) variables which the object can later access; in this
sense, we have not introduced any artificial simplicity. Second, accesses by multiple
processes (for instance, multiple producers writing into shared variables r.j,0<j < L)
can be treated within our theory as follows. Imagine that a sequencer process copies
some r.j into r whenever r = ¢; the different r.j are chosen fairly during the course
of the program execution. The index j could be part of the data written into 7, if,
for instance, the object needs to respond to a request in r.j by writing into w.j.
(Similarly, outputs for different consumers may be sequenced.) The entire concurrent
object may be viewed as a union of an input sequencer, data manager (the program
that actually implements the data structures) and the output sequencer, and each
of these may be specified individually. We have shown how to specify the data
manager; specifications of input/output sequences are entirely straightforward. A
direct specification of a queue with multiple input/output variables appears in [8,
Section 3.4].

Acknowledgement

It was a suggestion from Leslie Lamport which led me to study this problem and
to understand how auxiliary variables can be defined and effectively used. I am
indebted to Ambuj Singh for suggesting simplifications for my original specification;
his work clearly reveals the importance of formal reasoning as I was unable to
justify his simplications using intuitive arguments alone. Comments from the par-
ticipants of the Ninth International Summer School in Marktoberdorf, FRG, were
most helpful; particular thanks go to Jan L.A. van de Snepscheut. Thorough and
critical readings of different versions of the manuscript by Mani Chandy, Edgar
Knapp and J.R. Rao have improved the presentation.

References

[1] K.M. Chandy and J. Misra, Parallel Program Design: A Foundation (Addison-Wesley, Reading, MA,
1988).

[2] J. Guttag, Abstract data types and the development of data structures, Comm. ACM 20 (1977) 396-404.

[3] B.Hailpern, Verifying concurrent processes using temporal logic, Lecture Notes in Computer Science
129 (Springer, Berlin, 1982).

[4] 1. Hayes, ed., Specification Case Studies (Prentice-Hall, Englewood Cliffs, NJ, 1987).

[5] L. Lamport, A simple approach to specifying concurrent systems, Digital Systems Research Center
Rep. 15, 130 Lytton Avenue, Palo Alto, CA (1986).

[6] J. Misra, Monotonicity, stability and constants, Notes on Unity 10-89, University of Texas at Austin,
Austin, TX (1989).

[7]). Misra, Specifications of concurrently accessed data in: J. van de Snepscheut, ed., Mathematics of
Program Construction, Lecture Notes in Computer Science 375 (Springer, Berlin, 1989).

[8] A. Singh, Ranking in distributed systems, Ph.D. Thesis, University of Texas at Austin, Austin, TX
(1989).

