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Abstract

The UNITY-logic is a fragment of linear temporal logic. It was designed to specify safety and
and progress properties of reactive systems. Experience gained in applying this logic in practice
has led us to modify some of its operators. In particular, we had adopted unless as the primary
operator for expressing safety properties for many years. We suggest a new operator, co, to take its
place. Our experience suggests that the simplicity of formal manipulations is at least as important
as the expressive power of an operator. Theoretically, unless and co are equally expressive, while
the latter has more pleasing derived rules that allow simpler manipulations.

This research is presented in two papers. We study safety properties in the first paper and
progress properties in the second paper. We use a small amount of theory to introduce the co
operator. The major portion of the paper is devoted to applying the theory in practice: showing
how various safety properties can be expressed and manipulated using co.
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1 Introduction

Lamport gives the following informal meaning for safety: “bad things do not happen”. Roughly, a safety
property constrains the permitted actions, and, therefore, the permitted state changes of a program.
For instance, requiring that an integer x be nondecreasing in a program prevents any action of the
program from decreasing x. Clearly, an action that causes no state change, a skip, implements any
safety property. We will be particularly interested in several special kinds of safety properties, such as
invariant, that a predicate remain true at all times during a program’s execution; stable predicate, that
a predicate remain true once it becomes true; and constant, that an expression never change value.

A safety property allows us to state that the program does no harm. Such properties impose an
“upper bound” on the set of allowable execution sequences of the program. A trivial program such
as skip, for instance, satisfies all the safety properties. Several formal aspects of program design and
refinement are seriously affected by the absence of a “lower bound,” that the program is required to
have certain execution sequences. Thus, safety properties alone are insufficient as a basis of program
design.

In the second paper, we study a class of properties known as progress. Progress properties state that
“the program does some good.” For instance, such a property may state that the value of x increases
eventually. A nonprogramming example of a progress property is, “I press the switch and then the
light is on.” A safety property for this system might be “the light never comes on unless the switch
is pressed.” This safety property is conveniently implemented by smashing the light bulb. Conversely,
the given progress property might be implemented by having a light that is permanently on. It is the
interplay between the safety and progress properties that determines a nontrivial design.

The definitions of the logical operators and their derived rules constitute a small part of both papers.
The bulk of the papers is devoted to treating examples from diverse areas in order to demonstrate the
usefulness of the proposed operators. We also include a number of theoretical results about these
operators that have been developed in recent years.

Space does not permit a treatment of program composition. A logic for UNITY-program composition
appears in [5, chapter 7]. The operators proposed in this paper can be treated similarly. In particular,
the union theorem applies equally well to the new operators; see [34, chapters 5,6] for details.

The systems we consider are (discrete) action systems. Such a system consists of a number of
actions each of which may, possibly, change the state of the system. A sequential program, expressed in
a conventional language, is such a system; the state of the system is given by the values of the program
variables and the program counter; each statement corresponds to an action that is effective only if
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the program counter has the appropriate value. At most one action may change any program state,
because at most one action is “effective” for any given value of the program counter. A program with
concurrently executing processes can also be regarded as an action system in which more than one action
may be effective in a given program state. A particularly simple view of action systems is captured in
UNITY[5] in which a program counter is shown explicitly (as a part of the system state). The only
restriction that we impose is that there be a skip action in the system that may be applied in any
program state; this action does not change the program state. We do not propose a new programming
language. The proposed logic is applicable to any discrete action system, with a finite or infinite number
of actions.

The primary operator for expressing safety properties is co (for constrains). This operator is designed
to facilitate reasoning by induction on the number of computation steps. Most safety properties that
arise in practice are succinctly expressed using co. Additionally, co has simple manipulation rules
which permit easy deduction of new properties from the given ones. Our experience (see Staskaus-
kas [42],[41],[43]) suggests that the simplicity of formal manipulations is at least as important as the
expressive power of an operator. The operator co for a program is defined in terms of the actions
of the program. Several special cases of co–such as invariant, stable, constant–arise frequently in
practice; they are described in Section 2 of this paper. The derived rules for co–the main ones being
universal conjunctivity and universal disjunctivity–are given in Section 4. This section also describes
the Substitution Axiom and the Elimination Theorem, which are essential devices for constructions of
succinct proofs. The major portion of this part, Section 5, is devoted to applying the theory. Safety
properties for a number of small systems are formalized and manipulated. The examples are chosen from
diverse application areas, in order to demonstrate the usefulness of the proposed operator. Section 6
contains a few theoretical results. A synopsis of this part appears in Section 7.

2 The Meaning of co

The safety properties of a system are stated using the constrains (co) operator. We write p co q to
denote that whenever p holds, q holds following the execution of the next action.

Given p co q it follows that p ⇒ q, because the action skip can be applied in any state satisfying p.
Also, it follows that once p holds q continues to hold upto (and including) the point where p ceases to
hold (if ever p ceases to hold). Also, if beyond a certain point p remains true forever, so does q (because
if p holds then so does q). In any case, once p holds it continues to hold until ¬p ∧ q holds.

We define

p co q ∆= 〈∀ t :: {p} t {q}〉

where t is an action of the sytem (and the quantification is over all actions). Here, {p} t {q} stands for,
if action t is started in any system state satisfying p and execution of t completes, then q holds upon
completion.

An equivalent formulation of co using Dijkstra’s wp-calculus[10] is

p co q ∆= 〈∀ t :: p ⇒ wlp.t.q〉

This formulation allows us to establish the derived rules for co in Section 3 by exploiting the properties
of wlp.

Note on the binding powers of operators The operator co has lower binding power than all
arithmetic and logical operators. Thus,

p ∧ q co r ∧ s
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is to be interpreted as

(p ∧ q) co (r ∧ s) 2

Mathematical modeling often consists of converting imprecise or ambiguous informal descriptions
to formal descriptions. Such is the case with safety properties which are informally stated using, “. . .
may remain true as long as . . . ,” “. . . can be changed only if . . . ,” or “. . . it is never the case that
. . . .” The formal descriptions using co are usually easy to construct. Experience helps. This paper,
therefore, includes a large number of examples of varying difficulties. Below, we show some typical
informal descriptions and their formal counterparts.

Examples In the following examples, x, y are of type integer.

1. Once x is zero it remains zero until it becomes positive. Other ways of stating this are

x can become nonzero only by becoming positive, or
x cannot be decreased if it is zero.

We observe that if x = 0 is a precondition for an action then either x remains zero or x becomes
positive following the action, i.e.,

x = 0 co x ≥ 0

2. x never decreases. One way to formalize this is to start with the equivalent: if x has a certain
value m, it continues to have that value until it exceeds m. This is identical to Example (1),
except that 0 is now replaced by m. That is, for all m

x = m co x ≥ m

Here, m is a free variable and the above property is universally quantified over all integers m.
Therefore, this property actually represents a set of properties, one property corresponding to
each value of m. Another way to express that x never decreases is by

x ≥ m co x ≥ m

for all m. The formal correspondence between the two properties shown here can be established
using the properties of co. The second property is in a particularly important form that will be
studied in Section 3.

3. x may only be incremented (i.e., increased by 1). This means that in any step, either x retains its
old value, say m, or acquires the new value, m + 1. With free variable m,

x = m co x = m ∨ x = m + 1

4. A philosopher may transit from the thinking state to the hungry state. Using predicates t and h to
represent that a (particular) philosopher is in the thinking state or the hungry state, respectively,
the above says that whenever t is falsified h is established. However, writing

t co h

is incorrect, because t does not imply h. In such cases, we put the predicate that is in the left-hand
side (lhs) as a disjunct in the right-hand side (rhs) to form

t co t ∨ h

The above says that whenever t is falsified (t ∨ h) holds; therefore, ¬t ∧ (t ∨ h) holds in such
a state, which implies that h holds whenever t is falsified.

4



5. A message is received only if it has been sent. Such a statement is best treated by considering
its contrapositive: Any message that is unsent remains unreceived. (A rule of thumb is to apply
contrapositive whenever “only,” “only if” or “provided that” appear in a description.) There are
two possible interpretations—using sent (received) to denote that a specific message has been sent
(received)

¬sent ∧ ¬received co ¬received
¬sent ∧ ¬received co received ⇒ sent

The second property allows for simultaneous truthification of received and sent—modeling a
rendezvous-style communication—whereas the first property prohibits simultaneous transmission
and delivery.

6. x, y never change simultaneously. This is an important property that holds in every asynchronous
system where x, y are variables that can only be changed by different processes. Using free variables
m,n

x, y = m,n co x = m ∨ y = n

That is, at least one of the variables is unchanged by every action. 2

Relationship of co to other kinds of safety properties One aspect of a safety property is that
it can be “implemented” by doing nothing. Therefore, every safety property holds in a system in which
skip (i.e., do nothing) is the only action. For such a system, p co q holds whenever p ⇒ q, because

p
⇒ {p ⇒ q , q = wlp.skip.q}

wlp.skip.q

Several standard types of safety properties are simply expressed using co. We show some below;
others appear in later examples.

In [5], we had introduced p unless q, for arbitrary predicates p, q, to mean that once p holds it
continues to hold as long as q does not. If p and q hold simultaneously nothing can be asserted about
the next state. Formally, p unless q is, for all actions t,

{p ∧ ¬q} t {p ∨ q}

Since p ∧ ¬q ⇒ p ∨ q, we have

p unless q ≡ p ∧ ¬q co p ∨ q.

Conversely, p co q ≡ p unless ¬p ∧ q.
To say that p can be falsified only if q is a precondition, we have, for all t, {p ∧ ¬q} t {p}, i.e.,

p ∧ ¬q co p

To express that once p holds it continues to hold until q holds, we have, for all t, {p} t {p ∨ q}, i.e.,

p co p ∨ q
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3 Special Cases of co

3.1 Stable, Invariant, Constant

Several special cases of co appear frequently in practice; we have special names for these cases.

p stable ≡ p co p
p invariant ≡ initially p and p stable
e constant ≡ 〈∀ k :: e = k stable〉,

where e is an expression and k is a free variable of the same type as e.

From the above, p stable means that once p is true it remains true forever, because p co p is

〈∀ s :: {p} s {p}〉

which means that no action falsifies p. Predicates false and true are stable in any program. Stable
predicates are ubiquitous, for example: The system is deadlocked, a path exists between a sender and
a receiver, and the number of messages sent along a channel exceeds a certain value. We will see many
instances of stable predicates in Section 5.

A predicate is invariant for a system if it holds initially and it remains true thereafter. Therefore,
an invariant predicate is always true during a program execution. Predicate true is an invariant except
in the pathological case where false holds initially. Invariance is a basic notion in program design. Note
that we associate an invariant with a program, not with any point in the program text.

There is a subtle difference between a predicate being invariant and a predicate being “always true.”
The difference is analogous to the distinction between “provability” and “truth” in logic. The following
example is instructive.

Program distinction
initially x, y = 0, 0
assign x, y := 0, x

end

Here, x = 0 ∧ y = 0 is an invariant because it holds initially and

{x = 0 ∧ y = 0} x, y := 0, x {x = 0 ∧ y = 0}.

Since x = 0 ∧ y = 0 ⇒ y = 0, we can assert that y = 0 is always true during the program execution.
However, y = 0 cannot be shown to be an invariant, because y = 0 cannot be shown stable according
to our definition:

{y = 0} x, y := 0, x {y = 0}

does not hold. In Section 4.3, we show that a predicate that is “always true” is also an invariant, using
an extended notion of invariant that employs the “substitution axiom.”

An expression, e, is constant if its value never changes during a program execution. Our definition
says that once e has a value k, it will continue to have that same value. Similar to the above discussion
for invariants, there are expressions whose values never change, but that cannot be proven constant
according to our definition. For example, y cannot be shown constant in the above program though its
value never changes from zero. We can use the substitution axiom, described in Section 4.3, to prove
that such an expression is constant.
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3.2 Fixed Point

For a given program, the fixed point predicate, FP , holds upon “termination”. That is, for a state in
which FP holds, further execution of the program will not change state, and in a state in which FP
does not hold, there is an execution of the program that causes it to change state.

The notion of program termination can be couched in terms of FP : a program is guaranteed to
terminate if and only if it eventually reaches a state that satisfies FP . This is a progress property
(discussed in the second paper). The well-known phrase, “program is deadlock-free,” means that ¬FP
is always true; then, it is always possible to change the program state.

We give the following formal characterization of FP in Section 6.3: It is the weakest predicate p
such that p ∧ b is stable for any b. We will show that there is a unique weakest predicate of this form.
The following result is a direct consequence of this definition.

(Stability at Fixed Point) For any predicate b, FP ∧ b stable. 2

It is possible to compute FP syntactically from a UNITY program text: it is obtained by converting
each assignment statement to an equality and conjoining all the equalities so obtained; see [5, chapter
3] for details.

4 Derived Rules

4.1 Basic Rules

The following rules for co are obtained easily from the facts about the predicate transformer, wlp. Here,
p, q, p′, q′, r are arbitrary predicates.

• false co p

• p co true

• (conjunction; disjunction)
p co q , p′ co q′

p ∧ p′ co q ∧ q′

p ∨ p′ co q ∨ q′

The conjunction and disjunction rules follow from the conjunctivity and monotonicity properties of
wlp[10] and of logical implication. These rules generalize in the obvious manner to any set—finite or
infinite—of co-properties, because wlp and logical implication are universally conjunctive and universally
disjunctive. As corollaries of conjunction and disjunction—conjoining r co true and disjoining false co r,
respectively, to p co q—we obtain

• (lhs strengthening)
p co q

p ∧ r co q

• (rhs weakening)
p co q

p co q ∨ r

Also, co is transitive
p co q , q co r

p co r
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This is because q ⇒ r from q co r; then rhs of p co q can be weakened to p co r. Transitivity,
however, seems to be of little value because any application of transitivity could be replaced by lhs
strengthening—strengthen q to p—or rhs weakening—weaken q to r.

The operator co is a form of temporal implication. It shares many of the properties of logical
implication, such as the ones shown above. However, it is not reflexive (i.e., p co p does not always
hold) nor are we allowed to deduce a contrapositive (¬q co ¬p cannot be deduced from p co q).

Proof Format for co Since the lhs of a co-property can be strengthened and its rhs can be weakened,
we can use co as an operator in a proof presented as a weakening chain, as shown below to establish
p co t.

p
⇒ {justification}

q

⇒
...

r
co {justification}

s

⇒
...

⇒ {justification}
t

This is not the only proof format that we employ. In many proofs we deal with several co-properties
over which conjunctions and disjunctions are employed; in such cases, we write one property per line
and associate justifications with each line.

4.2 Rules for the Special Cases

The following rules follow from the conjunction and disjunction rules given earlier.

(stable conjunction, stable disjunction)

p co q , r stable
p ∧ r co q ∧ r
p ∨ r co q ∨ r

A special case of the above is,

p stable , q stable
p ∧ q stable
p ∨ q stable

Similarly,

p invariant , q invariant
p ∧ q invariant

(constant formation)

Any expression built out of constants and free variables is a constant.
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4.3 Substitution Axiom

The substitution axiom allows us to deduce properties that we cannot deduce directly from the definition
of co. It states: An invariant may be replaced by true, and vice versa, in any property of a program.
For instance, given that p co q and that J invariant, we can conclude

p ∧ J co q , p co q ∧ J , p ∧ J co q ∧ J , p ∨ ¬J co q ∧ J , etc.

In particular, given that p is invariant and p ⇒ q, we can show q invariant, as follows.

p invariant , given
p ∧ q invariant , p ≡ p ∧ q, since p ⇒ q
q invariant , replace p by true using the substitution axiom

In Program distinction of Section 3.1, we exhibited a predicate that is “always true” although we
could not show it to be invariant. In particular, we could show x = 0 ∧ y = 0 invariant, although
y = 0 could not be proven invariant. Using the argument given above (since x = 0 ∧ y = 0 ⇒ y = 0),
we can now claim, y = 0 invariant. Thus, the substitution axiom allows us to remove the distinction
between “always true” and invariant.

Another consequence of the substitution axiom is that a theorem and an invariant have the same
status: an invariant can be treated as a theorem and a theorem, of course, is an invariant. Therefore,
we often write simply J , rather than J invariant.

Note: For compositions of progams, a generalization of the substitution axiom applies[34, Chapter 6].
2

Rationale for the Substitution Axiom The following rationale for the substitution axiom is due
to Knapp[21]. In the definition of p co q, we interpreted {p} t {q} to mean that if action t is started
in any state satisfying p then q holds in the state upon completion of t, assuming t completes. What
is “any state”? We restrict our state space to the reachable states: A reachable state is a state (an
assignment of values to variables) that may arise during a computation; i.e., either it satisfies the initial
condition, or it is a state that may result by applying an action to a reachable state. It follows that
every reachable state satisfies every invariant. In fact, the set of reachable states is the set of states that
satisfy the strongest invariant (we show the existence of the strongest invariant in Section 6.2).

We interpret {p} t {q}, for a given program that includes action t, to mean that if action t is started
in any reachable state satisfying p then the resulting (reachable) state satisfies q. We may establish
{p} t {q} by proving, for any invariant J ,

p ∧ J ⇒ wlp.t.q

This is because the set of states satisfying p ∧ J includes all reachable states satisfying p (since a
reachable state satisfies any invariant). In particular, we can use the types of variables, or even true, as
the invariant, J . Even though the notion of invariant is defined using co, and the definition of co seems
to require the notion of invariant, there is no circularity if we start with a known invariant, such as true
or the variable types. We could then deduce other invariants which could be applied in deducing other
co-properties and invariants.

4.4 Elimination Theorem

Free variables are essential to our theory. Free variables can be introduced in the lhs by strengthening
and in the rhs by weakening, e.g., from p co q we can deduce, for program variable x and free variable
m,
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p ∧ x = m co q and,
p co q ∨ x 6= m

Free variables can be eliminated by taking conjunctions or disjunctions. We give a useful theorem below
for eliminations of free variables by employing disjunction.

Let p be any predicate, x be a program variable and m be a free variable (of the same type as x).
Denote by p[x := m] the predicate obtained by replacing all occurrences of x by m in p. Now, if p
names no program variable other than x then p[x := m] has no program variable, and, hence, it is a
constant. In particular, p[x := m] is stable. Observe that,

p = 〈∃ m : p[x := m] : x = m〉

Theorem(Elimination Theorem)

x = m co q , where m is free
p does not name m nor any program variable other than x

p co 〈∃ m :: p[x := m] ∧ q〉

Proof:
x = m co q , premise
p[x := m] ∧ x = m co p[x := m] ∧ q , stable conjunction with p[x := m]
〈∃ m :: p[x := m] ∧ x = m〉 co 〈∃ m :: p[x := m] ∧ q〉

, disjunction over all m
p co 〈∃ m :: p[x := m] ∧ q〉 , simplifying the lhs 2

The elimination theorem can be applied where x is a list of variables (and m is a list of free variables).
In the following example, we apply the theorem with x = (u, v).

Example: Suppose

u, v = m, n co u, v = m,n ∨ (m > n ∧ u, v = m− 1, n)

We will show that u ≥ v stable. Using p ≡ u ≥ v in the elimination theorem we have

u ≥ v
co {elimination theorem}
〈∃ m,n :: (m ≥ n ∧ u, v = m,n) ∨ (m ≥ n ∧ m > n ∧ u, v = m− 1, n)〉

⇒ {weakening each disjunct}
〈∃ m, n :: u ≥ v ∨ u ≥ v〉

⇒ {simplifying}
u ≥ v 2

5 Applications

We apply our theory to several small problems. In each case, we convert an informal description to a set
of co-properties, apply some of the manipulation rules given in the preceding section and interpret the
derived results. These examples suggest that the proposed theory is preferable to intuitive reasoning,
not merely for avoiding errors, but also for its simplicity and conciseness.
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5.1 Common Meeting Time

This problem has been discussed in Chandy and Misra[5, Section 1.4]. The purpose of this example is
to explore a family of design alternatives by considering the safety properties common to all members
of the family.

It is required to find the earliest meeting time acceptable to every member in a group. Time is
nonnegative and real-valued. To simplify notation, assume that there are only two persons, F and G, in
the group. Associated with F, G are functions, f, g, respectively, where each function maps nonnegative
reals to nonnegative reals (i.e., times to times). For any real t, f(t) is the earliest time at or after t
when F can meet; similarly, g(t) is defined. Time t is acceptable to F if and only if f(t) = t. Time t is
a common meeting time if and only if it is acceptable to both F and G, i.e., f(t) = t ∧ g(t) = t. The
goal is to design an algorithm that computes the earliest (i.e., smallest nonnegative) common meeting
time, provided one exists.

Several algorithms and their implementations on various architectures have been described in [5].
Here, we define the essential safety properties common to all these algorithms.

First, we have to make certain assumptions about f, g so that the earliest meeting time can be
computed effectively. Our verbal description suggests that t ≤ f(t), but we won’t require this property
(see, however, the discussion at the end of this section). We postulate that f, g be monotonic, i.e., for
all nonnegative real m,n

m ≤ n ⇒ f(m) ≤ f(n) (CMT1)
m ≤ n ⇒ g(m) ≤ g(n)

We adopt the following strategy in computing the earliest meeting time: we have a variable t,
nonnegative and real, whose value never exceeds the earliest common meeting time, and t is increased,
eventually, if it is not a common meeting time. The latter property is discussed in Section 5.1 of the
second paper. Here, we consider the safety aspect of the problem, given by the first requirement on t.
A strategy for implementing this requirement is to set t to 0, initially. The rule for modifying t is: if
t’s value is m before an action then it does not exceed both f(m) and g(m) after the action. It is not
obvious that this strategy prevents t from exceeding the earliest common meeting time; we prove this
fact below.

The formal description of the strategy is as follows.

initially t = 0 (CMT2)
t = m co t ≤ max(f(m), g(m)) (CMT3)

Let com(n) denote that n is a common meeting time, i.e., f(n) = n ∧ g(n) = n. We prove, from
CMT1-CMT3, that t exceeds no common meeting time, i.e., for any n,

com(n) ⇒ t ≤ n (CMT4)

To prove that (CMT4) is an invariant, note that it holds initially for any nonnegative real n, using
(CMT2). The remaining proof obligation is, rewriting (CMT4),

(¬com(n) ∨ t ≤ n) stable (CMT5)

which we proceed to prove.

¬com(n) ∨ t ≤ n
co { elimination theorem on (CMT3) where p is ¬com(n) ∨ t ≤ n }

〈∃ m :: (¬ com(n) ∨ m ≤ n) ∧ t ≤ max(f(m), g(m))〉
≡ { write the disjunction as ¬ com(n) ∨ (com(n) ∧m ≤ n) and expand }

〈∃ m :: [¬ com(n) ∧ t ≤ max(f(m), g(m))] ∨ [com(n) ∧ m ≤ n ∧ t ≤ max(f(m), g(m))]〉
⇒ { the first disjunct implies ¬com(n), the second disjunct implies (see below) t ≤ n }
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〈∃ m :: (¬ com(n) ∨ t ≤ n)〉
⇒ { predicate calculus }

¬ com(n) ∨ t ≤ n

This establishes (CMT5). Now we prove the result claimed in the above proof:

com(n) ∧ m ≤ n ∧ t ≤ max(f(m), g(m)) ⇒ t ≤ n

t
≤ { from the antecedent }

max(f(m), g(m))
≤ { m ≤ n ⇒ [f(m) ≤ f(n) ∧ g(m) ≤ g(n)], from (CMT1) }

max(f(n), g(n))
= { from definition, com(n) ≡ [f(n) = n ∧ g(n) = n] }

n

The strategy given by (CMT3) is quite general. It subsumes the following strategies.

t = m co t = m
t = m co t = m ∨ t = max(f(m), g(m))
t = m co t = m ∨ t = f(m) ∨ t = g(m)

In each of the above properties, the rhs is stronger than that of (CMT3); hence, (CMT3)—and, con-
sequently, (CMT5)—can be derived from each of the above properties. A weak safety property like
(CMT3) is preferable for initial design explorations because it constrains the allowable actions only
minimally.

Each of the following programs, P0–P3 (in which the initial condition, t = 0, is not shown) im-
plements (CMT3). In a program its actions are separated by []. The program executes its actions
repeatedly, choosing any action, nondeterministically, for execution in each step.

P0 :: t := t {does nothing useful}
P1 :: t := f(t) [] t := g(t)
P2 :: t := max(f(t), g(t))
P3 :: t := t + 1 if t + 1 ≤ max(f(t), g(t))

A useful strengthening of CMT3 is to require that t be nondecreasing, i.e.,

t = m co m ≤ t ≤ max(f(m), g(m)) (CMT3′)

This property is easily implemented (by programs P1,P2, for instance) if we know that the functions
f, g are ascending:

n ≤ f(n) ∧ n ≤ g(n) (CMT0)

The reader can prove (by applying elimination theorem to CMT3′) that

t = n ∧ com(n) stable

i.e., t does not change once its value equals a common meeting time. Interestingly, neither (CMT0)
nor (CMT3′) is required in deriving (CMT4). Another fact about f (and g) suggested by the verbal
description is that f(f(n)) = f(n). This fact is not required in any of our derivations.
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5.2 A Small Concurrent Program: Token Ring

The method advocated in the last section—describing an algorithm by its properties—is most profitably
applied to concurrent algorithms. Here, we consider a simple mutual exclusion problem.

A set of processes are connected in a ring where the message transmissions take place over the edges
of the ring; thus a process may communicate only with its left or right neighbor. It is given that at
most one process may transmit at any time. A technique to meet this requirement is to have a single
token circulate in the ring and allow only the token-holder to transmit. The following is an abstraction
of this solution.

A process is in one of three states: waiting to transmit (also called hungry), transmitting (also called
eating) and neither of the above (also called thinking). The terms hungry, eating, thinking are taken
from the dining philosophers problem which is a standard abstraction in resource allocation. An eating
process can transit only to thinking (see TR1, below), a thinking process can transit only to hungry
(see TR2) and a hungry process can transit only to eating (TR3); a hungry process remains hungry
as long as it does not hold the token (TR4); the token is relinquished only by a noneating process
(TR5). We would like to prove that there is at most one eating process—i.e., at most one transmitting
process—in the system. An intuitive proof is obvious: There is at most one token in the system and
an eating process holds the token. Unfortunately, the proof is far from obvious. For instance, the rule
for relinquishing the token, as stated above, is so vague that it allows a hungry process to release the
token when it transits to eating. Furthermore, initially the eating process, if any, has to hold the token
(TR0). Such details, which are often ignored in informal descriptions, cause endless problems.

Notation: We write hi/ei/ti to denote that process i is hungry / eating / thinking. These predicates
are mutually exclusive and hi ∨ ti ∨ ei ≡ true. The position of the token is in the variable p, i.e.,
p = i (as in TR5) denotes that process i holds the token. 2

In the following, i ranges over all processes.

initially ei ⇒ p = i (TR0)
ei co ei ∨ ti (TR1)
ti co ti ∨ hi (TR2)
hi co hi ∨ ei (TR3)
hi ∧ p 6= i co hi (TR4)
p = i co p = i ∨ ¬ei (TR5)

The properties, TR0–TR5, specify only the safety aspects of the system. In particular, the protocol
for transmitting the token (which is sent to the neighbor in a specific direction on the ring) is completely
ignored in this specification. The complete protocol is specified in Section 5.2 of the companion paper.
Here, we show that the partial specification is sufficient for establishing mutual exclusion, i.e., that there
is at most one eating process.

The assertion that there is at most one eating process can be expressed by the invariant

ei = ej ⇒ i = j

for all i, j. This result is shown by proving that an eating process holds the token, i.e., for any i,
ei ⇒ p = i. Then (ei ∧ ej) ⇒ (p = i ∧ p = j) ⇒ (i = j). We show the invariant ei ⇒ p = i, for
any i. Initially, the result follows from TR0. The remaining proof obligation is to show that (ei ⇒ p = i)
is stable, for any i.

ti ∨ hi ∨ p = i co ti ∨ hi ∨ p = i ∨ ¬ei , disjunction of (TR2, TR4, TR5)
ei ⇒ p = i stable , replacing ti ∨ hi by ¬ei and rewriting

Observe that (TR1, TR3) are unnecessary for the proof of mutual exclusion. This proof is concise, partly
because it does not mimic the usual commonsense reasoning. The proof demonstrates the effectiveness
of the disjunction rule.
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5.3 From Program Texts to Properties

Sometimes portions of a system are specified by program fragments whereas other portions are specified
by properties. It may be useful, therefore, to convert a program text to properties. This conversion can
be carried out automatically, especially for programs in which each statement corresponds to an action.
We sketch, below, how this is done.

Let x denote a group of program variables. Consider all the statements that can change one or more
variables in x. Let these statements be of the form

x := e1 [] . . . x := ei . . . [] . . .

Let e[x := m] be the expression obtained by replacing x by m in e. Then the current value of x, say
m, can be changed to e1[x := m] by executing the statement x := e1, or, in general, to ei[x := m]
by executing x := ei. Since x can be changed only by the above statements we obtain

x = m co x = m ∨ x = e1[x := m] ∨ . . . x = ei[x := m] ∨ . . .

Note that ei may name variables outside x.
A common syntactic variation is a guarded command of the form

gi → x := ei

or, x := ei if gi (in UNITY).

Given a set of statements of this form that can modify x, we obtain

x = m co x = m ∨ (g1[x := m] ∧ x = e1[x := m]) ∨ . . .
(gi[x := m] ∧ x = ei[x := m]) ∨ . . .

In systems consisting of multiple processes in which a variable is changed by at most one process,
the variables are naturally partitioned among the processes, each variable belonging to the process that
may change it (the variables that are never changed are constants). For each process, we obtain a
co-property in the above manner over the variables that it may change. For example, given below is a
system that represents two processes, one of which may modify x and the other y (though the latter
can read x):

x := x + 1 [] y := y + 1 if x > y

we obtain for the two parts, respectively,

x = m co x = m ∨ x = m + 1 and,
y = n co y = n ∨ (x > n ∧ y = n + 1)

To prove a safety property for this action system—say, x ≥ y stable—we could either start with
the program text (and show that each action preserves the property) or we could start with the safety
property of the system obtained as above and then deduce the result. Whenever we have a mixture of
programming fragments and properties, the latter strategy is preferable since we can then work using a
single notation.

5.4 Finite State Systems

Finite state descriptions are often used for specifications of communication protocols and discrete control
systems. Here, we show how the state transitions can be described in our theory. As an example of a
finite state system we consider an extremely simplified version of a telephone system; see Staskauskas[42]
for a more realistic version.

We focus our attention on a single telephone. We postulate it to have the following states:
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call

rejidle

connring

Figure 1: A State Transition Diagram for a Telephone

idle: the handset is on-hook and not ringing

ring: the handset is on-hook and ringing

call: the handset is off-hook and a number is being dialed

conn: the telephone is engaged in a call

rej: the telephone is receiving a busy signal or the other party has disconnected

Our model is so simple that we can’t even distinguish in the conn state if this telephone initiated a call
or received a call.

A possible state transition diagram is shown in Figure 1. Most of the transitions are self-explanatory;
for instance, the transition from conn to idle is taken when the user hangs up and the transition from
call to rej is effected by the telephone switch giving a busy signal to the caller.

The safety properties of a finite state system can be obtained automatically as follows. There is
one safety property for each state. For a state x that has possible transitions to states y and z, the
corresponding property is

state = x co state = x ∨ state = y ∨ state = z

which expresses the fact that from the current state, x, a transition can effect a state change to y or z
only. The safety properties obtained from the diagram in Figure 1 are as follows (in these properties we
write, for instance, idle to denote state=idle).

idle co idle ∨ ring ∨ call
call co call ∨ idle ∨ conn ∨ rej
conn co conn ∨ idle ∨ rej
rej co rej ∨ idle
ring co ring ∨ conn

The transitions in Figure 1 are of two types—those made by the user and those made by the telephone
switch. For instance, the transition from idle to ring is made by the telephone switch (the user can
never make a telephone ring) whereas all transitions to idle are made by the user. Figure 2 shows two
transition diagrams, one for the user and one for the switch. Clearly, properties can be written down
for each of these figures as shown above.

In these diagrams, we have not shown the conditions under which a transition takes place. For
instance, the switch causes a transition from call to conn only if a connection has been made to the
dialed number, and the transition from conn to idle by the user is made as a result of the user hanging
up. Sometimes, the condition cannot be expressed as a finite state property. To see this, let num be
a variable in which the number dialed by the user is stored (in this, extremely trivial, description we
ignore the fact that digits are stored one by one into num; instead, we assume that the entire number
is stored into num in a single atomic action). The variable num can also take on a special value, ⊥,
denoting that no number has been stored in num.

A precondition for transition of a user u from call to conn is that
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2.2a: Transitions Made by the User

2.2b: Transitions Made by the Switch

idle

ring

rej

conn

call

call

rej

idle

connring

Figure 2: Partitioning the Transitions of Figure 1 between the User and the Switch
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its num differs from ⊥, and
its called number, v, is in ring state

A postcondition of this transition is that u, v are both in conn states or that u hangs up. This fact
can be expressed by (where we prefix states by the user identity to avoid confusion), for all users u, v
(u 6=⊥, v 6=⊥)

u.call ∧ u.num = v ∧ v.ring co
(u.call ∧ u.num = v ∧ v.ring) ∨ u.idle ∨ (u.conn ∧ v.conn ∧ u.num = v)

This is, however, a very coarse property; we cannot even state that a user is connected to exactly
one party in the conn state. By suitably introducing other variables we can obtain a more refined
specification. For instance, if we let u.party denote the party to which u is connected in the conn state,
then u.conn ∧ u.num 6=⊥ ⇒ u.party = u.num.

It becomes clear as we add more and more details to a specification that the finite state diagram
provides a gross description of the flow of control. It is sometimes appealing to work with a diagram
because a visual check may suffice to deduce a property. However, many of these systems have aspects
that cannot be captured by a finite number of states.

5.5 Auxiliary Variables

In stating and verifying properties of programs, it is sometimes necessary to introduce auxiliary variables,
variables whose values at any point in the computation depend only on the history of the other variable
values. For instance, for u, an integer valued variable, define an auxiliary variable v whose value is
the number of times that u’s value has changed during the course of a computation. Now, v can be
introduced by defining it to be initially zero, and modifying the program text to increment v whenever
u is changed. The problem with this approach is that the relationship between u, v as stated above is
lost; it must be gleaned from the program text. Since we now have a logical operator to relate values
of various variables over the course of a computation, we can define v directly as follows where m,n are
integer-valued free variables.

initially v = 0
u, v = m,n co u, v = m,n ∨ (u 6= m ∧ v = n + 1)

This property asserts that every change in u is accompanied by an increment in the value of v and as
long as u does not change, v does not change either. It is now a simple matter to prove various facts
about v such as that v is nondecreasing.

A useful auxiliary variable is the sequence of distinct values written into a given variable. For a
variable x let x̂ be this sequence. Then, for m,n of the appropriate type

initially x̂ = 〈〈x〉〉 {〈〈x〉〉 is the sequence consisting of the value of x}
x, x̂ = m,n co x, x̂ = m,n ∨ (x 6= m ∧ x̂ = n; x)

where “;” is the sequence concatenation operator.
Finally, we show that for a semaphore s, s − nv + np is constant where np, nv are the numbers of

successful “P” and “V ” operations, respectively. We define np, nv as follows where m, n, r are natural-
valued free variables.

initially np, nv = 0, 0
s, nv = m, n co n ≤ nv ≤ n + 1 ∧ (s = m + 1 ≡ nv = n + 1)
s, np = m, r co r ≤ np ≤ r + 1 ∧ (s = m− 1 ≡ np = r + 1)
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A semaphore value may change (increase or decrease) by 1 in any step:

s = m co m− 1 ≤ s ≤ m + 1

Conjoining the above three co-properties

s, nv, np = m,n, r co
m− 1 ≤ s ≤ m + 1 ∧ n ≤ nv ≤ n + 1 ∧

r ≤ np ≤ r + 1 ∧ (s = m + 1 ≡ nv = n + 1) ∧ (s = m− 1 ≡ np = r + 1)

Weaken the rhs to s− nv + np = m− n + r to obtain

s, nv, np = m,n, r co s− nv + np = m− n + r.

Applying the elimination theorem,

s− nv + np constant .

5.6 Deadlock

A trivial form of deadlock—captured by the “after you, after you” paradigm —arises in a cycle of
processes when each process waits for its left neighbor. It is intuitively obvious that this system state
will persist forever. However, a formal proof or even a rigorous argument based on this verbal description
is messy. Most such proofs are by contradiction: If this system state does not persist forever, then there
is a process that stops waiting. Let x be the first process to stop waiting. Process x can stop waiting
only if the process for which it has been waiting is not waiting. Therefore, there is a process that stopped
waiting earlier than x, contradicting our choice of x as the first process to stop waiting. Such informal
arguments, though appealing, are neither precise about the assumptions they make—for instance, can
x, y, where x is waiting for y, stop waiting simultaneously—nor are they concise.

Process x waits for y means that whenever both x, y are waiting both will continue waiting until y
stops waiting. This informal description is quite ambiguous; it admits at least two interpretations as
shown below. Denoting by xw that process x is waiting (and similarly, for yw) x waits for y means

xw ∧ yw co xw (strong wait) or, (D1)
xw ∧ yw co yw ⇒ xw (weak wait) (D2)

In strong wait, both processes cannot stop waiting simultaneously; in weak wait they could. By suitably
weakening the rhs of strong wait we can obtain weak wait. Therefore, strong wait is indeed stronger
than weak wait.

Now, it is trivial to show that two processes, x, y, waiting strongly for each other are deadlocked.
Because, we then have

xw ∧ yw co xw
yw ∧ xw co yw

Applying conjunction we obtain

xw ∧ yw co xw ∧ yw

We conclude from the above that xw ∧ yw is stable; hence xw ∧ yw, once true, persists forever. Our
proof avoids explicit arguments about time, or arguments based on contradiction. The essence of the
proof is an induction on the number of computation steps, which is captured in the co-properties. Now,
we prove the result for any finite cycle of processes, but we will do more. We show that if one process in
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Figure 3: A Knot of Waiting Processes

a cycle strong-waits and the remaining processes weak-wait, then a deadlock arises when all processes
are waiting.

Let the processes in the cycle be indexed 0 through N , 0 < N . Let wi denote that process i is
waiting. Suppose process 0 strong-waits for process N ; from (D1) this is expressed by

w0 ∧ wN co w0 (D3)

In the remaining processes, process (i + 1) weak-waits for process i, 0 ≤ i < N . This is expressed,
as in (D2), by

〈∀ i : 0 ≤ i < N : wi+1 ∧ wi co wi ⇒ wi+1〉 (D4)

This completes the mathematical modeling of the problem. Conjunction of (D4), over all i, 0 ≤ i <
N , yields

〈∀ i : 0 ≤ i < N : wi+1 ∧ wi〉 co 〈∀ i : 0 ≤ i < N : wi ⇒ wi+1〉

Conjunction of the above and (D3) yields, after simplifying the lhs,

〈∀ i : 0 ≤ i ≤ N : wi〉 co w0 ∧ 〈∀ i : 0 ≤ i < N : wi ⇒ wi+1〉.

The rhs, using the induction principle, implies 〈∀ i : 0 ≤ i ≤ N : wi〉. Therefore,

〈∀ i : 0 ≤ i ≤ N : wi〉 stable

Contrast this argument with a typical informal argument of the following kind. Consider the state
of the system where all processes are waiting. If any process (i + 1), i ≥ 0, stops waiting subsequently
then process i must have stopped waiting then or before (i+1). Applying the same argument to i, i−1,
etc., we conclude that process 0 stops waiting at or before any other process stops waiting. However,
process N has to stop waiting strictly prior to process 0. Applying the same kind of argument from
process N down to (i + 1), we conclude that (i + 1) stops waiting before the time we postulated for it
to stop waiting. Our experience suggests that a temporal argument, particularly if it employs proof by
contradiction, can be replaced by a succinct formal argument using the co-properties.

A more involved example of mutual waiting arises when a process can wait for any one of a set of
processes. This is the typical situation where processes hold resources and a waiting process can proceed
only after receiving any one of the resources for which it is waiting. Figure 3 shows an example in which
four processes, x, y, z, u, are deadlocked. The outgoing arrows from x (to y and z) denote that x is
waiting for one of y and z. The waiting condition for x—using xw, yw, zw to denote that x, y, z are
waiting, respectively—is that xw ∧ yw ∧ zw co xw.
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Unlike the previous case, the existence of a cycle in the graph does not guarantee deadlock. A
nonempty set of nodes, S, in a directed graph forms a knot if every outgoing edge from a node in S is to
a node in S. Figure 3 has knots {x, y, z, u} and {z, u}. We show that when all processes in a knot S are
waiting in the above sense, they are deadlocked. As before, for a process i in S, wi denotes that process
i is waiting. Let process i have outgoing edges to nodes in Si, Si ⊆ S. Then, the waiting condition for
process i is given by

wi ∧ 〈∀ j : j ∈ Si : wj〉 co wi

Taking conjunction over all i in S

〈∀ i : i ∈ S : wi ∧ 〈∀ j : j ∈ Si : wj〉 〉 co 〈∀ i : i ∈ S : wi〉

Simplifying the lhs, using Si ⊆ S (since S is a knot),

〈∀ i : i ∈ S : wi〉 stable

Observe that the type of waiting is captured by the co-property for each i and the structure of the knot
is exploited in simplifying the conjunction. An informal proof, we suspect, will be much longer.

5.7 Axiomatization of a Communication Network

In this example, we develop axioms to describe a communication network. These axioms are based on
Misra[30, Section 6.1]. See Chandy and Misra[6] for a more general treatment.

To keep matters simple, suppose that we have two processes, A,B, that communicate via two one
way channels. The number of messages sent by a process is at least as large as the number received by
the other, and both quantities are nonnegative. Furthermore, the number of messages sent and received
along each channel is nondecreasing. A channel is empty if the number of messages sent equals the
number of messages received along that channel. The state of a process is either idle or active. An idle
process remains idle until it receives a message. Only active processes may send messages.

Our main interest is in specifying the properties of the system, formally. We will also show that
when both processes are idle and both channels are empty then the system is terminated, in the sense
that no further messages will be sent nor received nor will any of the processes become active.

In describing a system, we first have to decide on the variables whose values determine the state of
the system. The choice is not always clear. In this case, for instance, we will not explicitly introduce a
channel state. Instead, we introduce sA, sB to denote the number of messages sent by A,B and rA, rB
for the number of messages received by A, B, respectively. The channel from A to B, for example, is
empty if sA = rB. That the number of messages sent by a process is at least as large as the number
received by the other, and both quantities are nonnegative, is given by

sA ≥ rB ≥ 0 invariant
sB ≥ rA ≥ 0 invariant (CN1)

The number of messages sent and received are nondecreasing. Using free variables m,n (of type natural)

sA ≥ m stable, sB ≥ m stable,
rA ≥ n stable, rB ≥ n stable (CN2)

To express the facts dealing with the states of a process we introduce the boolean variable qA denoting
that A is idle; similarly, qB.

The following properties say that each process remains idle as long as it receives no message.

qA ∧ rA = m co rA = m ⇒ qA
qB ∧ rB = m co rB = m ⇒ qB (CN3)
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Note that it is not specified if an idle process becomes active upon receiving a message; our specification
allows it to be in either state. That only active processes may send messages is best understood as, an
idle process does not send messages, i.e.,

qA ∧ sA = n co sA = n
qB ∧ sB = n co sB = n (CN4)

A Digression: There is a subtle point in our formulation of CN4. We prohibit an idle process from
receiving a message, becoming active and then sending a message, all in one step. If we wished to allow
this possibility we would have written CN4 analogously to CN3:

qA ∧ sA = n co sA = n ⇒ qA
qB ∧ sB = n co sB = n ⇒ qB

Observe that with this specification we can no longer prove termination: The specification does not say
that an idle process has to receive a message strictly prior to becoming non-idle and sending a message.
Therefore, in a state where both processes are idle and both channels are empty, a next state is possible
where both processes are idle, both channels are empty and one additional message has been sent and
received along every channel. 2

This completes our axiomatization. Our axioms capture only some aspects of the system behavior.
In particular, we have no guarantee that all messages are eventually delivered—a progress property—or
that messages are delivered in the same order in which they are sent (a safety property).

The state in which both processes are idle and both channels are empty is given by

(qA ∧ qB) ∧ sA, sB = rB, rA

We can show that the above predicate is stable. But that is not enough; it leaves open the possibility,
for instance, that the values of sA, rB could change while preserving this predicate. Therefore, we will
prove that once the above predicate holds none of the variables will change value. Since sA, sB = rB, rA
follows from the above predicate, it is sufficient to show that rA, rB do not change values, i.e., for free
m,n we show that

(qA ∧ qB) ∧ sA, sB = rB, rA ∧ rA, rB = m,n stable (CN5)

The proof of CN5 is left to the reader.

5.8 Coordinated Attack

The following version of a vicious synchronization problem has received considerable attention in the
literature. We show how it can be dealt with, relatively simply, by using our theory. The following
description of the problem is from Gray[14].

“Two divisions of an army are camped on two hilltops overlooking a common valley. In the
valley awaits the enemy. It is clear that if both divisions attack the enemy simultaneously
they will win the battle, whereas if only one division attacks it will be defeated. The divisions
do not initially have plans for launching an attack on the enemy, and the commanding general
of the first division wishes to coordinate a simultaneous attack (at some time the next day).
Neither general will decide to attack unless he is sure that the other will attack with him. The
generals can only communicate by means of a messenger. Normally, it takes the messenger
one hour to get from one encampment to the other. However, it is possible that he will get
lost in the dark or, worse yet, be captured by the enemy. Fortunately, on this particular
night, everything goes smoothly. How long will it take them to coordinate an attack?”

21



The original arguments to show that there is no protocol to achieve coordinated attack were long and
cumbersome. Halpern and Moses[15] gave the first convincing proof of this fact based on the notions
of knowledge and common knowledge. We give a very brief outline of that theory as it pertains to this
problem.

For a process x and predicate p, we denote “x knows p” by x k p. The value of the predicate x k p
is a function of the state of x; hence x k p does not change as long as x performs no action (an action is
either a local computation, sending a message, or receiving a message). For a predicate p, predicate cp
denotes that p is common knowledge (for some group of processes). We have, for any process x in the
group

cp ≡ x k (cp)

That is, p is common knowledge if and only if all processes know it to be common knowledge.
The coordinated attack problem requires us to establish common knowledge of the attack time.

Halpern and Moses[15] showed that if each atomic action affects the state of only one process, as is
customarily the case in asynchronous message passing systems, then common knowledge cannot be
gained. Later, Chandy and Misra[4] showed that under the same assumptions, common knowledge can
neither be gained nor lost; that is, a previously unplanned attack cannot be coordinated nor can a
planned coordinated attack be called off. This result holds under the much weaker assumption that no
action can affect the states of all processes (though any proper subset of processes could be affected).
We prove this more general result below.

Theorem: In a group having more than one process where no atomic action can affect the states of all
processes, common knowledge can neither be gained nor lost; that is, for any predicate p, cp constant.

Proof: An atomic action does not affect the states—hence the knowledge predicates—of all processes
simultaneously. Therefore, in a group having more than one process, knowledge (or, ignorance) of at
least one process about a predicate, q, is unchanged by any action. We write this assertion—where xi

denotes the ith process, i is quantified over all processes in the group and bis are free boolean variables—

〈∀ i :: (xi k q) = bi〉 co 〈∃ i :: (xi k q) = bi〉

Instantiate q by cp. Then,

xi k q = xi k (cp) = cp , from the definition of cp
〈∀ i :: cp = bi〉 co 〈∃ i :: cp = bi〉 , replace xi k q by cp
cp co cp , set all bis to true. (i ranges over a nonempty set)
¬cp co ¬cp , similarly, set all bis to false
cp constant , from the above two, using the definition of constant

5.9 Dynamic Graphs

This example, based on Chandy and Misra[5, Chapter 12] and Misra[29], illustrates how we express and
deduce facts about dynamic data structures. In this example, the data structure is a finite directed
graph which can be changed by the following operation: All edges incident on a node may be directed
towards that node in one (atomic) step.

A node that has no outgoing edge is called bottom. We are required to show that no path is ever
created to a non-bottom node, that is if there is no path from node u to node v initially then there is
no path from u to v at any point in the computation unless v is a bottom node at that point.

Let us first give a typical proof that draws upon the well-known theorems and terminology of graph
theory. Suppose that there is no path from u to v before a step. Call all the edges of the graph “old”
at this time. Following the step that redirects all incident edges towards a node, w, call the newly
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redirected edges to w “new.” Suppose that there is a path from u to v following the step and v is
non-bottom. Not all edges on the path are “old” because then there would have been a path before
the step. Since some new edge is on this path, node w is on this path. We show that node w is not
on the path, thus leading to a contradiction. Node w is different from v because v is assumed to be a
non-bottom node, and w is a bottom node after the step. Node w is not an intermediate node on the
path nor is w = u, because w has no outgoing edge.

Our formal proof avoids the temporal argument and the proof by contradiction. However, the proof
has to make explicit the notion of a path. In the following proof, u, v, w range over nodes of the graph.
We use the following predicates:

u. ⊥ : u is a bottom node
u Rk v, k > 0 : there is a path of length k from u to v
u R v : there is a path from u to v

Now, u R1 v denotes that there is an edge from u to v. Define u Rk+1 v, k ≥ 1, inductively as follows.

u Rk+1 v ≡ 〈∃ w :: u R1 w ∧ w Rk v〉 (GR1)

Then

u R v ≡ 〈∃ k : k ≥ 1 : u Rk v〉 and (GR2)
u. ⊥ ≡ 〈∀ v : ¬u R v〉 (GR3)

The operation of changing the graph is given by the following co-property. It states that no edge
from u to v is created as long as v remains non-bottom.

¬u R1 v co ¬u R1 v ∨ v. ⊥ (GR4)

We prove that no path from u to v is created as long as v remains a non-bottom node.

Theorem: ¬u R v co ¬u R v ∨ v. ⊥

Proof: We show that for all k, k ≥ 1, and all u, v

¬u Rk v co ¬u Rk v ∨ v. ⊥ (GR5)

Taking conjunction of (GR5) over all k, k ≥ 1, concludes the proof of the theorem.

Proof of (GR5): by induction on k.

k = 1: the result follows from (GR4)
k + 1: show ¬u Rk+1 v co ¬u Rk+1 v ∨ v. ⊥

From (GR4), using w for v, we have

¬u R1 w co ¬u R1 w ∨ w. ⊥

Using induction hypothesis (GR5) with w in place of u we have

¬w Rk v co ¬w Rk v ∨ v. ⊥

Disjunction of the above two gives us

¬u R1 w ∨ ¬w Rk v co ¬u R1 w ∨ ¬w Rk v ∨ w. ⊥ ∨ v. ⊥
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From (GR3) w. ⊥ ⇒ ¬w R v and from (GR2) ¬w R v ⇒ ¬w Rk v. Hence, ¬w Rk v ∨ w. ⊥ in the
rhs of the above can be replaced by ¬w Rk v.

¬u R1 w ∨ ¬w Rk v co ¬u R1 w ∨ ¬w Rk v ∨ v. ⊥

Taking conjunction of the above over all w,

〈∀ w :: ¬u R1 w ∨ ¬w Rk v〉 co 〈∀ w :: ¬u R1 w ∨ ¬w Rk v〉 ∨ v. ⊥

Using (GR1), replace 〈∀ w :: ¬u R1 w ∨ ¬w Rk v〉 by ¬u Rk+1 v

¬u Rk+1 v co ¬u Rk+1 v ∨ v. ⊥ 2

We note, as a corollary, that once a node u is outside any cycle, it remains outside all cycles. In
particular, if the graph is initially acyclic, it stays acyclic. Node u is outside any cycle if ¬u R u holds.

Corollary: ¬u R u stable.

Proof:

¬u R v co ¬u R v ∨ v. ⊥ , theorem
¬u R u co ¬u R u ∨ u. ⊥ , replacing v by u in the above
¬u R u co ¬u R u ∨ ¬u R u , weakening rhs using (GR3) for u. ⊥ ⇒ ¬u R u
¬u R u stable , predicate calculus on the rhs

6 Theoretical Results

There are several results about co that are used in formulating other concepts, such as the strongest
invariant or FP ; however, these results are rarely used in dealing with specific applications.

6.1 Strongest rhs; weakest lhs

In a given program, for any predicate p there is a strongest q such that p co q; similarly, for any q there
is a weakest p such that p co q. We only prove the first result; the proof of the second one is similar.

Theorem (Strongest rhs): For any p there exists a q such that

• p co q, and

• (∀ r : p co r : q ⇒ r)

Proof: We give an explicit description of q; it is the conjunction of the rhs of all co-properties in
which p appears in the lhs:

q ≡ 〈∧ b : p co b : b〉

Since co is universally conjunctive, we have p co q. For any r such that p co r, we obtain q ⇒ r from
the definition. 2
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6.2 Strongest Invariant

Every program has a (unique) strongest invariant. This is proved by defining the strongest invariant
to be, simply, the conjunction of all invariants. We give a longer alternative proof which provides a
“constructive” procedure for obtaining the strongest invariant. The essence of the procedure is to start
with the initial condition—call it p0, and obtain a sequence of pis where pi co pi+1 and pi+1 is the
strongest rhs for pi. The disjunction of all the pis is the strongest invariant.

Lemma: Let p0, . . . , pi, . . . be an infinite sequence where, for all i, i ≥ 0,

pi co pi+1

Then, 〈∃ i :: pi〉 stable.

Proof: Taking the disjunction over all the co-properties, pi co pi+1, we obtain

〈∃ i : i ≥ 0 : pi〉 co 〈∃ i : i > 0 : pi〉

Weakening the rhs by p0 yields the result. 2

Theorem (Strongest Invariant): Let p0 be the initial condition. Let pi co pi+1, for all i, i ≥ 0,
where pi+1 is the strongest rhs for pi. Then, 〈∃ i :: pi〉 is the strongest invariant.

Proof: Let P = 〈∃ i :: pi〉. From the previous lemma, P is stable. Furthermore, since p0 ⇒ P ,
initially P holds. Therefore, P is an invariant.

To show that P is the strongest invariant, we show that for any invariant J , P ⇒ J , i.e.,
〈∀ i :: pi ⇒ J〉. The proof is by induction on i.

p0 ⇒ J : initially J holds. Since p0 is the initial condition, p0 ⇒ J .
Assume pi ⇒ J and show pi+1 ⇒ J :

pi co pi+1 , given
pi ∧ J co pi+1 ∧ J , stable conjunction with J
pi co pi+1 ∧ J , pi ∧ J ≡ pi since pi ⇒ J
pi+1 ⇒ pi+1 ∧ J , pi+1 is the strongest rhs in any co-property whose lhs is pi
pi+1 ⇒ J , from the above using predicate calculus. 2

The strongest invariant includes the initial condition, p0, as a disjunct. Therefore, if p0 is not
identically false then neither is the strongest invariant. Conversely, if p0 is false then so is p1—because,
false is stable—and hence, the strongest invariant is false. We have often used the term “reachable
states” informally in this paper. Formally, a state is reachable if and only if it satisfies the strongest
invariant.

6.3 Fixed Point

The predicate FP characterizes the set of states that do not change as a result of program execution.
We can define FP using co. Observe that any subset of states satisfying FP is stable, i.e., for any
predicate b, FP ∧ b stable. This, however, does not identify a unique FP . In particular, false ∧ b is
stable, for any b. We define FP to be the weakest predicate p such that p ∧ b stable, for all b. It can
be shown that FP has the following closed form.

FP ≡ 〈∃ p : 〈∀ b :: p ∧ b stable〉 : p〉

As is the case for the strongest invariant, it is difficult to compute FP using the above formulation; it
is preferable to obtain it by syntactic manipulations of the program text.

A program is “deadlock-free” if and only if FP is always-false, i.e., ¬FP is always-true. Using the
substitution axiom, ¬FP is invariant.
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7 Synopsis

This section contains an assessment of the strengths and weaknesses of co. Earlier, we had gained
considerable experience in writing and manipulating unless properties[5, 42], a predecessor of co. There
is ample reason to believe that co would be at least as powerful for expressing the usual kinds of safety
properties for reactive systems. The manipulation rules for co are simple and effective. The examples in
Section 5—particularly, common meeting time (5.1), deadlock (5.6) and coordinated attack (5.8)—were
handled by extremely concise proofs; it is difficult to see how intuitive reasoning could be any cheaper!
Although our examples often used UNITY-style programs, the theory is applicable to any action system.

Temporal logic is an elegant extension of classical logic that includes the temporal operators, 2
and 3 (read as always and eventually). The primary operator for expressing the safety properties is
2; for example, the temporal formula p ⇒ 2p denotes that once p is true it is always true, i.e., p
is stable. Temporal logic has a well developed theory and has been applied in a variety of problems
in computer science, see Manna and Pnueli[27]. There are many properties that are easily expressible
in linear temporal logic but are difficult to express using co. Consider: Once x exceeds 5 it remains
positive. In temporal logic, this is simply

x > 5 ⇒ 2 (x > 0).

Such a property cannot be written directly using co because examining a system state, say, x = 2,
yields little clue about the value of x in the next state. Whether x > 0 in some state may depend on
the history of the computation; thus, for any state we have to know if x has exceeded 5 in the past.
By introducing an auxiliary boolean variable b that is true if and only if x has ever exceeded 5, we can
express this assertion:

initially b ≡ x > 5,
x > 5 ⇒ b,
b ∧ x > 0 stable

Note that the proof of x > 5 ⇒ 2 (x > 0) in temporal logic would require the introduction of a
predicate analogous to b.

Event predicates[22] and TLA[25] have proved useful for describing safety properties. An example
of an event predicate is x′ ≥ x which says that the value of x after any action—this value is denoted
by x′—is at least the value of x before the action—the value before the action is, simply, denoted by x.
This formalism is attractive because the inference rules are simply those of predicate calculus. Lamport
combines event predicates, temporal operators and quantification (over variables and actions) in TLA
and advocates using the logic for representing both a system and its properties, thus simplifying the
proofs of implementations.

A disadvantage of our theory (compared to event predicates and TLA) is that we often have to
introduce free variables in stating the properties. For instance, “x is nondecreasing” is written as,
x ≥ m stable with a free variable m, whereas x′ ≥ x is an event predicate that expresses the same
fact. In the other parts of our theory, free variables are essential (to say, for instance, that x increases
eventually). Therefore, we do not feel especially guilty in introducing free variables for stating safety
properties.
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Abstract

The UNITY-logic has two operators, ensures and leads-to, for specifying progress properties.
Most specifications use leads-to and ensures is used as the basis for defining leads-to. We introduce
the notion of transient predicate, a predicate that is guaranteed to be falsified. We show how a
predicate can be proven transient for a given program for specific types of fairness constraints. We
advocate replacing ensures by transient because the latter has simpler rules of manipulation.

As we have done in the companion paper, a small amount of theory is introduced followed by
applications of the theory in practice. Some recent theoretical developments are described in the
last part of the paper.

Keywords

Progress, Liveness, Fairness, Weak fairness, Minimal Progress, Strong Fairness, Transient, Ensures,
Leads-To, Token Ring.

1 Introduction

Safety properties, discussed in the accompanying paper, allow us to state that “the program does no
harm.” A progress property may be regarded as a performance guarantee. Such guarantees typically
include time bounds: The light comes on within 10 ms of pressing the switch or a car travelling at 60 mph
stops within 130 feet after the brakes are jammed. Absolute performance guarantees, though desirable,
are hard to implement, because such guarantees depend on the speed of the underlying machine or the
network, the scheduling strategy or even the load on the system, factors that are outside our control
during program design. A useful abstraction employed in complexity theory is to specify the rate of
growth of the computation time as a function of the input size. This abstraction, effectively, ignores
speed-ups by constant factors. An even coarser abstraction is to classify the rate of growth as being
polynomial or non-polynomial. Unfortunately, we don’t yet have a theory to provide such performance
guarantees for the asynchronous systems that we consider here; we don’t even have the appropriate
parameters by which to measure a problem size. So, we abstract further by eliminating the notion
of absolute time. We will state and prove properties of the form: Once predicate p holds, eventually
predicate q will hold in the system. For the lighting problem, p might be “the switch has been pressed”
and q might be “the light is on.” The time duration between the occurrences of p and q is left unspecified.
We will develop the logic to state and deduce such properties. Realize that this is a far cry from the
absolute performance guarantees that we seek. However, it is a useful first step in establishing the
performance of the system. Once we have such a guarantee we may attempt to deduce the performance
empirically or by using analytic modelling.

This paper is organized as follows. In Section 2, we describe several notions of fairness that are
essential for studying progress properties in asynchronous systems. In Section 3, we introduce transient
predicates; a transient predicate is guaranteed to be falsified eventually, under the given fairness assump-
tion. Our primary progress operator, leads-to, is introduced in Section 4. Most progress specifications
and deductions are done with leads-to. Therefore, we give a variety of manipulation rules in Section 4
and show several examples of leads-to in Section 5. Certain theoretical issues are taken up in Section 6.
A synopsis appears in Section 7.

2 Fairness

The need for fairness and the various flavors of it can be explained by considering the “guarded-
command” program shown below. The guards for the statements α, β, γ are true, true, x 6= y, re-
spectively. In this program, x, y, z are integers.
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Program Fairness
α :: x := x + 1

[] β :: y := y + 1
[] γ :: z := z + 1 if x 6= y

end {Fairness}

A fairness condition defines the order in which the statements, α, β, γ are executed. We study the
following kinds of fairness: minimal progress, weak fairness and strong fairness.

2.1 Minimal Progress

Under this notion of fairness, a nonskip action whose guard is true in the current state is chosen
(arbitrarily) and executed; this step is repeated until all guards are false.

For the above example, minimal progress forbids executing γ forever starting in a state where x = y,
thus preserving the same state. We can assert for this program that x + y + z will eventually increase
(and hence, it will increase without bound). This is because all guards are never false—α, β have true
as their guards—and any change in the system state increases x + y + z. However, neither x, y nor z is
guaranteed to increase because, for instance, β (or α or γ) might be executed indefinitely. Similarly, no
guarantee can be made that x + y will increase (γ might be executed forever once x 6= y); there is no
guarantee about eventual increase of x + z or y + z either.

2.2 Weak Fairness

Under this notion of fairness, in an infinite execution each statement is executed infinitely often. Exe-
cuting a statement in a state where its guard is false causes no state change.

This fairness condition guarantees that different processes in a multi-process program will be indi-
vidually allowed to proceed. We can imagine that the statements representing the various processes
constitute the program under consideration. For example, α might belong to one process and β, γ to
another. If α is chosen forever for execution (as in minimal progress), we have, effectively, permanently
blocked the second process; weak fairness prevents such executions.

For the example program we can assert that x (and y) will increase without bound because each
execution of α (or β) will cause x (or y) to increase. We cannot assert that z will increase. For instance,
consider the following execution starting in state x, y = 0, 0: Execute α, β, γ in this order and repeat
the sequence forever. Whenever γ is executed x = y and, hence, z is never increased.

Weak fairness is sometimes expressed as: If the guard of a statement remains continuously true, then
the statement is eventually executed (in a state where the guard is true). This formulation is identical
to our earlier formulation.

2.3 Strong Fairness

Execution of a statement is strongly fair if in every execution sequence, whenever the guard of the
statement is infinitely often true, the statement is executed (in a state where the guard is true) infinitely
often.

For the above example, if all three statements are executed in a strongly fair manner then x, y, z will
all increase indefinitely. It is easy to see this result for x, y; for z, note that x 6= y is infinitely often true
since x, y are incremented asynchronously; therefore, z will be incremented infinitely often.

2.4 Which is the Fairest One?

We may mix different kinds of fairness for the same program; we may group the statements and require
different forms of fairness for each group. For instance, if we require minimal progress for {α, β} and
strong fairness for {γ} in the program Fairness, then we can assert that x + y and z will increase
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indefinitely, but neither x nor y can be asserted to increase. If {α, β} have the weak fairness restriction
and {γ} the strong fairness then all three—x, y, z—will grow indefinitely.

Grouping statements introduces the possibility of hierarchy; subgroups within a group may have
different fairness conditions attached to them. Though these possibilities are interesting theoretically,
we do not pursue them here. In fact, we develop the theory only for minimal progress and weak fairness
and, partially, for strong fairness.

A traditional sequential program permits no choice in statement executions. Therefore, the only
pertinent notion of fairness in this case is minimal progress. The significant progress property is termi-
nation; it can be stated as “starting in any state that satisfies the initial condition eventually a state is
reached that satisfies FP ,” (FP is the fixedpoint predicate; a state satisfying FP is a terminal state).
Termination can be proved by displaying a function whose value decreases eventually as a result of
program execution. If the function assumes values from a well-founded set its value cannot decrease
forever, and hence, termination is guaranteed. Minimal progress is also useful in concurrent programs
for proving the “absence of deadlock”. A typical example is if there is a hungry philosopher (in a dining
philosophers problem) then some philosopher will eat.

Minimal progress is not sufficient to guarantee “absence of individual starvation.” Even though some
philosopher may eat, and eating is performed infinitely often, a particular philosopher may stay hungry
forever (and starve). In the program Fairness studied in this section, the system as a whole makes
progress by increasing x + y + z; no guarantees could be made about the individual variables—x, y or
z—though, under minimal progress.

Weak fairness meets most of our criteria for a useful notion of fairness. It is powerful enough so that
starvation-free solutions can be designed, and it is simple enough that a reasonably effective theory for
reasoning about it can be developed. It has nice compositional properties[5, Chapter 7].

A typical example of the application of strong fairness is in implementing a “strong” semaphore.
It is required that if the semaphore value exceeds 0 infinitely often then every process waiting for the
semaphore be granted the semaphore. Under the weak fairness requirement a waiting process may never
be granted the semaphore (because the guard—that the semaphore value exceeds 0—is not continuously
true, but it is true infinitely often.) We take up this example in Section 5.5.

Observe that in a program if all actions are strongly fair then they are also weakly fair, and a weakly
fair program meets the minimal progress condition. Thus, any progress property that can be deduced
under some fairness assumptions is valid under stronger fairness assumptions.

3 Transient Predicate

A predicate is transient if it is guaranteed to be falsified by execution of a single (atomic) action. The
formal definition depends on the form of fairness assumed for program execution. This is the only
point in our theory where a definition of an operator depends on the form of fairness. Other progress
operators are defined using transient predicates; their definitions and derived rules are independent of
the underlying fairness. Thus, our progress proofs are largely shielded from having to argue about
specific fairness properties of programs. We consider different notions of fairness and define transient
predicates for each case.

There is a variety of language features for process synchronization, mutual exclusion, process com-
munication, etc. It is possible, though cumbersome, to define transient predicates for programs that
include these programming language features. For simplicity, we will restrict ourselves to action sys-
tems; such systems can be represented by a UNITY program[5]. We make two assumptions about such
systems.

• There is at least one action. Recall that skip is included as an action in every system and, hence,
this requirement is always met. (We do not show skip, explicitly, in the programs we write.)

• Each action terminates, i.e., if the action is started in any state where it is enabled, it completes
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in finite time. It is easy to check termination for simple actions, such as the ones that can be
represented by assignment of values to variables. For more intricate actions, for instance, where
an action is an entire program, the methods of this paper have to be applied recursively to first
prove terminations of the individual actions and then deduce progress properties of the system.

For a terminating action s, we have the Law of the Excluded Miracle[11]

{p} s {false}
¬p

i.e., the postcondition of an action is false only if the precondition is false. Using the substitution axiom,
this can be interpreted as “the resulting state of an action is unreachable only if the action is started in
an unreachable state.”

3.1 Minimal Progress

We consider a program of guarded commands, where every nonskip command is of the form

〈[] i :: gi → si〉
or, 〈[] i :: si if gi〉 (in UNITY)

Predicate p is transient if,

(1) whenever p holds some command has a true guard: p ⇒ 〈∃ i :: gi〉

and, (2) executing any command in a state where p holds falsifies p:
〈∀ i :: {p ∧ gi} si {¬p}〉

Thus, a transient predicate, if true before a step, is false after the step. This definition may seem overly
restrictive; can we not require that a predicate be falsified in a finite number of steps? The operator
leads-to will be used to express such facts. Also, our requirement (2), that every enabled non-skip action
falsify p is essential. Without such a requirement, a possible execution may consist only of actions that
never falsify p.

Example: We consider the running example from Section 2, which we reproduce below.

Program Fairness
α :: x := x + 1

[] β :: y := y + 1
[] γ :: z := z + 1 if x 6= y

end {Fairness}

First, we establish that for any integer k,

x + y + z = k transient

The following are the proof obligations and they are easily established. For any integer k,

1. x + y + z = k ⇒ true

2. {x + y + z = k} x := x + 1 {x + y + z 6= k}
{x + y + z = k} y := y + 1 {x + y + z 6= k}
{x + y + z = k ∧ x 6= y} z := z + 1 {x + y + z 6= k}
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We can similarly show that x = y transient. Next, we attempt proving, for any k, x = k transient.
We know, from operational arguments, that this property does not hold. The corresponding proof
obligations that cannot be established are

{x = k} y := y + 1 {x 6= k}
{x = k ∧ x 6= y} z := z + 1 {x 6= k}

We leave it to the reader to show that neither x + y = k nor x + z = k can be shown transient. 2

3.2 Weak Fairness

A transient predicate is falsified by every “enabled” action under minimal progress. Under weak fairness,
however, it is sufficient to have a single action falsify the predicate. Define,

p transient ∆= 〈∃ s :: {p} s {¬p}〉

where s is over all actions in the system.
The following operational argument shows that eventually ¬p holds given that p is transient. Let

t be an action that falsifies p. From the weak fairness condition, t is executed eventually. If ¬p holds
prior to the execution of t, then the proof is done. Otherwise, p holds prior to the execution of t, and,
from {p} t {¬p}, we conclude that ¬p holds following the execution of t. (Note that the execution of
t is assumed to terminate.)

Example: We consider the program Fairness of Section 2. The following predicates can be shown to
be transient. For any integer k,

x = k , y = k , x + y = k , y + z = k , x + z = k , x + y + z = k

The predicate z = k cannot be shown transient, because we cannot display an appropriate statement.
The only statement that modifies z is

z := z + 1 if x = y

and this statement does not satisfy

{z = k} z := z + 1 if x = y {z 6= k}

The reader may also show that x ≤ k cannot be proven to be transient. 2

3.3 Strong Fairness

Transient predicates for strong fairness can be defined using a recursive definition employing leads-to;
see [18] for details (in this reference the progress operator ensures is defined for strong fairness; transient
predicates and ensures are related—see Section 4.1). We do not plan to employ this definition nor to
consider strong fairness in any detail. We give a rule in Section 5.5—that is sound but incomplete—to
prove progress properties under strong fairness.
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3.4 Derived Rules

We establish two simple rules about transient predicates that hold under either notion of fairness—
minimal progress or weak fairness. These rules are primarily used in proving the derived rules for
leads-to; these are rarely used in deducing properties of specific programs.

• The only predicate that is both stable and transient is false:

(p stable ∧ p transient) ≡ ¬p

• (strengthening)
p transient

p ∧ q transient

Additionally, the substitution axiom can be used as usual.
It is easy to see from the definition of transient predicates that false is transient; it is known that

false is stable. Therefore, to establish the first rule, we show, below, that

(p stable ∧ p transient) ⇒ ¬p

Proof of (p stable ∧ p transient) ⇒ ¬p (under minimal progress)

For any statement with guard gi and body si:

{p ∧ gi} si {p} , p stable
{p ∧ gi} si {¬p} , p transient
{p ∧ gi} si {false} , conjunction of the above two
¬(p ∧ gi) , from the Law of the Excluded Miracle
p ⇒ ¬gi , simplifying the above
p ⇒ 〈∀ i :: ¬gi〉 , conjoining over all i
p ⇒ 〈∃ i :: gi〉 , definition of p transient
¬p , conjoining the above two 2

Proof of (p stable) ∧ (p transient) ⇒ ¬p (under weak fairness)

From the definition of p transient, there is a statement t such that

{p} t {¬p} , p transient
{p} t {p} , p stable
{p} t {false} , conjunction of the above two
¬p , the Law of the Excluded Miracle 2

Proof of the strengthening rule (under minimal progress)

p ⇒ 〈∃ i :: gi〉 , p transient
p ∧ q ⇒ 〈∃ i :: gi〉 , predicate calculus

Also, for a statement with guard gi and body si:

{p ∧ gi} si {¬p} , p transient
{p ∧ q ∧ gi} si {¬p ∨ ¬q} , strengthening the left side and weakening

the right side
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Hence, p ∧ q transient 2

Proof of the strengthening rule (under weak fairness)

There is a statement t such that

{p} t {¬p} , p transient
{p ∧ q} t {¬p ∨ ¬q} , strengthening the left side and weakening

the right side
p ∧ q transient , definition of transient 2

Discussion

The notion of stability (and its generalization in co) was fundamental in developing our theory of
safety: a stable predicate is guaranteed never to be falsified. The notion of transient, fundamental
to a theory of progress, is almost the opposite of stability: a transient predicate is guaranteed to be
falsified. A predicate can be established stable only by examining all actions in a system (i.e., a universal
quantification appears in its definition). Under weak fairness, a predicate can be established transient
by examining some action in the system (i.e., the definition involves existential quantification).

It is an interesting research question to identify problem areas where stability and transience are the
only useful logical notions. For such cases, special purpose theories may be efficient in deriving system
properties.

4 ensures, leads-to

Our primary progress operator is leads-to. It is the transitive, disjunctive closure of an operator, ensures.
It is possible to eliminate ensures from our theory, replacing it by co-properties and transient predicates.
However, to maintain continuity with [5], we introduce ensures , though its role is now considerably
diminished.

4.1 ensures

The informal meaning of p ensures q (abbreviated p en q) is: If p holds at any point in the computation,
it will continue to hold as long as q does not hold; eventually q holds; further, there is one (atomic)
action which guarantees to establish q starting in any p-state. Formally,

p en q ∆= (p ∧ ¬q co p ∨ q) ∧ (p ∧ ¬q transient)

It follows from the co-property in the above definition that once p holds it continues to hold as long
as q does not. Now, we justify in operational terms that once p holds, q holds eventually (“eventually”
includes the present moment). Consider a state in which p holds and q does not. Since p ∧ ¬q is
transient, it is eventually falsified. From the co-property, whenever (p ∧ ¬q) is falsified, (p ∨ q) holds.
Hence, whenever (p ∧ ¬q) is falsified, ¬(p ∧ ¬q) ∧ (p ∨ q), i.e., q, holds.

4.2 leads-to

The informal meaning of p 7→ q (read: p leads-to q) is “if p holds at any point in the computation then
q will hold” (here ‘will’ applies to the current point as well as the future). There is no guarantee, unlike
ensures, that p remains true until q holds.
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The definition of p 7→ q, given below, is recursive. For the basis, we deduce p 7→ q from p en q.
The transitivity rule is justified as follows. From p 7→ q, once p holds q will hold, and from q 7→ r,
once q holds r will hold. Therefore, once p holds r will hold. The disjunction rule says that from any
state that satisfies some predicate p in a given set, q will eventually be established, provided p 7→ q for
every p in that set. An alternative definition of leads-to that eliminates en appears in Misra[34, Chapter
4, Exercise 4]. Also, Misra[34, Chapter 4, Exercise 19] shows that the transitivity and the disjunction
rules may be combined into a single rule.

(basis)
p en q
p 7→ q

(transitivity)
p 7→ q , q 7→ r

p 7→ r

(disjunction) In the following, S is any set of predicates.

〈∀ p : p ∈ S : p 7→ q〉
〈∃ p : p ∈ S : p〉 7→ q

As usual, the substitution axiom applies.
The form of this definition differs from the way we defined co, transient and en. The current

definition is recursive, and 7→ can be understood as an extreme solution (a least fixpoint) of an equation,
a topic that we explore in Section 6.2. The inference rules provide important guidelines for structuring
progress proofs: Either a proof follows directly from the program text (in the basis case), or it has to be
structured as a transitive or a disjunctive proof. These rules can also be used to establish the derived
rules for 7→ using structural induction over its definition[5, chapter 3].

In Section 6.3, we show that the disjunction rule over a finite set, though useful in practice, can be
deduced from the basis and transitivity rules. Therefore, the real power of the disjunction rule lies in
its application to an infinite set of predicates.

Note: The only mention of en is in the basis rule. The premise of that rule could be replaced by the
definition of p en q—p ∧ ¬q co p ∨ q, p ∧ ¬q transient—thus eliminating en from our theory. 2

Examples: In the following, variables x, y are integers.

1. A hungry philosopher eats. Using h, e to denote, respectively, that a particular philosopher is
hungry or eating, we say h 7→ e .

2. Variable x changes eventually. For every integer m, x = m 7→ x 6= m . This can be written
equivalently as true 7→ x 6= m .

3. Variable x grows without bound. For every integer m, true 7→ x > m . This is an abbreviation
for 〈∀ m :: true 7→ x > m〉 . It should not be confused with true 7→ 〈∀ m :: x > m〉, which
happens to be nonsense.

4. Variables x, y do not retain their values forever if they differ. For all integers m,n

x, y = m,n ∧ m 6= n 7→ x, y 6= m,n

or, equivalently, 〈∀ m,n : m 6= n : x, y = m,n 7→ x, y 6= m,n〉.
Observe that there is no guarantee for x, y to ever become equal.
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5. Predicate p holds infinitely often. We say, true 7→ p or, equivalently, ¬p 7→ p .

6. If p remains true forever then q holds eventually.

Another way of expressing this property is to say that eventually either p is false or q holds:

true 7→ ¬p ∨ q

7. If p holds infinitely often (in all executions) then so does q.

(true 7→ p) ⇒ (true 7→ q)

This property does not say that “In any execution, if p holds infinitely often then so does q.” This
latter property is stronger than our formulation. This is because, if in some executions p holds
infinitely often and in some other executions p holds finitely often, the first formulation makes
no guarantees about q in any execution; the second formulation requires q to hold infinitely often
whenever p does.

8. A given program “terminates,” i.e., starting in any state that satisfies the initial condition even-
tually a state is reached that satisfies the fixed point predicate, FP .

initial-condition 7→ FP

4.3 Derived Rules

Effective applications of the following derived rules can shorten progress proofs by an order of magnitude
(I speak from personal experience). The rules are divided into two classes, lightweight and heavyweight.
The former includes rules whose validity is easily established; the latter set of rules is not entirely
obvious. Each application of a heavyweight rule goes a long way toward completing a progress proof.

The lightweight rules can be proven directly from the infererence rules for 7→. The heavyweight rules
often require induction on the structure of the progress proofs in the premises. Proofs of these rules are
similar to those in [5, chapter 3].

Lightweight Rules

• (implication)
p ⇒ q
p 7→ q

The remaining lightweight rules have counterparts for co.

• (lhs-strengthening, rhs-weakening)
p 7→ q

p′ ∧ p 7→ q ,
p 7→ q ∨ q′

• (disjunction) In the following, i is quantified over any arbitrary set, and pi, qi are predicates.

〈∀ i :: pi 7→ qi〉
〈∃ i :: pi〉 7→ 〈∃ i :: qi〉

• (cancellation)
p 7→ q ∨ r , r 7→ s

p 7→ q ∨ s

10



We deduce from the implication rule that for any predicate p,

p 7→ p and false 7→ p .

The lhs-strengthening and the rhs-weakening rules—also valid for co-properties—are used extensively
in proofs. The cancellation rule played little role in manipulating the co-properties; it is, however, used
quite often in progress proofs. The cancellation rule reduces to transitivity when q is false. Note that
there is no conjunction rule for 7→ analogous to the one for co.

Heavyweight Rules

• (impossibility)
p 7→ false

¬p

• (PSP)

p 7→ q ,
r co s

p ∧ r 7→ (q ∧ s) ∨ (¬r ∧ s)

• (induction) Let M be a total function from program states to the set W . Let (W,<) be well-
founded. The variable m in the following premise ranges over W .

〈∀ m :: p ∧ M = m 7→ (p ∧ M < m) ∨ q〉
p 7→ q

where p, q do not name m.

• (completion) Let i take on a finite set of values, and let pi, qi be predicates for each i.

〈∀ i ::
pi 7→ qi ∨ b
qi co qi ∨ b

〉
〈∀ i :: pi〉 7→ 〈∀ i :: qi〉 ∨ b

The impossibility rule says that a state satisfying false is reachable only from an unreachable state
(read the consequent of the rule, “¬p invariant”).

The PSP rule (for Progress-Safety-Progress) is perhaps the most widely used rule in progress proofs.
It allows us to structure a progress proof as a safety proof—establishing r co s—and a progress proof—
establishing p 7→ q—which are then combined. This rule is so important that it should be memorized
before attempting serious progress proofs. The way to memorize the rule is: the left side is the con-
junction of the two left sides, and the right side consists of two disjuncts, one is the conjunction of the
two right sides and the other is obtained from the co-property alone by conjoining its two sides (while
negating its left side).

Function M in the induction rule is called a variant function or a metric. The premise of the
induction rule says that from any state in which p holds eventually a state is reached where p still holds
and the metric has a lower value, or q is established. Since M takes values from a well-founded set, its
value cannot decrease indefinitely. Therefore, q is eventually established starting in any state where p
holds. (Note: It is sufficient to require that M ’s value be in W whenever p ∧ ¬q holds.) Some common
examples of well-founded relations are: less-than relation over positive integers (and natural numbers),
lexicographic order over sequences of bounded length (where the order on the sequence items is, itself,
well-founded), prefix or subsequence relation over sequences and subset relation over finite sets.
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The completion rule is a way to take conjunctions of progress properties. As we have remarked earlier,
there is no conjunction rule for 7→, analogous to the rule for co-properties. Under additional assumptions
about the predicates in the right hand side(rhs) of the leads-to’s (given by the co-properties), such a
conjunction rule is valid.

4.4 Corollaries of the Derived Rules

The following corollary, like its namesake for co, permits us to conjoin a stable predicate to both sides
of a leads-to property.

• (stable conjunction)
p 7→ q , r stable
p ∧ r 7→ q ∧ r

Proof: Set s to r in the PSP rule. 2

• (Corollary of Induction) In the following corollary the range of m (in the premise of the induction
rule) is restricted to a predicate r.m. Suppose “<” is a well-founded order over r.

〈∀ m : r.m :
p ∧ M = m 7→ (p ∧ M < m) ∨ q

〉
p 7→ (p ∧ ¬r.M) ∨ q

Proof:

p ∧ M = m ∧ r.m 7→ (p ∧ M < m) ∨ q , premise
p ∧ M = m ∧ r.M 7→ (p ∧ M < m) ∨ q , rewriting left side
p ∧ M = m ∧ ¬r.M 7→ p ∧ ¬r.M , implication
p ∧ M = m 7→ (p ∧ M < m) ∨ (p ∧ ¬r.M) ∨ q , disjunction
p 7→ (p ∧ ¬r.M) ∨ q , induction 2

An important special case arises when M is integer valued, r.m is of the form m > L, for some lower
bound L, and “<” is the standard less-than relation over integers. Then, we conclude from the above
corollary

• (induction on integers)

〈∀ m : m > L :
p ∧ M = m 7→ (p ∧ M < m) ∨ q

〉
p 7→ (p ∧ M ≤ L) ∨ q

If r.m imposes no lower bound on m—for instance, r.m ≡ true—then the conclusion holds for any L.
Using “greater-than” in place of “less-than,” we have the analogous

• (induction on integers)

〈∀ m : m < L :
p ∧ M = m 7→ (p ∧ M > m) ∨ q

〉
p 7→ (p ∧ M ≥ L) ∨ q
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5 Applications

We consider a few small examples in which we employ the progress operators for specifications and
deductions of program properties. The emphasis is on converting verbal descriptions to formal speci-
fications and using the derived rules for deductions. In most cases, we also supply the typical verbal
arguments that justify the deductions and contrast them with formal proofs.

5.1 Common Meeting Time

The Common Meeting Time problem was discussed in Section 5.1 of the accompanying paper. We had
functions f, g that mapped nonnegative reals to nonnegative reals. Now, we tighten the requirements
on f, g: These functions map natural numbers to natural numbers. Thus, for all natural m,n

m ≤ n ⇒ f(m) ≤ f(n) (CMT1)
m ≤ n ⇒ g(m) ≤ g(n)

A variable t—previously of type real, now of type natural number—is postulated to satisfy

initially t = 0 (CMT2)
t = m co t ≤ max(f(m), g(m)) (CMT3)

We had established earlier, from CMT1– CMT3, that t exceeds no common meeting time:

com(n) ⇒ t ≤ n (CMT4)

The essential safety property, (CMT3), can be implemented by program skip, that does not change t.
In order to guarantee that t eventually equals the earliest common meeting time, we add a progress
requirement: If t is not a common meeting time then it increases eventually.

¬com(t) ∧ t = m 7→ t > m (CMT6)

We show that eventually t will be equal to a common meeting time, if there is one.

〈∃ n :: com(n)〉 7→ com(t) (CMT7)

Together (CMT4) and (CMT7) imply that if there is a common meeting time, t will eventually equal
the earliest common meeting time, if one exists.

Proof of (CMT7): For natural numbers m,n

¬com(t) ∧ t = m 7→ t > m , rewrite (CMT6)
com(t) ∧ t = m 7→ com(t) , implication
t = m 7→ t > m ∨ com(t) , disjunction of the above two
true 7→ t > n ∨ com(t) , induction on integers
com(n) 7→ (com(n) ∧ t > n) ∨ com(t) , stable conjunction with com(n)
com(n) 7→ com(t) , use CMT4 to cancel the first disjunct in the rhs
〈∃ n :: com(n)〉 7→ com(t) , disjunction over all n. 2

This proof is invalid if t is of type real because the induction step in the above proof is then invalid.
The reader can construct a counterexample to (CMT8) by having t increase extremely slowly, say, by
1/2i in the ith step.

One way to implement the progress condition, CMT6, is to increment t by 1 in each step and check
to see if com(t) holds. The monotonicity condition on f, g – given by CMT1– is far too weak to permit
many other strategies. If the functions are also ascending, i.e., for all natural n

n ≤ f(n), n ≤ g(n)
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then the programs (P1,P2) in section 5.1 of the accompanying paper, satisfy

¬com(t) ∧ t = m en t > m

and, hence, CMT6 as well.

5.2 Token Ring

We have considered the properties of a token ring in Section 5.2 of the accompanying paper. The
following safety properties were postulated there.

Notation: We write hi/ei/ti to denote that process i is hungry / eating / thinking. These predicates
are mutually exclusive and hi ∨ ti ∨ ei ≡ true. The position of the token is in the variable p, i.e.,
p = i (as in TR5) denotes that process i holds the token. In the following, i ranges over all processes.

initially ei ⇒ p = i (TR0)
ei co ei ∨ ti (TR1)
ti co ti ∨ hi (TR2)
hi co hi ∨ ei (TR3)
hi ∧ p 6= i co hi (TR4)
p = i co p = i ∨ ¬ei (TR5)

It was possible (in Section 5.2 of the accompanying paper) to deduce mutual exclusion, a safety property,
from (TR0–TR5). Now, we postulate some progress properties and establish the absence of starvation.

First, we require that a hungry token-holder transit to eating.

hi ∧ p = i 7→ ei (TR6)

Next, we require that the token move from the current token-holder to its right neighbor. In the
following, i′ is the right neighbor of i.

p = i 7→ p = i′ (TR7)

Note that (TR7) does not require the token to go from i to i′ directly.

We establish absence of starvation for any j, 0 ≤ j < N . That is, we show for any j, 0 ≤ j < N ,

hj 7→ ej (TR8)

Proof of (TR8): Consider an arbitrary j, 0 ≤ j < N . First, we show that j eventually holds the token,
i.e.,

true 7→ p = j (TR9)

The proof is by induction over (TR7). To apply the induction rule we define, i′ ≺ i for all process
indices i, where i 6= j. The relation ≺ induces a linear order over the processes,

j ≺ . . . i′ ≺ i . . . ≺ j′.

We can rewrite (TR7) as

〈∀ i :: p = i 7→ p ≺ i ∨ p = j〉

Apply the induction rule (since ≺ is a linear order over a finite set) to get (TR9). Now, we are ready to
prove (TR8).
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hj co hj ∨ ej , from (TR3) using j for i
true 7→ p = j , (TR9)
hj 7→ (hj ∧ p = j) ∨ ej , PSP {use (¬hj ∧ ej) = ej}
hj ∧ p = j 7→ ej , from (TR6) using j for i
hj 7→ ej , cancellation on the above two

The standard verbal argument for this problem follows the above proof steps closely. The formalism
allows us to combine a few special cases. The role of induction—if every process relinquishes the token
eventually, then every process acquires the token eventually—is made explicit in our proof. Note that
the proof is entirely independent of the kind of fairness assumed in (TR6) and (TR7).

5.3 Unordered Channel

We consider a channel, directed from one process to another, along which messages are sent from
the former to the latter. It is required to design a protocol by which every message sent is delivered
eventually, though the order of delivery may be different from the order of transmission. The following
scheme implements the protocol. Every message sent along the channel is assigned a sequence number
(a natural number) and the sequence numbers are strictly increasing in the order of transmission. A
message that has the lowest sequence number in the channel at any point in the computation is eventually
delivered. We claim that this scheme guarantees delivery of every message sent. Note, however, that
the delivery order may not be monotonic in sequence numbers.

The proposed scheme can be described by the following properties. In this description, s is the set of
sequence numbers of the messages in the channel, and x, y are arbitrary sequence numbers. The lowest
sequence number in s is min .s, where for an empty set s we take min .s to be ∞. If min .s has a value
x then min .s cannot decrease as a result of adding a number to s, from the monotonicity of sequence
numbers. Also, removing a number from s does not decrease min .s. Hence, the safety property, UC1,
says that min .s never decreases as long as s is nonempty. The progress property, UC2, says that the
smallest element of s is eventually removed from s. Our goal, UC3, is to show that every sequence
number is eventually outside s. We assume throughout that s is a finite set.

min .s = x co min .s ≥ x (UC1)
min .s = x 7→ x /∈ s (UC2)

Show
true 7→ y /∈ s (UC3)

Our proof formalizes the following argument. From UC1, min .s never decreases. From UC2, if
x = min .s then x is eventually removed; therefore, min .s increases eventually. It follows that min .s
increases without bound as long as s is nonempty; hence, every number is eventually outside s.

min .s = x 7→ (x /∈ s ∧ min .s ≥ x) ∨ (min .s 6= x ∧ min .s ≥ x)
, PSP on UC1, UC2

min .s = x 7→ min .s > x , simplifying the rhs
true 7→ min .s > y , induction on integers (using y as the upper bound)
true 7→ y /∈ s , weakening the rhs using min .s > y ⇒ y /∈ s

5.4 Dynamic Graphs

In the problem treated in Section 5.9 of the companion paper, a finite directed graph could be modified
by directing all incident edges on a node towards that node. The effect of this operation was to make
that node a bottom node. We showed that this operation does not create new paths to non-bottom
nodes, i.e., for arbitrary nodes u, v, with u R v denoting that there is a path from u to v and v. ⊥
denoting that v is bottom
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¬u R v co ¬u R v ∨ v. ⊥ (G1)

We showed that one of the consequences of (G1) is that once the graph becomes acyclic, it remains
acyclic. We assume, henceforth, that the graph is initially acyclic; therefore, it is always acyclic, i.e.,
for all u

¬u R u (G2)

Now, we add a progress requirement. Call a node a top node if it has no incoming edge (recall that a
bottom node has no outgoing edge; an isolated node is both top and bottom). We require that the edge
redirection be applied to every top node eventually. The effect of edge redirection on a top node is to
make it a bottom node. Therefore, using v.> to denote that v is a top node,

v.> 7→ v. ⊥ (G3)

We will show that every node eventually becomes a bottom node, i.e.,

true 7→ u. ⊥ (G4)

The main arguments behind the proof of (G4) are as follows. For any node u, consider the set of
ancestors of u, i.e., the nodes that have paths to u. This set does not grow as long as u is non-bottom,
a safety property that we will establish from G1. Next, since the graph is acyclic, either u is top or u
has an ancestor, v, that is top. In the first case, from G3, u will become bottom. In the second case,
from G3, v will become bottom and therefore cease to be an ancestor of u; hence, the ancestor set of u
decreases in size eventually. Since the ancestor set cannot decrease forever, u will become top and then,
from G3, eventually become bottom.

In the following, u.an denotes the ancestor set of u, i.e.,

v ∈ u.an ≡ v R u (G5)

We will use the following facts about top and bottom. A node is top iff its ancestor set is empty (G6)
and a bottom node does not belong to any ancestor set (G7).

u.> ≡ u.an = φ (G6)
v. ⊥ ⇒ v /∈ u.an (G7)

First, we establish that the ancestor set does not grow as long as a node remains non-bottom. In the
rest of this argument, S is any fixed set of nodes.

Lemma: u.an = S co u.an ⊆ S ∨ u. ⊥ (G8)

Proof:
¬v R u co ¬v R u ∨ u. ⊥ , G1 with u, v interchanged
v /∈ u.an co v /∈ u.an ∨ u. ⊥ , using G5 to rewrite ¬v R u
〈∀ v : v /∈ S : v /∈ u.an〉 co 〈∀ v : v /∈ S : v /∈ u.an〉 ∨ u. ⊥

, conjunction over all v, v /∈ S
u.an ⊆ S co u.an ⊆ S ∨ u. ⊥ , simplifying the two sides
u.an = S co u.an ⊆ S ∨ u. ⊥ , strengthening left side 2

Lemma: (G4) true 7→ u. ⊥

Proof:
v.> 7→ v. ⊥ , G3
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u.an = S ∧ v.> 7→ v /∈ u.an , strengthening lhs and weakening rhs (using G7)
u.an = S ∧ v.> ∧ v ∈ S 7→ v /∈ u.an ∧ v ∈ S

, stable conjunction with v ∈ S, where S is a subset of nodes
u.an = S ∧ v.> ∧ v ∈ S 7→ u.an 6= S

, weakening rhs
u.an = S ∧ 〈∃ v :: v.> ∧ v ∈ S〉 7→ u.an 6= S

, disjunction over v
u.an = S ∧ S 6= φ 7→ u.an 6= S , an acyclic graph S has a top node ≡ (S 6= φ)
u.an = S co u.an ⊆ S ∨ u. ⊥ , from Lemma (G8)
u.an = S ∧ S 6= φ 7→ u.an ⊂ S ∨ u. ⊥

, PSP and weakening rhs
u.an = S ∧ S = φ 7→ u. ⊥ , u.an = φ ⇒ {G6} u.> 7→ {G3} u. ⊥
u.an = S 7→ u.an ⊂ S ∨ u. ⊥ , disjunction of the above two
true 7→ u. ⊥ , induction (subset relation over finite sets is well founded) 2

5.5 Strong Semaphore: An Example of Strong Fairness

The standard example to illustrate the concept of strong fairness is a binary semaphore that is shared
by two processes. Let x, y denote the number of times that the two processes, respectively, are granted
the semaphore (i.e., successfully complete their P -operations on the semaphore). We assume that each
process releases the semaphore (i.e., performs a V -operation) eventually. Boolean variable s is true if
and only if the semaphore is not granted currently to either process. An outline of the program that
manages the semaphore is as follows.

α :: s, x := false, x + 1 if s
[] β :: s, y := false, y + 1 if s
[] γ :: s := true

Under the weak fairness assumption we can establish only that x + y increases without bound; we can
make no such guarantee for either x or y. Now, we impose the following strong fairness condition for
statement α: If the guard of α (i.e., s) is infinitely often true then α is executed infinitely often. We
assume weak fairness for the remaining statements, β, γ. Our goal is to show that x increases without
bound under this strong fairness condition.

The strong fairness condition can be added as an axiom to the program; for any integer k,

(true 7→ s) ⇒ (x = k 7→ x = k + 1) (SF)

So, we regard our system as consisting of the program (with weak fairness condition) plus the axiom
SF. It is then straightforward to show that for any integer m

true 7→ x > m

The proof is as follows.

true en s , from the program text
true 7→ s , definition of 7→
x = k 7→ x = k + 1 , from above using SF
true 7→ x > m , induction on integers

This treatment of strong fairness, though sound, is incomplete. To see this we consider the following
program where x, y are integers and b is boolean, and all statements are executed under strong fairness.

α :: x := x + 1 if b
[] β :: y := y + 1 if ¬b
[] γ :: b := ¬b if x = y
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We see that x + y is guaranteed to increase by the following operational argument. Both x, y are
nondecreasing. In any execution either b holds infinitely often or ¬b holds infinitely often; therefore,
either x or y increases infinitely often and hence, x + y increases without bound. Unfortunately, our
proof method cannot be used to prove this result. Adding the following strong fairness conditions to
the program

(true 7→ b) ⇒ (x = k 7→ x = k + 1) and
(true 7→ ¬b) ⇒ (y = n 7→ y = n + 1)

does not help us to prove that x + y increases. This is because we can prove neither

true 7→ b nor true 7→ ¬b

(because, if initially x, y, b = 0, 1, false then (x < y) ∧ ¬b persists forever; similarly with x, y, b = 1, 0, true
as the initial condition (x > y) ∧ b persists). The trouble is

(true 7→ b) ⇒ (x = k 7→ x = k + 1)

merely says that if b holds infinitely often in all execution sequences then x will be incremented infinitely
often in all execution sequences. What we need is a stronger statement: In any execution sequence,
if b holds infinitely often then x is incremented infinitely often (in that sequence). Our logic does not
permit us to say this.

6 Theoretical Issues

We touch upon a few theoretical issues concerning leads-to. In Section 6.1 we show the existence of
the “weakest predicate that leads-to” q, for any q, and we prove some of its properties. We give a
fixpoint characterization of this predicate in Section 6.2. The role of the disjunction rule is examined
in Section 6.3. We show that the validity of disjunction over a finite set of predicates is derivable from
the basis and transitivity rules; therefore, the main use of the disjunction rule is in its application to an
infinite set of predicates.

6.1 wlt

For a predicate q, let wlt .q be the weakest predicate that leads-to q. The definition of wlt is

wlt .q ∆= 〈∃ p : p 7→ q : p〉 (W1)

We show that wlt .q is indeed the weakest predicate leading to q, i.e.,

p 7→ q ≡ (p ⇒ wlt .q) (W2)

To see this, we first prove (p 7→ q) ⇒ (p ⇒ wlt .q)

p 7→ q , assume
p ⇒ wlt .q , from (W1)

Conversely, we show (p ⇒ wlt .q) ⇒ (p 7→ q)
〈∀ r : r 7→ q : r 7→ q〉 , trivially
〈∃ r : r 7→ q : r〉 7→ q , disjunction
wlt .q 7→ q , using (W1)
p 7→ q , strengthening the lhs using p ⇒ wlt .q
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This concludes the proof of (W2). We can use (W2) to answer if p 7→ q for arbitrary p, q, by answering
if p ⇒ wlt .q. This is the preferred method when wlt .q can be computed efficiently; see Kaltenbach[19]
for an implementation that uses this approach for finite state programs.

As special cases of (W2), substituting wlt.q for p and using wlt.q ⇒ wlt.q

wlt .q 7→ q (W3)

Also, substituting q for p in (W2) and using q 7→ q,

q ⇒ wlt .q (W4)

Next, we show

wlt .q ∧ ¬q co wlt .q (W5)

Proof of (W5): wlt .q ∧ ¬q co wlt .q

Given p 7→ q, for any p, q, we show that there is a predicate b satisfying
1. p ⇒ b
2. b 7→ q
3. b ∧ ¬q co b ∨ q

We establish (W5) from (1,2,3), as follows.
wlt .q 7→ q , from (W3)

Using (1,2,3), with p as wlt .q and q as q, there is a predicate w such that
1′. wlt .q ⇒ w
2′. w 7→ q
3′. w ∧ ¬q co w ∨ q

Now,
w ⇒ wlt .q , from (2′ and W2)
w ≡ wlt .q , from above and 1′

wlt .q ∧ ¬q co wlt .q ∨ q , from 3′ replacing w by wlt .q
wlt .q ∧ ¬q co wlt .q , simplifying rhs using (W4)

This establishes (W5). Proofs of (1,2,3) can be constructed by applying induction on the structure of
the proof of p 7→ q.

6.2 A Fixpoint Characterization of wlt

The following fixpoint characterization of wlt is under weak fairness. We define a predicate transformer
we, that captures the essence of ensures and we define wlt in terms of we. These definitions have been
found useful in automatic verification of finite state programs where the extreme solutions (i.e., weakest
or strongest) can be computed iteratively [19].

Predicate we.p is the weakest predicate such that starting in any state satisfying we.p, eventually p
is established, and we.p holds until p is established. The predicate we.p can be written as a disjunction
of several predicates, (we.p)t, one predicate for each action t in the given program. Predicate (we.p)t
has the same meaning as we.p, but the additional requirement that p can be established by executing
action t with precondition (we.p)t. Specifically, (we.p)t is the weakest solution of (1) in q; here, wp.s.q
is the weakest precondition of s with postcondition q.

q ≡ (〈∀ s :: wp.s.q〉 ∧ wp.t.p) ∨ p (1)
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Now, we can be defined. Below, t is quantified over all actions.

we.p ≡ 〈∃ t :: (we.p)t〉 (2)

Finally, we define wlt .q as the strongest solution in p of (3).

p ≡ q ∨ we.p (3)

The existence of the weakest solution for (1) and the strongest solution for (3) can be established by
appealing to the Knaster-Tarski Theorem; see [17] for details. The definition of wlt given by equation
(3) can be shown to be the same as the definition (W1) of Section 6.1. The fixpoint characterization
yields a number of properties of we and wlt (we have seen some of these earlier)

p ⇒ we.p
wlt .p ≡ p ∨ we.(wlt .p)
[(p ∨ we.q) ⇒ q] ⇒ [wlt .p ⇒ q]
we.(wlt .p) ⇒ wlt .p
p ⇒ wlt .p
(p ⇒ q) ⇒ (wlt .p ⇒ wlt .q)
wlt .false ≡ false
wlt .(wlt .p) ≡ wlt .p
wlt .(p ∨ wlt .q) ⇒ wlt(p ∨ q)

6.3 The Role of the Disjunction Rule

This section is restricted to the study of progress under weak fairness. We have defined 7→ using
three inference rules. The basis and the transitivity rules are intuitively acceptable. The need for the
disjunction rule, however, is not easy to see. In this section, we show that the disjunction rule is (1)
unnecessary for performing finite disjunctions and (2) necessary for performing infinite disjunctions.
One consequence of this observation is that for a finite-state program—where the number of predicates
themselves is finite and, hence, disjunction can be performed only over a finite number of predicates—the
disjunction rule is unnecessary.

Let |⇒ (a “poor cousin” of 7→) be the transitive closure of ensures, i.e., |⇒ is defined by

p en q
p |⇒ q

and

p |⇒ q , q |⇒ r
p |⇒ r

We show that |⇒ is finitely disjunctive, i.e.,

p |⇒ q , p′ |⇒ q
p ∨ p′ |⇒ q

For this proof, we first show

p |⇒ q
p ∨ r |⇒ q ∨ r

(1)

The demonstration uses induction on the structure of the proof of p |⇒ q.
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(basis) Assume p en q
p ∨ r en q ∨ r , direct from the definition of en
p ∨ r |⇒ q ∨ r , definition of |⇒

(transitivity) Assume for some b that p |⇒ b |⇒ q
p ∨ r |⇒ b ∨ r , induction hypothesis
b ∨ r |⇒ q ∨ r , induction hypothesis
p ∨ r |⇒ q ∨ r , transitivity

Now, we can prove the finite disjunctivity of |⇒.
p ∨ p′ |⇒ q ∨ p′ , from the premise p |⇒ q and (1) using p′ as r
q ∨ p′ |⇒ q , from the premise p′ |⇒ q and (1) using q as r
p ∨ p′ |⇒ q , transitivity on the above two

This concludes the proof that |⇒ is finitely disjunctive. Next, we show that |⇒ is not infinitely disjunctive.
We show that whenever p |⇒ q can be proven for a program, there is some natural number, k,

depending on p, q, such that for any state satifying p there is an execution of length at most k that
establishes q. If p |⇒ q is proven by p en q, then there is an action t such that

{p ∧ ¬q} t {q}

For a state satisfying p ∧ q, an empty execution sequence establishes q and for a state satisfying p ∧ ¬q,
the sequence consisting of action t establishes q. Thus, the bound k equals 1, in this case. If p |⇒ q is
proven by p |⇒ r |⇒ q, then k1 + k2 is the required bound where k1 is the bound for p |⇒ r and k2

for r |⇒ q.
Our impossibility result is derived by considering a program that consists of a single statement; the

statement decrements by 1 the value of an integer variable, x. It is straightforward to show that in this
program true 7→ x < 0 holds. However, true |⇒ x < 0 cannot be proven. Because if it can be proven,
there is a bound k associated with this proof. That is, for any state—in particular, x = k—we can find
an execution sequence of length at most k establishing x < 0, which is impossible.

7 Synopsis

The major theme of this part of the paper is a definition of leads-to and the promulgation of its manip-
ulation rules. The definition used the auxiliary concept of transient predicate (which is used to define
ensures, that forms the basis for the definition of leads-to). Transient predicates are defined directly
from the program text, for different forms of fairness.

The manipulation rules for leads-to consist of about four lightweight and four heavyweight rules.
The examples illustrate how these rules can be effectively applied in practice.

Bibliographic Notes

The treatment of progress properties in this paper closely follows the original development described in
[5]. The only new element is the introduction of transient predicates and the replacement of “unless” by
“co” in the derived rules, such as the PSP and the completion rules. The minimal progress condition is
due to Dijkstra[9]. For a comprehensive treatment of fairness see Francez[13] or Manna and Pnueli[27].
Transient predicates have been used informally before (they are called nonquiescent in ([28], [32]); the
present definition is inspired by Cohen[7]. The definition of ensures for minimal progress appears in Jutla
and Rao[18]. The definition of transient predicate under weak fairness is inspired by Lehmann, Pnueli
and Stavi’s notion[26] of “helpful transitions.” The leads-to operator was introduced in Lamport[23]; its
interpretation in linear temporal logic is in Owicki and Lamport[35]. Our definition, using inference rules,
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has facilitated proofs of the derived rules using structural induction. Lamport[25] prescribes deducing
the progress properties from the conjunction of the fairness assumption—expressed as a formula in
temporal logic—and the safety properties. The graph problem (Section 5.4) is from [29]; the original
inspiration for this problem is from Chandy and Misra[3].

Recently, Chandy has proposed combining progress with stability; he writes p ↪→ q to denote that
once p holds in the program, q will eventually hold and will continue to hold thereafter. The operator
↪→ has many pleasing properties including lhs-strengthening, rhs-weakening, infinite disjunction and
transitivity. It is particularly interesting that ↪→ is finitely conjunctive. The notion of wlt appears in
Knapp[20] and in Jutla, Knapp and Rao[17]. The latter paper includes the fixpoint characterization
of wlt given in Section 6.2. The property (W5) in Section 6.1 is due to Singh[40]. Several varieties
of completeness (and incompleteness) results have been established for leads-to. Jutla and Rao[18]
contains an excellent exposition of what completeness means in this context. They argue that relative
completeness in the sense of Cook[8] is all that we can hope for. Such completeness results appear in
Cohen[7], Jutla and Rao[18], Knapp[21], Pachl[36], and Rao ([37] and [38]). The fact that the disjunction
rule in the definition of leads-to is unnecessary for finite-state programs, is due to van de Snepscheut[44].
It has been exploited by Kaltenbach[19] in implementing an automatic verifier for finite state programs.
The leads-to operator has been extended to probabilistic programs in [38]. Carruth[2] shows how the
progress operators can be extended for stating and proving real-time progress properties. His extensions
preserve the derived rules stated in this paper.
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