
Derivation of a Parallel String Matching
Algorithm

Jayadev Misra
The University of Texas at Austin

Austin, Texas 78712, USA
email: misra@cs.utexas.edu

September 24, 2002

Abstract

We derive an efficient parallel algorithm to find all occurrences of apattern
string in asubjectstring in O(log n) time, wheren is the length of the subject
string. The number of processors employed is of the order of the product of the
two string lengths. The theory of powerlists [2, 3] is central to the development of
the algorithm and its algebraic manipulations.

1 Introduction

We describe a parallel algorithm that finds all occurrences of apatternstring in asub-
ject string inO(log n) time, wheren is the length of the subject string. The number
of processors employed is of the order of the product of the two string lengths. The
emphasis in this note is on the derivation of the algorithm. First, a simple version is
derived whose correctness is obvious; next, a more sophisticated version is derived
through algebraic manipulations of the original program. The theory of powerlists
[2, 3] is central to the development of the algorithm and its algebraic manipulations.

The proposed algorithm is more general than “exact” string matching. A “match”
can be any binary relation over the symbols of the given alphabet. Therefore, wild
character matches as well as characters that never match may be used in either string.

2 Problem Description

We are given two strings, a pattern calledf and a subject calledg, over some alphabet.
Henceforth, the length of a stringh is denoted by|h|. We assume that|f | and|g| are
both powers of 2; we discuss in section 7 how this restriction can be removed. The
symbols in a string are indexed starting at 0 and we writehi to refer to the symbol with
indexi in stringh.

1

It is required to output a string of boolean valuesb of the same length as the subject,
denoting for each position if the pattern matches the subject starting at that position.
That is,

bi = (∀j : 0 ≤ j < |f | : fj = gi+j), 0 ≤ i ≤ |g| − |f |
bi = False, |g| − |f | < i < |g|

As we have remarked earlier,fj = gi+j may be replaced byfj ¤ gi+j for any
binary relation¤.

3 Powerlist

Thepowerlistdata structure was introduced in [3] to facilitate descriptions of parallel
algorithms. The smallest powerlist —corresponding to the empty list for the linear
case— is a list of one element. There are two different ways in which two powerlists
are joined to create a longer powerlist. Ifp andq are powerlists of the same length then

• p | q is the powerlist formed by concatenatingp andq, and

• p ./ q is the powerlist formed by successively taking alternate items fromp and
q, starting withp.

Thus, the length ofp | q or p ./ q is double the length ofp (andq). Hence, the
length of a powerlist is2n, for somen, n ≥ 0. Powerlists can be nested, but we will
not use that feature in this note.

In the following examples the sequence of elements of a powerlist are enclosed
within angular brackets.

〈0〉 | 〈1〉 = 〈0 1〉, 〈0〉 ./ 〈1〉 = 〈0 1〉,
〈0 1〉 | 〈2 3〉 = 〈0 1 2 3〉, 〈0 1〉 ./ 〈2 3〉 = 〈0 2 1 3〉

The operator| is calledtieand ./ iszip. Note that(p ./ q)2j = pj and(p ./ q)2j+1 =
qj , for all j, 0 ≤ j < |p|.

Convention: We write function application without parentheses where no confusion
is possible. For functionsd ande, we write “d x instead of “d(x)” and “e x y” instead of
“e(x, y)”. The constructors| and ./ have the same binding power and their binding
power is lower than that of function application. 2

Functions over linear lists are typically defined by case analysis —a function is
defined over the empty list and, recursively, over non-empty lists. Functions over pow-
erlists are defined analogously. For instance, the following function reverses the order
of the elements of the argument powerlist.

rev〈x〉 = 〈x〉
rev(p | q) = (rev q) | (rev p)

2

The case analysis, as for linear lists, is based on the length of the argument pow-
erlist. We adopt the pattern matching scheme of modern functional programming lan-
guages, such as Haskell [1], todeconstructthe argument list into its components,p
andq, in the recursive case. Deconstruction, in general, uses the operators| and ./ .
In the definition ofrev, we have used| for deconstruction; we could have used./
instead and definedrev in the recursive case by

rev(p ./ q) = (rev q) ./ (rev p)

It can be shown that the two proposed definitions ofrev are equivalent and the
following equation holds for any powerlistp.

rev(rev p) = p

Note: In this paper, we use only the zip operator over powerlists. Each string is
treated as a powerlist of symbols.

4 A Simple Pattern Matching Algorithm

We define functionsm that matches patternf over subjectg. If f and g are both
singleton lists, say〈x〉 and 〈y〉 respectively, then the output is〈True〉 if x = y and
〈False〉 otherwise. That is,

sm 〈x〉 〈y〉 = 〈x = y〉

For f a singleton andg a non-singleton, the same strategy can be applied recur-
sively.

sm 〈x〉 (r ./ s) = (sm 〈x〉 r) ./ (sm 〈x〉 s)

Forf a non-singleton list andg a singleton, the output is〈False〉.

sm (p ./ q) 〈y〉 = 〈False〉

Next, consider the general case wheref is of the form(p ./ q) andg is (r ./ s).
We say thatf matchesg at indexj if (∀k : 0 ≤ k < |f | : fk = gj+k).

• Assertion 1:p ./ q matchesr ./ s at some even index2k iff p matchesr at index
k andq matchess at indexk.

• Assertion 2:p ./ q matchesr ./ s at some odd index2k + 1 iff p matchess at
indexk andq matchesr at indexk + 1.

We sketch a proof of one part of assertion 2.

3

p ./ q matchesr ./ s at2k + 1
≡ {definition of “matches”}

(∀j : 0 ≤ j < |p ./ q| : (p ./ q)j = (r ./ s)j+2k+1)
⇒ {consider only the odd indices2j + 1}

(∀j : 0 ≤ 2j + 1 < |p ./ q| : (p ./ q)2j+1 = (r ./ s)2j+1+2k+1)
⇒ {(p ./ q)2j+1 = qj , (r ./ s)2j+1+2k+1 = rj+k+1}

(∀j : 0 ≤ j < |q| : qj = rj+k+1)
⇒ {definition of “matches”}

q matchesr atk + 1

These two assertions permit computation ofsm (p ./ q) (r ./ s) from (sm p r),
(sm q s), (sm p s), and (sm q r). First, abbreviate(sm x y) by smxy for all x
andy. Assertion 1 says that the sublist ofsm (p ./ q) (r ./ s) with even indices is
(smpr ∧ smqs), where∧ is applied pointwise onsmpr andsmqs.

Unlike assertion 1, the corresponding indices in assertion 2 (k andk + 1) are not
identical. Therefore, the sublist ofsm (p ./ q) (r ./ s) with odd indices is not merely
(smqr ∧ smps); the indices insmqr have to be decremented, i.e.,smqr has to
undergo a left shift. Letsm′qr denote the left shift ofsmqr whereFalse is added to
the right end of the list when it is shifted left. The the sublist ofsm (p ./ q) (r ./ s)
with odd indices is(sm′qr ∧ smps). The entire listsm (p ./ q) (r ./ s) is obtained by
zipping its sublists with even and odd indices. We give the complete algorithm below
including a definition of left shift.

sm 〈x〉 〈y〉 = 〈x = y〉
sm 〈x〉 (r ./ s) = (sm 〈x〉 r) ./ (sm 〈x〉 s)
sm (p ./ q) 〈y〉 = 〈False〉
sm (p ./ q) (r ./ s) = (smpr ∧ smqs) ./ (sm′qr ∧ smps)

where
smpr = sm p r
smqs = sm q s
sm′qr = ls(sm q r)
smps = sm p s

The definition of left shift,ls, is

ls 〈x〉 = 〈False〉
ls (u ./ v) = v ./ (ls u)

5 An Improved Pattern Matching Algorithm

In a parallel implementation./ and∧ over lists can be taken to be constant time
operations if each list element is stored at an appropriate processor. Then we have
described aO(log |f | × log |g|) time algorithm for matching patternf over subjectg.
To see this, first note that left shift applied to a list of lengthk takesO(log k) parallel
time. The algorithm forsm first takesO(log |f |) steps each requiringO(log |g|) time,

4

since a left shift is applied at every step; then the pattern is reduced to a singleton and
thereafterO(log |g| − log |f |) steps each needing constant time are required.

In this section, we show an optimization that reduces the parallel running time to
O(log |g|). The optimization involves eliminating the left shift function, and we do this
through purely algebraic manipulations.

Define functionsm′ wheresm′ u v is ls(sm u v); this is written assm′uv accord-
ing to our notational convention. We derive the definition ofsm′ from those ofsm and
ls.

sm′ 〈x〉 〈y〉
= {definition ofsm′}

ls(sm 〈x〉 〈y〉)
= {definition ofsm 〈x〉 〈y〉}

ls〈x = y〉
= {definition ofls on a singleton list}

〈False〉

sm′ 〈x〉 (r ./ s)
= {definition ofsm′}

ls(sm 〈x〉 (r ./ s))
= {definition ofsm 〈x〉 (r ./ s)}

ls((sm 〈x〉 r) ./ (sm 〈x〉 s))
= {definition ofls (u ./ v) }

(sm 〈x〉 s) ./ ls(sm 〈x〉 r)
= {definition ofsm′}

(sm 〈x〉 s) ./ (sm′ 〈x〉 r)

A similar derivation shows that

sm′ (p ./ q) 〈y〉 = 〈False〉
Finally,

sm′ (p ./ q) (r ./ s)
= {definition ofsm′}

ls(sm (p ./ q) (r ./ s))
= {definition ofsm (p ./ q) (r ./ s)}

ls((smpr ∧ smqs) ./ (sm′qr ∧ smps))
= {definition ofls}

(sm′qr ∧ smps) ./ ls((smpr ∧ smqs))
= {ls distributes over∧ in the second term}

(sm′qr ∧ smps) ./ (ls(smpr) ∧ ls(smqs))
= {ls(smpr) = sm′pr andls(smqs) = sm′qs}

(sm′qr ∧ smps) ./ (sm′pr ∧ sm′qs)

The left shift operation has now been eliminated. Bothsm andsm′ now require
O(log n) parallel time, wheren is the length of the subject string.

5

6 Putting the Pieces Together

We give the definitions ofsm andsm′ together for easy reference.

sm 〈x〉 〈y〉 = 〈x = y〉
sm 〈x〉 (r ./ s) = (sm 〈x〉 r) ./ (sm 〈x〉 s)
sm (p ./ q) 〈y〉 = 〈False〉
sm (p ./ q) (r ./ s) = (smpr ∧ smqs) ./ (sm′qr ∧ smps)

where
smpr = sm p r
smqs = sm q s
sm′qr = sm′ q r
smps = sm p s

sm′ 〈x〉 〈y〉 = 〈False〉
sm′ 〈x〉 (r ./ s) = (sm 〈x〉 s) ./ (sm′ 〈x〉 r)
sm′ (p ./ q) 〈y〉 = 〈False〉
sm′ (p ./ q) (r ./ s) = (sm′qr ∧ smps) ./ (sm′pr ∧ sm′qs)

where
sm′qr = sm′ q r
smps = sm p s
sm′pr = sm′ p r
sm′qs = sm′ q s

7 Concluding Remarks

The main thrust of this paper is a demonstration that the algebraic properties of pow-
erlists make it possible to derive an algorithm systematically; the final version is effi-
cient and it would have been difficult to arrive there intuitively. Also, observe that no
specific property of the equality operator over the symbols of the alphabet has been ex-
ploited (such as that it is an equivalence relation). Therefore, the proposed algorithm is
applicable where the relevant operator is any binary relation over the alphabet. Thus, if
the alphabet contains symbolsα andβ whereα “matches” every symbol in the alpha-
bet exceptβ andβ matches no symbol other thanα then the pattern can be extended
by αs and the subject byβs without affecting the relevant part of the result. This is
particularly useful when the length of the pattern or the subject string is not a power of
2; then such extensions can be applied to bring their lengths to the next power of 2.

Acknowledgment: I appreciate the comments of Edsger W. Dijkstra.

References

[1] Haskell 98: A non-strict, purely functional language. Available at
http://haskell.org/onlinereport , 1999.

6

[2] Jacob Kornerup. Data Structures for Parallel Recursion. PhD the-
sis, University of Texas at Austin, 1997. Available for download at
http://www.cs.utexas.edu/users/kornerup/dis.ps.Z .

[3] Jayadev Misra. Powerlist: A structure for parallel recursion.ACM Transactions
on Programming Languages and Systems, 16(6):1737–1767, November 1994.

7

