
This is page 1
Printer: Opaque this

A Reduction Theorem for
Concurrent Object-Oriented
Programs

JAYADEV MISRA1

ABSTRACT A typical execution of a concurrent program is an interleav-
ing of the threads of its components. It is well known that the net effect
of a concurrent execution may be quite different from the serial executions
of its components. In this paper we introduce a programming notation for
concurrent object-oriented programs, called Seuss, and show that concur-
rent executions of its programs are, under certain conditions, equivalent
to serial executions. This allows us to reason about a Seuss program as if
its components will be executed serially whereas an implementation may
execute its components concurrently, for performance reasons.

1 Introduction

A typical execution of a concurrent program is an interleaving of the threads
of its component programs. For instance, consider a concurrent program
that has α and β as component programs, where the structures of α, β are
as follows:

α:: α1; α2; α3, and
β:: β1; β2; β3.

The concurrent execution α1 β1 α2 β2 α3 β3 interleaves the two sequential
executions. It is well known that the net effect of a concurrent execution
may be quite different from the serial executions of the components. In
this example, suppose α1, β1 are “read the value of variable x”, α2, β2 are
“increment the value read”, and α3, β3 are “store the incremented value
in x”. Then, the given interleaved execution increases the value of x by 1
whereas an execution in which the threads are not interleaved increases x
by 2.

The method of reduction was proposed by Lipton[3] to simplify reason-
ing about concurrent executions. Lipton develops certain conditions under
which the steps of a component program may be considered indivisible (i.e.,
occurring sequentially) in a concurrent execution. A step f in a component

1This material is based in part upon work supported by the National Science Foun-
dation Award CCR–9803842.



2 JAYADEV MISRA

is a right-mover if for any step h of another component whenever fh is
defined then so is hf and they yield the same result (i.e., their executions
result in the same final state). Similarly, g is a left-mover if for any h of
another component hg is defined implies gh is defined, and hg = gh. Lipton
shows that a sequence of steps of a component, r0 r1 ... rn c l0 l1 ... lm, may
be considered indivisible for proof of termination of a concurrent program if
each ri is a right-mover, lj a left-mover and c is unconstrained. This result
has been extended to proofs of more general properties by Lamport and
Schneider [2], Misra [4], and, more recently, by Cohen and Lamport [1].

In section 2, we introduce a programming notation for concurrent object-
oriented programming, called Seuss. Briefly, a seuss program consists of
boxes; a box is similar to an object instance. A box has local variables
whose values define the state of the box. A box has actions and meth-
ods, both of which will be referred to as procedures. Actions are exe-
cuted autonomously; a method is executed by being called by an action or
a method of another box. In section 2.2, we introduce two different execu-
tion styles for programs, tight and loose. In a tight execution an action is
completed before another action is started. In a loose execution the actions
may be executed concurrently provided they satisfy certain compatibility
requirements. A tight execution, being a single thread of control, may be
understood more easily than a loose execution. Loose execution, on the
other hand, is the norm where the computing platform consists of a large
number of processors.

In this paper we develop a reduction theorem that establishes that for
every loose execution there is a corresponding tight execution: if a loose ex-
ecution of some finite set of actions starting in state s terminates in state
t then there is a tight execution of those actions that can also end in state
t starting in state s. This result is demonstrated by prescribing how to
transform a loose execution into a tight execution in the above sense. This
correspondence allows a programmer to understand a program in terms of
its tight executions —a single thread of control— whereas an implementa-
tion may exploit the available concurrency through a loose execution.

The proof of the reduction theorem is considerably more difficult in our
case because (1) procedure calls introduce interleavings of “execution trees”
rather than execution sequences, and (2) executions of any pair of actions
may be interleaved provided the actions are compatible. The notion of com-
patibility is central to our theory. Roughly, two procedures are compatible
if their interleaved execution may be simulated by executing them one af-
ter the other in some order. We give an exact definition and show how
compatibility of procedures may be proven.

Compatibility information can not be deduced automatically. Yet it is
unrealistic to expect the user to provide this information for all pairs of pro-
cedures; in most cases, different boxes will be coded by different users, and
no user may even know which other procedures will be executing. Therefore,
we have developed a theory whereby compatibility of procedures belonging



1. A Reduction Theorem for Concurrent Object-Oriented Programs 3

to different boxes may be deduced automatically from the compatibility
information about procedures belonging to the same box. Users simply
specify which procedures in a box are compatible and an algorithm then
determines which pairs of actions are compatible, and may be executed
concurrently.

Plan of the paper

In the next section, a brief introduction to Seuss is given; the reader may
consult [5] for a detailed treatment. An abstract model of Seuss is given in
section 3. In section 2.1 we state certain restrictions on programs which we
elaborate in section 4. The definition of compatibility appears in section 5.
A statement of the reduction theorem and its proof are given in section 6.
Concluding remarks appear in section 7.

2 The Seuss Programming Notation

The central construct in Seuss is box; it plays the role of an object. A
program consists of a set of boxes. Typically, a user defines generic boxes,
called cats (cat is short for category), and creates several boxes from each
cat through instantiation. A cat is similar to a class; a box is similar to a
class instance.

The state of a box is given by the values of its variables. The variables
are local to the box. Therefore, their values can be changed only by the
steps taken within the box. To enable other boxes to change the state of
a box, each box includes a set of procedures that may be called from
outside. Procedure call is the only mechanism for interaction among boxes.

A procedure is either an action or a method. A method is called by
a procedure of another box. An action is not called like a traditional pro-
cedure; it is executed from time to time under the following fairness rule:
each action is executed eventually. Both actions and methods can change
the state (values of the variables) of their own box, and, possibly, of other
boxes by calling their methods. A method may have parameters; an action
does not have any parameter.

A method may accept or reject a call made upon it. If the state of the
box does not permit a method to execute —for instance, a get method
on a channel can not execute if the channel is empty— then the call is
rejected. Otherwise, the call is accepted. Some methods accept every call;
such methods are called total methods. A method that may reject a call
is called a partial method. Similarly, we have total and partial actions.



4 JAYADEV MISRA

2.1 Seuss Syntax

In this section, we introduce a notation for writing programs. The nota-
tion is intended for implementation on top of a variety of host languages.
Therefore, no commitment has been made to the syntax of any particular
language (there are different implementations with C++ and Java as host
languages) and syntactic aspects that are unrelated to the model are left
unspecified in the notation.

Notational Conventions

The notation is described using BNF. All non-terminal identifiers are in
Roman and all terminal identifiers are in boldface type. The traditional
meta symbols of BNF — ::= { } [ ] ( ) — are used, along with ∨ to stand
for alternation (the usual symbol for alternation, “|”, is a terminal symbol
in our notation). The special symbols used as terminals are | 6 | ; : :: in
the syntax given below. A syntactic unit enclosed within “{” and “}” in a
production may be instantiated zero or more times, and a unit within “[”
and “]” may be instantiated zero or one time. In the right-hand side of a
production, (p∨q) denotes that a choice is to be made between the syntactic
units p and q in instantiating this production; we omit the parentheses, “(”
and “)”, when no confusion can arise. Text enclosed within “ { ” and “ }
” in a program is to be treated as a comment.

Program

program ::= program program-name {cat ∨ box} end
cat ::= cat cat-name [parameters]: {variable} {procedure} end
box ::= box box-name [parameters]: cat-name

A program consists of a set of cats and boxes in any order. The dec-
laration of a cat or box includes its name and, possibly, parameters. The
names of programs, cats and boxes are identifiers. The parameters of a cat
or box could be ordinary variables, cats or boxes. A cat consists of (zero
or more) variable declarations followed by procedure declarations. A box
is an instance of a cat. Variables are declared and initialized in a cat as in
traditional programming languages.

Example

We use a single running example to illustrate the syntax of Seuss. A ubiq-
uitous concept in multiprogramming is a Semaphore. The skeletal program
given below includes a definition of Semaphore as a cat and two instances
of Semaphore, s and t. Cat user describes a group of users that execute
their critical sections only if they hold both semaphores, s, t; there are three
instances of user.



1. A Reduction Theorem for Concurrent Object-Oriented Programs 5

————————————
program MutualExclusion

cat Semaphore
var n: nat init 1 {initially, the semaphore value is 1}
{The procedures of Semaphore are to be included here}

end {Semaphore}

box s, t : Semaphore

cat user
var hs, ht: boolean init false
{hs is true when user holds s. Similarly, ht.}
{The procedures of user are to be included here}

end {user}

box u, v, w : user
end {MutualExclusion}
————————————

procedure

procedure ::= partial-procedure ∨ total-procedure
partial-procedure ::= partial partial-method ∨ partial-action
total-procedure ::= total total-method ∨ total-action
partial-method ::= method head :: partial-body
partial-action ::= action [label] :: partial-body
total-method ::= method head :: total-body
total-action ::= action [label] :: total-body

A procedure is either partial or total; also, a procedure is either a
method or an action. Thus, there are four possible headings identifying
each procedure. Each method has a head and a body. The head is similar
to the form used in typical imperative languages; it has a procedure name
followed by a list of formal parameters and their types. The labels are
optional for actions; they have no effect on program execution.

Example (contd.)

We add the procedure names to the previous skeletal program.

————————————
program MutualExclusion

cat Semaphore
var n: nat init 1 {initially, the semaphore value is 1}
partial method P :: { Body of P goes here}
total method V :: { Body of V goes here}

end {Semaphore}



6 JAYADEV MISRA

box s, t : Semaphore

cat user
var hs, ht: boolean init false
partial action s.acquire:: {acquire s and set hs true.}
partial action t .acquire:: {acquire s and set hs true.}
partial action execute::
{Execute this body if both hs, ht are true. Then, set hs, ht false.}

end {user}

box u, v, w : user
end {MutualExclusion}
————————————

procedure body

A procedure body has different forms for partial and total procedures. For
this manuscript, we take a total-body to be any sequential program. The
partial-body is defined by:

partial-body ::= alternative {( | alternative) ∨ ( 6 | alternative)}
alternative ::= pre-condition [; pre-procedure] → total-body
pre-condition ::= predicate
pre-procedure ::= partial-method-call

The body of a partial procedure consists of one or more alternatives.
Each alternative has a pre-condition, an optional pre-procedure and a total-
body. A pre-condition is a predicate on the state of the box to which this
procedure belongs (i.e., it is constrained to name only the local variables
of the box in which the procedure appears). A pre-procedure is a call upon
a partial method (in some other box).

Example (contd.)

Below, we include code for each procedure body. The partial actions s.acquire
and t .acquire in user include calls upon the partial methods s.P and t.P
as pre-procedures. The partial action execute in user calls the total meth-
ods s.V and t.V in its body. The partial action P in Semaphore has no
pre-procedure.

————————————
program MutualExclusion

cat Semaphore
var n: nat init 1 {initially, the semaphore value is 1}
partial method P :: n > 0 → n := n− 1
total method V :: n := n + 1



1. A Reduction Theorem for Concurrent Object-Oriented Programs 7

end {Semaphore}

box s, t : Semaphore

cat user
var hs, ht: boolean init false
partial action s.acquire:: ¬hs; s.P → hs := true
partial action t .acquire:: ¬ht; t.P → ht := true
partial action execute::

hs ∧ ht → critical section; s.V ; t.V ; hs := false; ht := false
end {user}

box u, v, w : user
end {MutualExclusion}
————————————

The operational semantics of Seuss programs is described in section 2.2.
The program, given above, may become deadlocked, that is, it may not
allow any user to enter its critical section because one may have acquired
s and another t. This problem may be avoided by acquiring s, t in order
(i.e., by changing the pre-condition of t .acquire to hs ∧ ¬ht).

Multiple Alternatives

Each alternative in a partial procedure is positive or negative: the first
alternative is always positive; an alternative preceded by | is positive and
one preceded by 6 | is negative. For each partial procedure at most one of its
alternatives holds in any state; that is, the pre-conditions in the alternatives
of a partial procedure are pairwise disjoint. The distinction between positive
and negative alternatives is explained under the operational semantics of
Seuss in section 2.2.

Restrictions on Programs

Procedure Call

A total-body can include a call only to a total method; a partial method
cannot be called by a total body. A partial method can only appear as a
pre-procedure in an alternative of a partial procedure. The syntax specifies
that an alternative can have at most one pre-procedure. In the example in
page 6, partial action s.acquire calls s.P as a pre-procedure, and execute
calls the total methods s.V , t.V in its total body (i.e., in the code following
→).

Partial Order on Boxes

See section 4.1.



8 JAYADEV MISRA

Termination Condition

Execution of each total body (the body part of any action, total or partial)
must terminate; this is a proof obligation that has to be discharged by the
programmer.

The termination condition can be proven by induction on the “level” of
a procedure. First, show that any procedure that calls no other procedure
terminates whenever it accepts a call. Next, show that execution of any
procedure p terminates assuming that executions of all procedures that p
calls terminate.

2.2 Seuss Semantics (Operational)

At run time, a program consists of a set of boxes; their states are initialized
at the beginning of the run. There are two different execution styles for a
program. In a tight execution one action is executed at a time. There is
no notion of concurrent execution; each action completes before the next
action is started. In a loose execution actions may be executed concurrently.

The programmer understands a program by reasoning about its tight
executions only. We have developed a logic for this reasoning. An imple-
mentation may choose a loose execution for a program in order to maximize
resource utilization.

Tight Execution

A tight execution consists of an infinite number of steps; in each step, an
action of a box is chosen and executed as described below (in section 2.2).
The choice of action to execute in a step is arbitrary except for the following
fairness constraint: each action of each box is chosen eventually.

Observe that methods are executed only when they are called from other
methods or actions, though actions execute autonomously (and eventually).

Procedure Execution

A method is executed when it is called. To simplify description, we imagine
that an action is called by a scheduler. Then the distinction between a
method and an action vanishes; each procedure is executed when called.

A procedure accepts or rejects a call. A total procedure always accepts
calls; its body is executed whenever it is called. Termination condition (see
section 2.1) ensures that execution of each total procedure terminates. A
partial procedure may accept or reject a call. Consider a partial procedure
g that consists of a single (positive) alternative; then, g is of the following
form:

partial method g(x, y):: p; h(u, v) → S



1. A Reduction Theorem for Concurrent Object-Oriented Programs 9

Execution of g can be described by the following rules.

————————————
if ¬p then reject
else {p holds} call h with parameters (u, v);

if h rejects then reject
else {h accepts}

execute S using parameters, if any, returned by h;
return parameters, if any, to the caller of g and accept

endif
endif
————————————

As stated earlier, the programmer must ensure that execution of each
total procedure terminates. It can be then be shown that the execution of
any partial procedure g terminates, by using induction on the partial order
induced by ≥g (see section 2.1).

The caller is oblivious to rejection, because then its body is not exe-
cuted and its state remains unchanged. If all alternatives in a program are
positive, then the effect of execution of an action is either rejection (then
the state does not change for any box) or acceptance (some box state may
change then). This is because, if any procedure rejects during the execu-
tion of an action then the entire action rejects. If any procedure accepts
—the lowest procedure, that has no pre-procedure, accepts first, followed
by acceptances by its callers in the reverse order of calls— then the entire
action accepts. This execution strategy meets the commit requirement in
databases where a transaction either executes to completion or does not
execute at all.

We have described the execution of a partial procedure that has a single
(positive) alternative. In case a procedure has several alternatives, positive
and negative, the following execution strategy is adopted. Recall that pre-
conditions of the alternatives are disjoint.

————————————
if pre-conditions of all alternatives are false then reject
else {pre-condition of exactly one alternative, f , holds}

if f is a positive alternative then execute as described previously
else {f is a negative alternative}

execute f as a positive alternative except on completion of f :
reject the call and do not return parameter values

endif
endif
————————————

The execution of a negative alternative always results in rejection. The
caller is still oblivious to rejection, because its body is not executed and



10 JAYADEV MISRA

its state remains unchanged. However, a called method may change the
state of its own box even when it rejects a call, by executing a negative
alternative.

For a partial action the effect of execution is identical for positive and
negative alternatives because the scheduler does not discriminate between
acceptance and rejection of an action. Therefore, partial actions, generally,
have no negative alternatives.

3 A Model of Seuss Programs

In this section, we formalize the notion of box, procedure, and executions
of procedures (program execution is treated in section 6). The cats of Seuss
are not modeled because they have no relevance at run time. Also, we
do not distinguish between action and method because this distinction is
unnecessary for the proof of the theorem. Negative alternatives are not
considered in the rest of this paper.

• A box is a pair (S, P ) where
S is a set of states and
P is a set of procedures.

Each procedure has a unique name and is designated either partial
or total.

• A procedure is a tuple (T,N,E) where
T is a set of terminal symbols; each is a binary relation over the

states of its box.
N is a set of nonterminal symbols; each is the name of a procedure

of another box.
E is a non-empty set of executions, where each execution is a finite

string over T ∪N .

An execution of a total procedure is a sequence where each element
of the sequence is either a terminal or a total procedure of another
box. An execution of a partial procedure is of the form: b h e, where
b is a terminal, h —which is optional— is a nonterminal that names
a partial procedure of another box, and e is a sequence in which each
element is either a terminal or a total procedure of another box.

• A program is a finite set of boxes. Program state is given by the box
states. (Therefore, each terminal symbol is a binary relation over the
program states.)

Convention and Notation:

(1) Terminal symbols of different procedures are distinct.
(2) Each execution of procedure p begins with a beginp symbol and ends



1. A Reduction Theorem for Concurrent Object-Oriented Programs 11

with a endp symbol. Both of these are terminal symbols of procedure p.
(3) For terminal s, s.box is the box of which s is a symbol. Similarly, p.box
is defined for a procedure p.

Justification for the Model

A terminal symbol of a procedure —an element of T— denotes a local
step within the procedure. The local step can affect only the state of the
corresponding box, and we allow a step to have nondeterministic outcome.
Hence, each terminal is modeled as a binary relation over box states.

In the formal model, procedures are parameter-less. Although this would
be an absurd assumption in practice, it simplifies mathematical modeling
considerably. We justify this assumption as follows. First, we can remove
a value parameter from a procedure by creating a set of procedures, one
for each possible value of the parameter, and the caller can decide which
procedure to call based on the parameter value. Thus, all value parameters
may be removed at the expense of increasing the set of procedures. Next,
consider a procedure with result parameters; to be specific, let read(w)
return a boolean value in w. The caller of read cannot decide a priori
what the returned value will be. However, we can remove parameter w, as
follows. First, model read by two different procedures, readt and readf ,
which return the values true and false, respectively. Now, we have two
different execution fragments modeling the call upon read(w):

readt; w := true, and
readf ; w := false.

An execution that calls read(w) will be represented by two executions in
our model, one for each possible value returned by read for w. Thus, we
can remove all parameters from procedures.

Next, we justify our model of procedure execution. An execution is a
sequence of steps taken by a procedure and the procedures it calls. To
motivate further discussion, consider a procedure P that calls read(w),
described above, twice in succession. The terminal symbols of P are α, β
where

α denotes w := true, and β denotes w := false.
The nonterminals of P are readt and readf , as described above.

An execution of P does the following steps twice: call read and then
assign the value returned in the parameter to w. If P is executed alone
then the possible executions are

beginP readt α readt α endP , and
beginP readf β readf β endP .
These are the tight executions of P . If, however, other procedures execute

concurrently with P then the value of the boolean could change in between
the two read operations (by other concurrently executing procedures) and
the loose executions of P are:

beginP readt α readt α endP ,



12 JAYADEV MISRA

beginP readf β readf β endP ,
beginP readt α readf β endP , and
beginP readf β readt α endP .

In particular, the execution beginP readt α readf β endP denotes that the
boolean value is changed from true to false by another procedure during
the two calls to read by P . Our goal is to model concurrent executions;
therefore, we admit all four executions, shown above, as possible executions
of P .

We have not specified the initial states of the boxes, because we do not
need the initial states to prove the main theorem.

4 Restrictions on Programs

We impose two restrictions on programs.

• (Partial Order on Boxes) For each procedure, there is a partial order
over the boxes of the program such that during execution of that
procedure, one procedure may call another only if the former belongs
to a higher box than the latter; see section 4.1. Different procedures
may impose different partial orders on the boxes. A static partial
order (i.e., one that is the same for all procedures) is inadequate in
practice.

A consequence of the requirement of partial order is that if some
procedure of a box is executing then no procedure of that box is
called; therefore, at most one procedure from any box is executing at
any moment.

• (Box Condition) For any box, at most one of its procedures may
execute at any time; see section 4.3. This restriction disallows con-
currency within a box.

4.1 Partial Order on Boxes

Definition:

For procedures p, q, we write p calls q to mean that p has q as a nonter-
minal. Let calls+ be the transitive closure of calls, and calls∗ the reflexive
transitive closure of calls. Define a relation callsp over procedures where

(x callsp y) ≡ (p calls∗ x) ∧ (x calls y).

In operational terms, x callsp y means procedure x may call procedure y
in some execution of procedure p. Each program is required to satisfy the
following condition.



1. A Reduction Theorem for Concurrent Object-Oriented Programs 13

Partial Order on Boxes:

For every procedure p, there is a partial order ≥p over the boxes such that
x callsp y ⇒ x.box >p y.box.

Note: b >p c is a shorthand for b ≥p c ∧ b 6= c. Relation ≥p is reflexive
and >p is irreflexive.

Observation 1:

p calls∗ x ⇒ p.box ≥p x.box, and
p calls+ x ⇒ p.box >p x.box.

Proof: Define callsi, for i ≥ 0, as follows.

p calls0 p, and
p callsi+1 q ≡ (∃r :: p callsi r ∧ r calls q).

Using induction over i we can show that

p callsi x ⇒ p.box ≥p x.box, for all i, i ≥ 0
p callsi x ⇒ p.box >p x.box, for all i, i > 0.

The desired results follow by noting that

p calls∗ x ≡ (∃i : i ≥ 0 : p callsi x), and
p calls+ x ≡ (∃i : i > 0 : p callsi x). 2

Note that p calls+ q ⇒ {by Observation 1} (p.box >p q.box) ⇒ p, q
are in different boxes. It follows that no call is ever made upon a box when
one of its procedures has started but not completed its execution.

Observation 2:

calls+ is an acyclic (i.e., irreflexive, asymmetric and transitive) relation
over the procedures.
Proof: From its definition calls+ is transitive. Also, p calls+ p ⇒ {from
Observation 1} p.box >p p.box, a contradiction. Therefore, calls+ is ir-
reflexive. Asymmetry of calls+ follows similarly.

Definition:

The height of a procedure is a natural number. The height is 0 if the
procedure has no nonterminal. Otherwise, p calls q ⇒ p.height > q.height.
This definition of height is well grounded because calls+ induces an acyclic
relation on the procedures.

Definition:

An execution tree of procedure p is an ordered tree where (1) the root is
labeled p, (2) every nonleaf node is labeled with a nonterminal symbol, and
(3) the sequence of labels of the children of a nonleaf node q is an execution



14 JAYADEV MISRA

of q. A full execution tree is an execution tree in which each leaf node is
labeled with a terminal symbol.

Any execution tree of procedure p is finite. This is because if procedure
q is an ancestor of procedure r in this tree then q callsp r; hence, q.box >p

r.box. Since the program has a finite number of boxes, each path in the
tree is finite; also, the degree of each node is finite because each execution
is finite in length. From Koenig’s lemma, the tree is finite.

Definition:

The frontier of an execution tree is the ordered sequence of symbols in the
leaf nodes of the tree. An expanded execution of procedure p is the frontier
of some full execution tree of p. Hence, an expanded execution consists of
terminals only.

4.2 Procedures as Relations

With each terminal symbol we have associated a binary relation over pro-
gram states. Next, we associate such a relation with each procedure and
each execution of a procedure; to simplify notation we use the same symbol
for an execution (or a procedure) and its associated relation. For execution
e, (u, v) ∈ e means that if e is started in state u then it is possible for
it to end in state v. For a procedure p, (u, v) ∈ p means that there is an
execution e of p such that (u, v) ∈ e. Formally,

• The relation for a procedure is the union of relations of all its execu-
tions.

• The relation for an execution x0, . . . , xn is the relational product of
the sequence of relations corresponding to the xi’s.

Observe that a symbol xi in an execution may be a terminal for which the
relation has already been defined, or a nonterminal for which the relation
has to be computed using this definition. We show in the following lemma
that the rules given above define unique relations for each execution and
procedure; the key to the proof is the acyclicity of calls+.

Lemma 1:

There is a unique relation for each procedure and each execution.

Proof: We prove the result by induction on n, the height of a procedure.
For n = 0: The procedure has only terminals in all its executions. The

relation associated with any execution of the procedure is the relational
product of its terminals. The relation associated with the procedure is the
union of all its executions, and, hence, is uniquely determined.

For n > 0: Each execution of the procedure has terminals (for which
the relations are given) or nonterminals (whose heights are at most n, and,



1. A Reduction Theorem for Concurrent Object-Oriented Programs 15

hence, they have unique relations associated with them). Therefore, the
relation for an execution —which is the relational product of the sequence
of relations of its terminals and nonterminals— is uniquely determined. So,
the relation for the procedure is also uniquely determined. 2

Note that an execution may have the empty relation associated with it,
denoting that the steps of the execution will never appear contiguously in
a program execution. Such is the case with the execution read α read β in
the example of section 3, where two successive reads of the same variable
yield different values. Such an execution may appear as a noncontiguous
subsequence in a program execution where steps of another procedure’s
execution could alter the value of the variable in between the two read
operations.

Henceforth, each symbol —terminal or nonterminal— has an associated
binary relation over program states. Concatenation of symbols corresponds
to their relational product. For strings x, y, we write x ⊆ y to denote that
the relation corresponding to x is a subset of the relation corresponding to
y.

Observation 3:

For terminal symbols s, t of different boxes, st = ts (i.e., the relations st
and ts are identical).

4.3 Box Condition

The execution strategy for a program ensures that at most one procedure
from a box executes at any time. This strategy can be encoded in our model
by making it impossible for procedure q to start if procedure p of the same
box has started and not yet completed. This is formalized below.

Definition:

Let σ and τ be sequences of symbols (terminals and nonterminals). Pro-
cedure p is incomplete after σ (before τ in στ) if σ contains fewer endp’s
than beginp’s.

Box Condition

Let p, q be procedures of the same box, and p be incomplete after σ. Then,
σ beginq = ε, where ε denotes the empty relation.

The following lemma shows that under certain conditions a terminal
symbol can be transposed with a nonterminal symbol adjacent to it .

Lemma 2:

Let p, q be procedures, t a terminal of p, and σ any sequence of symbols.
1. If p is incomplete after σ then σ q t ⊆ σ t q.



16 JAYADEV MISRA

2. If p is incomplete after σ t then σ t q ⊆ σ q t.
Proof: We prove the first part. The other part is left to the reader.

σ q t
= {q is the union of all its expanded executions, g}

(∪g(σ g t))
= {partition g into e, f ; e has a terminal from p.box, and f does not}

(∪e(σ e t)) ∪ (∪f (σ f t))
= {e is of the form σ′beginr σ′′, where:

σ′ has no terminal from p.box; r is some procedure from p.box}
(∪(σσ′ beginr σ′′ t)) ∪ (∪f (σ f t))

= {σσ′ beginr = ε, because from Box Condition:
p is incomplete after σ, and hence, after σσ′, and r.box = p.box}

(∪f (σ f t))
= {f has no terminal from p.box, t is a terminal of p.box; Observation 3}

(∪f (σ t f))
⊆ {f is a subset of the (expanded) executions of q}

σ t q

5 Compatibility

A loose execution of a program allows only compatible actions to be exe-
cuted concurrently. We give a definition of compatibility in this section. We
expect the user to specify the compatibility relation for procedures within
each box; then the compatibility relation among all procedures (in different
boxes) can be computed automatically in linear time from the definition
given below.

Procedures p, q are compatible, denoted by p ∼ q, if all of the following
conditions hold. Observe that ∼ is a symmetric relation.

C0. p calls p′ ⇒ p′ ∼ q, and q calls q′ ⇒ p ∼ q′.

C1. If p, q are in the same box,
(p is total ⇒ qp ⊆ pq), and
(q is total ⇒ pq ⊆ qp).

C2. If p, q are in different boxes, the transitive closure of the relation
(≥p ∪ ≥q) is a partial order over the boxes.

Condition C0 requires that procedures that are called by compatible
procedures be compatible. Condition C1 says that for p, q in the same box,
the effect of executing a partial procedure and then a total procedure can be
simulated by executing them in the reverse order. Condition C2 says that
compatible procedures impose similar (i.e., nonconflicting) partial orders
on boxes.



1. A Reduction Theorem for Concurrent Object-Oriented Programs 17

Notes:

(1) If partial procedures p, q of the same box call no other procedure, then
they are compatible.
(2) Total procedures p, q of the same box are compatible only if pq = qp.
(3) The condition (C0) is well grounded because if p calls p′ then the height
of p exceeds that of p′.
(4) In a Seuss program compatibility of procedures with parameters has
to be established by checking the compatibility with all possible values of
parameters; see the example of channels in section 5.1

5.1 Examples of Compatibility

Semaphore

Consider the Semaphore box of page 6. We show that V ∼ V and P ∼ V ,
that is,

V V = V V , and
PV ⊆ V P

The first identity is trivial. For the second identity, we compute the
relations corresponding to P and V , as follows:

P
= {from the program text}

(n > 0)× (n := n− 1)
= {definitions of predicate and assignment}

{(x, x)| x > 0} × {(x, x− 1)| x > 0}
= {simplifying}

{(x, x− 1)| x > 0}
Similarly, V = {(x, x + 1)| x ≥ 0}. Taking relational product, PV =
{(x, x)| x > 0}, and V P = {(x, x)| x ≥ 0}. Therefore, PV ⊆ V P .

Channels

Consider the unbounded FIFO channel of sectionthat get ∼ put, that is,
for any x, y,

get(x) put(y) ⊆ put(y) get(x)

That is, any state reachable by executing get(x) put(y) is also reachable
by executing put(y) get(x) starting from the same initial state.

Let (u, v) ∈ get(x) put(y). We show that (u, v) ∈ put(y) get(x). Given
(u, v) ∈ get(x) put(y), we conclude from the definition of relational compo-
sition, that there is a state w such that (u,w) ∈ get(x) and (w, v) ∈ put(y).
Since (u,w) ∈ get(x), from the implementation of get, u represents a state



18 JAYADEV MISRA

where the channel is non-empty; that is, the channel state s is of the form
a ++ S, for some item a and a sequence of items S. Then we have

{s = a ++ S} put(y) {s = a ++ S ++ y} get(x) {x ++ s = a ++ S ++ y}
{s = a ++ S} get(x) {x ++ s = a ++ S} put(y) {x ++ s = a ++ S ++ y}

The final states, given by the values of x and s, are identical. This completes
the proof.

The preceding argument shows that two procedures from different boxes
that call put and get (i.e., a sender and a receiver) may execute concur-
rently. Further, since get ∼ get by definition, multiple receivers may also
execute concurrently. However, it is not the case that put ∼ put for arbi-
trary x, y, that is,

put(x) put(y) 6= put(y) put(x)

because a FIFO channel is a sequence, and appending a pair of items in
different orders results in different sequences. Therefore, multiple senders
may not execute concurrently.

Next, consider concurrent executions of multiple senders and receivers,
as is the case in a client–server type interaction. As we have noted in the
last paragraph, multiple senders may not execute concurrently on a FIFO
channel. Therefore, we use an unordered channel, of section for communi-
cation in this case. We show that put ∼ put and put ∼ get for unordered
channel, i.e., for all x, y

put(x) put(y) = put(y) put(x) , and
get(x) put(y) ⊆ put(y) get(x)

The proof of the first identity is trivial because put is implemented as a
bag union. The proof of the second result is similar to that for the FIFO
channel. We need consider the initial states where the bag b is non-empty.
In the following, x ∪ b is an abbreviation for {x} ∪ b.

{b = B, B 6= empty} get(x) {x ∪ b = B} put(y) {x ∈ B, x ∪ b = B ∪ y}
{b = B, B 6= empty} put(y) {b = B ∪ y} get(x) {x ∈ (B ∪ y), x ∪ b = B ∪ y}

The post-condition of (1) implies the post-condition of (2) because x ∈
B ⇒ x ∈ (B∪y). Hence, any final state of get(x) put(y) is also a final state
of put(y) get(x).

5.2 Semi-Commutativity of Compatible Procedures

In Lemma 3, below, we prove a result for compatible procedures analogous
to condition C1 of page 16. This result applies to any pair of compatible
procedures, not necessarily those in the same box.



1. A Reduction Theorem for Concurrent Object-Oriented Programs 19

Lemma 3:

Let p ∼ q where p is total (p, q need not belong to the same box). Then
qp ⊆ pq.

Proof: We apply induction on n, the sum of the heights of p and q, to prove
the result. The result holds from the definition of ∼ if p, q are in the same
box. Assume, therefore, that p, q are in different boxes.

For n = 0: Both p, q are at height 0; hence, p, q have only terminals in
all their executions. Since, p, q are from different boxes, the result follows
by repeated application of Observation 3.

For n > 0: From (C2), the transitive closure of (≥p ∪ ≥q) is a partial
order over the boxes; we abbreviate this relation by ≥. We prove the result
for the case where ¬(q.box > p.box). A similar argument applies for the
remaining case, ¬(p.box > q.box). Consider an execution, e, of p. Let x be
any symbol in that execution. We show that qx ⊆ xq.

• x is a terminal: Consider any expanded execution of q. A terminal t in
this expanded execution is a symbol of procedure r where q calls∗ r.

x.box = t.box
⇒ {x, t are terminals of p, r, respectively}

x.box = t.box ∧ x.box = p.box ∧ t.box = r.box
⇒ {logic}

p.box = r.box
⇒ {q calls∗ r; Observation 1}

p.box = r.box ∧ q.box ≥q r.box
⇒ {logic}

q.box ≥q p.box
⇒ {≥ is the transitive closure of (≥p ∪ ≥q)}

q.box ≥ p.box
⇒ {p, q are from different boxes}

q.box > p.box
⇒ {assumption: ¬(q.box > p.box)}

false

Thus, x, t belong to different boxes, and from Observation 3, xt = tx.
Applying this argument for all terminals t in the expanded execution
of q, we have qx = xq.

• x is a nonterminal: From (C0), x ∼ q. The combined heights of x and
q is less than n. Also, x is total, since it is a nonterminal of p, and p
is total. From the induction hypothesis, qx ⊆ xq.

Next we show that for any execution e of p, qe ⊆ eq. Proof is by induction
on the length of e. If the length of e is 1 then the result follows from qx ⊆ xq.
For e of the form fx:



20 JAYADEV MISRA

qfx
⊆ {Induction: qf ⊆ fq; monotonicity of relational product}

fqx
⊆ {qx ⊆ xq; monotonicity of relational product}

fxq

Next, we show qp ⊆ pq.

qp
= {definition of p}

q(∪e∈p e)
= {distributivity of relational product over union}

(∪e∈p qe)
⊆ {qe ⊆ eq from the above proof}

(∪e∈p eq)
= {distributivity of relational product over union}

(∪e∈p e)q
= {definition of p}

pq 2

Lemma 4:

(p ∼ q ∧ p calls∗ p′ ∧ q calls∗ q′) ⇒ (p′ ∼ q′).

Proof: The result follows from

(p ∼ q ∧ p callsi p′ ∧ q callsj q′) ⇒ (p′ ∼ q′)

which is proved by induction on i + j, i, j ≥ 0.

6 Proof of the Reduction Theorem

A finite loose execution of a program is a finite sequence of steps taken by
some of the procedures of the program. The executions of the procedures
could be interleaved. A loose execution satisfies: (1) the steps taken by each
procedure is an expanded execution of that procedure, and (2) executions
of two procedures are interleaved only if they are both part of the execution
of the same procedure, or if they are compatible.

In this section, we formally define loose execution of a program and show
a scheme to convert a loose execution to a tight execution. The reduction
scheme establishes the following theorem.

Reduction Theorem:

Let E be a finite loose execution of a program. There exists a tight execution
F of the program such that E ⊆ F .



1. A Reduction Theorem for Concurrent Object-Oriented Programs 21

6.1 Loose execution

A loose execution is given by: (1) a finite set of full execution trees (of some
of the procedures), and (2) a finite sequence of terminals called a run. the
relation corresponding to a loose execution is the relational product of
the terminals in the run. Each execution tree (henceforth called a tree)
depicts the steps of one action in this loose execution, and the run specifies
the interleaving of the executed steps. The trees and the run satisfy the
conditions M0 and M1, given below.

Condition M0 states that each symbol of the run can be uniquely iden-
tified with a leaf node of some tree, and conversely, and that the loose
execution contains the procedure executions (the frontiers of the corre-
sponding trees) as subsequences. Since each symbol of the run belongs to
a tree we write x.root for the root of the tree that symbol x belongs to.

Condition M1 states that if two procedures are incomplete at any point
in the run then they either belong to the same tree (i.e., they are part of
the same execution) or they are compatible.

• (M0) There is a one-to-one correspondence between the symbols in
the run and the leaf nodes of the trees. The subsequence of the run
corresponding to symbols from a tree T is the frontier of T .

• (M1) Suppose procedure p is incomplete before symbol s in the run.
Then, either p.root = s.root or p.root ∼ s.root.

6.2 Reduction Scheme

Suppose R is the run of some loose execution. We transform run R and
the execution trees in stages; let R′ denote the transformed run. The trans-
formed run may consist of terminals as well as nonterminals, and its exe-
cution trees need not be full (i.e., leaf nodes may have nonterminal labels).
We show how to transform the execution trees and the run so that the fol-
lowing invariants are maintained. Note the similarity of N0, N1 with M0,
M1.

• (N0) There is a one-to-one correspondence between the symbols in
the run and the leaf nodes of the trees. The subsequence of the run
corresponding to symbols from a tree T is the frontier of T .

• (N1) Suppose procedure p is incomplete before symbol s in the run.
Then, either p.root = s.root or p.root ∼ s.root.

• (N2) R ⊆ R′.

The conditions (N0, N1, N2) are initially satisfied by the given run and
the execution trees: N0, N1 follow respectively from M0, M1, and N2 holds
because R = R′.



22 JAYADEV MISRA

The reduction process terminates when there are no end symbols in the
run; then all symbols are the roots of the trees. This run corresponds to a
tight execution, and according to N2, it establishes the reduction theorem.
The resulting tight execution can simulate the original loose execution: if
the original execution starting in a state u can lead to a final state v then
so does the final tight execution.

For a run that contains an end symbol, we apply either a replacement
step or a transposition step. Let the first end symbol appearing in the run
belong to procedure q.

Replacement Step:

If a contiguous subsequence of the run corresponds to the frontier of a
subtree rooted at q (then the subsequence is an execution of q) replace the
subsequence by the symbol q, and delete the subtree rooted at q (retaining
q as a leaf node).

This step preserves N0. N1 also holds because for any symbol x in the
execution that is replaced by q, p.root ∼ x.root prior to replacement, and
x.root = q.root. Hence, p.root ∼ q.root after the replacement. The relation
for a procedure is weaker than for any of its executions; therefore, the
replacement step preserves N2.

Transposition step:

If a run has an end symbol, and a replacement step is not applicable then
execution of some procedure q is noncontiguous. We then apply a trans-
position step to transpose two adjacent symbols in the run (leaving the
execution trees unchanged) that makes the symbols of q more contigu-
ous. Continued transpositions make it possible to apply a replacement step
eventually.

Suppose q is a partial procedure (similar arguments apply to partial pro-
cedures that have no pre-procedures and to total procedures). An execution
of procedure q is of the form (beginq b h . . . x . . . endq) where h is the
pre-procedure of q and x is either a terminal symbol or a nonterminal, des-
ignating a total procedure, of q. All procedures that complete before q have
already been replaced by nonterminals, because the first end symbol ap-
pearing in the run belongs to q. Note that h is a procedure that completes
before q.

Suppose x is preceded by y which is not part of the execution of q. We
show how to bring x closer to h. Transposing x, y preserves N0, N1. We
show below that transposition preserves N2, as well.

• Case 0 (Both x, y are terminals): Let y be a terminal of procedures
p. Procedure q is incomplete before y because its endq symbol comes
later. If p, q are in the same box then the relation corresponding to
prefix σ of the run up to y is ε, from the Box condition. Hence,



1. A Reduction Theorem for Concurrent Object-Oriented Programs 23

σ y x = σ x y. If p, q belong to different boxes, from Observation 3,
the symbols x, y can be transposed.

• Case 1 (Both x, y are nonterminals): Symbol x is part of q’s execution;
therefore, q.root calls∗ x. Symbol y is not a part of q’s execution, nor
can it be a part of the execution of any procedure that calls q because
q is incomplete before y; therefore, q.root 6= y.root.

q is incomplete just before y
⇒ {(N1)}

q.root = y.root ∨ q.root ∼ y.root
⇒ {q.root 6= y.root (see above)}

q.root ∼ y.root
⇒ {q.root calls∗ x ∧ y.root calls∗ y; Lemma 4}

x ∼ y
⇒ {x is total; Lemma 3}

yx ⊆ xy

• Case 2 (x is a terminal, y a nonterminal): q is incomplete just before
y. Applying Lemma 2 (part 1), x, y may be transposed.

• Case 3 (x is a nonterminal, y is a terminal): Let Y be the procedure of
which y is a symbol. Since the first end symbol in the run belongs to
q, endY comes after x. Therefore, Y is incomplete before x. Applying
Lemma 2 (part 2) with Y as the incomplete procedure, x, y may be
transposed.

Thus, x, y may be transposed in all cases, preserving N3. Hence, all
symbols in the execution of q to the right of h can be brought next to h.

Next, we bring the beginq symbol and the predicate b next to h, using
an argument similar to Case 3, above. Thus, all of q’s symbols to the left
and right of h can be made contiguous around h, and a replacement step
can then be applied.

For a total procedure q the reduction is done similarly; beginq serves
the role of h in the above argument. For a procedure q that has no pre-
procedure, the reduction process is similar with b serving the role of h.

Proof of Termination of the Reduction Scheme

We show that only a finite number of replacement and transposition steps
can be applied to any loose execution. For a given run, consider the proce-
dure q whose end symbol, endq, is the first end symbol in the run. Define
two parameters of the run, n, c, as follows.

n = number of end symbols in the run,
c = Σ cj ,



24 JAYADEV MISRA

where cj is the number of symbols not belonging to q between the pre-
procedure h of q and the jth symbol of q, and the sum is over all symbols
of q. c has an arbitrary value if the run has no end symbol.

The pair (n, c) decreases lexicographically with each transposition and
replacement step. This is because a replacement step removes one end sym-
bol from the run, thus decreasing n. A transposition step decreases c while
keeping n unchanged. Ultimately, therefore, n will become 0; then the run
has no end symbol, and, from (N0), the symbols are the roots of the exe-
cution trees.

7 Concluding Remarks

The following variation of the Reduction theorem may be useful for appli-
cations on the worldwide web. Consider a Seuss program in which every
procedure calls at most one other procedure. Define all pairs of procedures
to be compatible. The reduction theorem then holds: any loose execution
may be simulated by some tight execution.

The proof of this result is similar to the proof already given. As before,
we reduce procedure q, whose end symbol, endq, is the first end symbol
in the run. If this procedure calls no other procedure, then all its symbols
are terminals, and, by applying Case (0) and Case (2) of the transposition
step, we can bring all its symbols together next to its first symbol. If the
procedure calls another procedure then, according to the reduction proce-
dure, the called procedure has already been reduced and we bring all the
symbols next to the called procedure symbol in a similar fashion.

The major simplification in the reduction scheme for this special case is
due to the fact that it is never necessary to transpose two nonterminals.
Therefore, Case (1) of the transposition step never arises. Consequently,
the condition for compatibility of two procedures (page 16) is irrelevant in
this case.

Acknowledgments

This paper owes a great deal to discussions with Rajeev Joshi and Will
Adams. I am grateful to Carroll Morgan who gave me useful comments on
an earlier draft. Ernie Cohen has taught me a great deal about reduction
theorems, in general.

8 References

[1] Ernie Cohen and Leslie Lamport. Reduction in TLA. In David San-
giorgi and Robert de Simone, editors, CONCUR’98 Concurrency The-
ory, volume 1466 of Lecture Notes in Computer Science, pages 317–331.
Springer-Verlag, 1998. Compaq SRC Research Note 1998-005.



1. A Reduction Theorem for Concurrent Object-Oriented Programs 25

[2] Leslie Lamport and Fred B. Schneider. Pretending atomicity. Technical
Report 44, Digital Systems Research Center, May 1989.

[3] Richard J. Lipton. Reduction: a method of proving properties of parallel
programs. Communications of the ACM, 18(12):717–721, December
1975.

[4] Jayadev Misra. Loosely coupled processes. Future Generation Com-
puter Systems, 8:269–286, 1992. North-Holland.

[5] Jayadev Misra. A Discipline of Multiprogramming. Mono-
graphs in Computer Science. Springer-Verlag New York
Inc., New York, 2001. The first chapter is available at
http://www.cs.utexas.edu/users/psp/discipline.ps.gz.


