
A walk over the shortest path: Dijkstra’s
Algorithm viewed as fixed-point computation

Jayadev Misra 1

Department of Computer Sciences, University of Texas at Austin, Austin, Texas
78712-1188, USA

Abstract

We present a derivation Dijkstra’s shortest path algorithm[1]. We view the prob-
lem as computation of a “greatest solution” of a set of equations. A UNITY-style
computation[0] is then prescribed whose implementation results in Dijkstra’s algo-
rithm.

Key words: Design of algorithms, Graph algorithms, Combinatorial problems,
Program derivation

0 Introduction

Dijkstra’s shortest path algorithm[1] has, by now, become a classic (the cited
paper has received such an official designation from the Citation Index Ser-
vice). Typical descriptions (and derivations) of this algorithm start by pos-
tulating that the shortest paths be enumerated in the order of increasing
distances from the source. In this note, we present a derivation that is quite
different in character. We view the problem as computation of a “greatest so-
lution” of a set of equations. A UNITY-style computation[0] is then prescribed
whose implementation results in Dijkstra’s algorithm.

The bulk of the work in our derivation is in designing the appropriate heuris-
tics that guarantee termination; this is in contrast to traditional derivations
where most of the effort is directed toward postulating and maintaining the
appropriate invariant.

1 E-mail: misra@cs.utexas.edu. Partially supported by the NSF grant CCR–
9803842.

Preprint submitted to Elsevier Preprint 1/30/2000



1 The Shortest Path Problem

Given is a finite directed graph that has (i) a source node, henceforth, desig-
nated by s, and (ii) for each edge (i, j) a non-negative real number, wij, called
its length. Length of a path is the sum of edge lengths along the path. It is
required to compute the shortest path, i.e., a path of minimum length, from
s to every node. Henceforth, “shortest path to a node” means the shortest
path from s to that node, and distance to a node is the length of the shortest
path. The distance to a reachable node from s is a non-negative real and dis-
tance to an unreachable node is ∞. For the moment, assume that every node
in the graph is reachable from s; the general case, where some of the nodes
are unreachable, is taken up in section 1.4. We restrict ourselves to comput-
ing the distances to all nodes; shortest paths can be computed using a minor
modification of this algorithm.

1.1 Equations, E, for Distances

Let Dk denote the distance to node k; this is a non-negative real number
since all nodes are reachable from s. Note that Ds = 0. Call i a predecessor
of k if there is an edge (i, k) in the graph. For a node k, k 6= s, whose only
predecessors are i, j,

Dk = min(Di + wik,Dj + wjk).

This is because the shortest path to k passes through either i or j, and any
initial segment of a shortest path is a shortest path to the corresponding
node. Therefore, D – where D is a vector, with the nodes ordered in some
fixed manner – is the unique solution for the unknowns d in the following
equations, E.

E:: ds = 0,
〈∀j : j 6= s : dj = (min i : i is a predecessor of j : di + wij)〉.

The minimum over an empty set is taken to be∞. Hence, for a node j without
predecessor, j 6= s, dj = ∞. Then, node j is unreachable from s, a case
discussed in section 1.4.

1.2 Inequalities, F, for Distances; Relaxing the Equations E

An equation of the form dk = min(di+wik, dj +wjk) implies that dk ≤ di+wik,
and dk ≤ dj + wjk. We convert E into a set of such inequalities, one for
each edge. Let F be the system of inequalities so constructed along with the

2



equation ds = 0.

F:: ds = 0,
〈∀ edge(i, j) :: dj ≤ di + wij〉.

A solution of F is a vector. (Henceforth, “vector” refers to a vector of the
appropriate length all of whose elements are non-negative reals or ∞.) It is
clear that any solution of E – the only solution of E is D – is a solution of F.
However, F may have many more solutions; for instance, a vector of all zeroes
is a solution of F.

1.3 Distance Vector is the Greatest Solution of F

Define a partial order v over vectors as follows. For vectors u, v,

u v v ≡ (∀i :: ui ≤ vi).

1.3.0.1 Theorem GS The distance vector, D , is the greatest solution of
F, i.e., D is a solution of F and for any solution d, d v D .

Proof: As stated earlier, D is a solution of F. We prove that d v D , for any
solution d of F. Let hj be the number of edges in the shortest path to node
j; if there are multiple shortest paths to j then one with the fewest edges
determines hj. Since every node is reachable from s, hj is defined for all j.
First, we prove the following proposition, by induction on natural numbers n.

H:: (∀n ::
(∀j :: hj = n ⇒ dj ≤ Dj )

)

n = 0: We have to show (∀j :: hj = 0 ⇒ dj ≤ Dj ). From the definition of h,
hj = 0 ⇒ j = s, and j = s ⇒ dj ≤ Dj , because ds = 0 (from F) and Ds = 0.

n + 1: We show that hj = (n + 1) ⇒ dj ≤ Dj . From equations E and the
definition of h, Dj = Di + wij and hj = hi + 1, for some i. Therefore, hi = n.

dj

≤ {d is a solution of F; hence, dj ≤ di + wij}
di + wij

≤ {applying induction: hi = n ⇒ di ≤ Di}
Di + wij

= {Dj = Di + wij}

3



Dj

For every node j there is some n such that hj = n. Hence, for every j, dj ≤ Dj ,
from H.

1.4 Unreachable nodes

Our treatment, so far, has assumed that all nodes are reachable from s. Under
that condition there is a unique solution to E, which is the distance to the
nodes. If there are unreachable nodes, there will be multiple solutions to E:
for instance, let u, v be two nodes, different from s, that are each other’s
predecessor, they have no other predecessors, and the lengths of the two edges,
(u, v) and (v, u), are both zero. Then E yields the equations, du = dv and
dv = du, permitting these variables to be set arbitrarily.

It can be shown that D is still the greatest solution of E in that case. Theorem
GS is still valid. The proof of H ⇒ (∀j :: dj ≤ Dj ) (in the proof of GS) will
have a case distinction for reachable and unreachable nodes.

2 Computing the Distances

We first suggest a naive method for computing the greatest solution of F;
this method is based on the execution rule from UNITY[0]. The inequality
corresponding to edge (i, j) is dj ≤ di + wij. This inequality is equivalent to
the equation dj = min(dj, di + wij). Convert this equation to the following
assignment statement, Sij, for edge (i, j):

Sij:: dj := min(dj, di + wij).

Note that the only effect of executing Sij is to, possibly, decrease dj.

The execution strategy is to start in a state where ds = 0 and dj = ∞ for
all j, j 6= s. Then execute an arbitrary statement in each step, ensuring that
every statement is executed eventually. We show, below, that eventually the
distances are computed, i.e., d = D .

2.1 Fixed Point, Invariant

A fixed point is a state where no statement execution has any effect. Execution
of dj := min(dj, di + wij) has no effect if and only if its left and right sides are

4



equal in value, i.e., dj = min(dj, di + wij), or dj ≤ di + wij. Therefore, a fixed
point is a solution of F. Using Theorem GS, d v D at any fixed point.

Now, we show that D v d is an invariant of the proposed execution. Coupled
with d v D at a fixed point, we have d = D at any fixed point reached by
this execution (recall that v is a partial order). Below, we prove that D v d
is an invariant; in the next section we address the question of reaching a fixed
point.

Initially, D v d holds because, initially, ds = 0 and dj = ∞ for all j, j 6= s. We
show that execution of a statement, Sij, preserves D v d. The execution of Sij

affects only dj; therefore, it is sufficient to show that Dj ≤ dj is a postcondition
of Sij given that the invariant is a precondition. That is,

{D v d} dj := min(dj, di + wij) {Dj ≤ dj}.

Applying the axiom of assignment, we have to show that (D v d) ⇒ (Dj ≤
min(dj, di + wij)).

Dj

= {From D v d: Dj ≤ dj}
min(dj, Dj)

≤ {D is a solution of F; hence Dj ≤ Di + wij}
min(dj,Di + wij)

≤ {From D v d: Di ≤ di}
min(dj, di + wij)

2.2 Reaching A Fixed Point

In section 2.1 we showed that d = D at any fixed point reached by the given
computation strategy. It can be shown that picking an arbitrary statement to
execute, as long as every statement is executed eventually, reaches a fixed point
in a finite number of steps. However, this strategy is wasteful because it may
consecutively repeat execution of a statement even though such executions
have no effect.

Define the measure of statement Sij to be di. Call a statement active if its
measure has changed since its last execution; the statement is idle otherwise.
More formally, initially all statements are active. A statement becomes idle by
being executed; an idle statement becomes active only if its measure changes.
Therefore, idle statement Sjk could become active, i.e., dj could change, only
as a result of executing some Sij.

It follows that: (1) execution of an idle statement does not change the system

5



state, (2) therefore, if all statements are idle then the system state is a fixed
point, and (3) execution of Sij can make an idle statement of the form Sjk

active provided dj > di + wij prior to the execution, because the measure of
Sjk, dj, changes only under this condition.

We propose that only active statements be picked for execution. Such a com-
putation reaches a fixed point. We propose below a refinement of this strategy
and prove its correctness.

2.3 Refinement of the Execution Strategy: BF-Strategy

Dijkstra’s algorithm is the implementation of the following, breadth-first,
strategy. We show that this strategy reaches a fixed point.

2.3.0.2 BF-Strategy Pick an active statement of the smallest measure
(among all active statements) for execution.

2.3.0.3 Observation: BF-Strategy has the following properties.

(1) An idle statement remains idle.
(2) The following proposition, C, is invariant:

C:: measure of any idle statement ≤ measure of any active statement.

Proof: Proposition C holds initially because there is no idle statement.

Let Sij be an active statement of the smallest measure, chosen for execution in
a step. First, we show that all idle statements remain idle. We need consider
only idle statements of the form Sjk because execution of Sij can only change
dj, and thus, possibly, make Sjk active. Prior to Sij’s execution the measure
of Sjk, dj, is at most the measure of Sij, di, from the invariant C. Therefore,
the execution of Sij,

dj := min(dj, di + wij)

does not change dj, leaving Sjk idle.

Now, we prove that C holds after the execution of Sij. Before the execution of
Sij the measure of any idle statement ≤ di (from C, and that Sij was active).
The execution of Sij does not change the measure of any idle statement (see
paragraph above) and it makes Sij idle. Therefore, after the execution of Sij

the highest measure for any idle statement is di. The lowest measure for any
active statement, before execution of Sij, was di. Execution of Sij may change

6



the measure dj for an active statement of the form Sjk to di + wij. Hence,
every active statement’s measure ≥ di, thus preserving C.

Since each step increases the number of idle statements (the active statement
chosen for execution becomes idle), a fixed point is reached eventually.

2.4 Implementation of the BF-Strategy

We show that the BF-strategy can be implemented in O(n2) time, where n is
the number of nodes.

Let Sij be an active statement of the smallest measure. Then, from the def-
inition of measure, any active statement Sik also has the smallest measure,
because both these measures are equal to di. Further, execution of Sij leaves
an active Sik active with the smallest measure: execution of Sij can, possibly,
change dj to di + wij, which is at least di, the measure of Sik. Therefore, we
propose that once an active statement of the smallest measure, Sij, is identified
then Sik, for all k, be executed (if Sik is idle its execution has no effect).

Then the implementation strategy is: (1) find i such that Sij is an active
statement of the smallest measure, (2) execute Sik, for all k.

Call (1,2) above a superstep with node i. Such a superstep makes Sik, for all
k, idle and they remain idle forever. Call node i idle if Sik, for all k, are idle; i
is active otherwise. The proposed implementation strategy guarantees that if
Sij is chosen in a superstep then node i is active, and following the superstep
node i is permanently idle.

A superstep may be implemented in O(n) time. Associate a label, idle or
active, with each node; initially all nodes are active. Scan the list of d-values
to locate an active node i such that di is lowest among all active nodes; this
is an O(n) computation. Then, execute Sik, for all k, and mark i idle; this is
again an O(n) computation. Since i remains idle afterwards, there are exactly
n supersteps before all nodes (and statements) become idle. Hence, the entire
algorithm is implemented in O(n2) time.

Acknowledgement It is with pleasure that I acknowledge the critical com-
ments of Edsger W. Dijkstra, which not only improved the overall presentation
but simplified the proof of the main theorem. I am indebted to Rajeev Joshi
for several insightful comments, including the observation that the solution to
E may not be unique in the presence of unreachable nodes. Perceptive com-
ments from Michel Charpentier, Beverly Sanders and two anonymous referees
have helped improve the presentation considerably.

7



References

[0] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foun-
dation. Addison Wesley, 1988.

[1] E. W. Dijkstra. A note on two problems in connection with graphs. Nu-
merische Mathematik, 1:83–89, 1959.

8


