A Theory of Hints in Model Checking*

Markus Kaltenbach! and Jayadev Misra?

! Transmeta Corporation, Santa Clara, CA 95054
markus@transmeta.com
2 Department of Computer Sciences,
The University of Texas at Austin,
Austin, TX 78712

misra@cs.utexas.edu

Abstract. Model checking, in particular symbolic model checking, has
proved to be extremely successful in establishing properties of finite state
programs. In most cases, the proven properties are safety properties stat-
ing that the program never executes outside a specified set of states.
But another important class of properties, progress (liveness) properties,
which state that program execution eventually reaches some specified
set of states, has been difficult to model-check as they, typically, in-
volve doubly-nested fixpoint computations. In this paper, we propose
that progress properties can be checked more efficiently if they are ac-
companied by hints as to why they hold. We develop a theory in which
hints are given as regular expressions over the actions of the program.
We derive a number of inference rules and algebraic properties of hints.
Empirical evidence suggests that hints can significantly improve the ef-
ficiency of model checking.

0 Introduction

Model checking [CE81,CES86] has been one of the most successful recent tech-
niques for automated verifications of finite state systems. Symbolic model check-
ing ([McM93], [BCM91]) has made it possible to analyze systems of very large
size, such as those arising in circuit and protocol designs.

The typical property that is checked for a deterministic system, such as a
circuit, is that the outputs are the desired ones given the appropriate inputs,
i.e., that the circuit outputs are a specified function of its inputs. In many asyn-
chronous systems, such as communication and synchronization protocols, such
properties are not adequate to specify the system behavior. Instead, we spec-
ify a set of safety and progress properties to describe the system. Informally,
safety properties express that “Something will not happen”, whereas progress
properties state that “something must happen” ([Lam77], [AS85]).

Safety properties can often be checked more efficiently than by just per-
forming a state space exploration (which is the essence of the model checking
approach), when adding some deductive reasoning by checking certain predicates

* Partially supported by NSF grant CCR-9803842.

on each state and its successor states, and supplementing this with finding suit-
ably strong invariants. Decision procedures for progress properties have proved
to be far less efficient because such properties cannot be characterized by lo-
cal conditions asserting how pairs of successive states are related to each other
(if this were possible then progress properties could be characterized by finite
execution prefixes as well). Establishing progress properties in theorem provers
requires transfinite induction over well-founded sets, whereas in model checking a
doubly-nested fixpoint computation is required to establish most progress prop-
erties under any reasonable definition of fairness. Our experience confirms that
progress properties are hard to check; in a model checker developed by the first
author, straightforward verifications of progress properties were at least two or-
ders of magnitude slower than the safety properties of those systems. Therefore,
in practice, only safety aspects of systems are often verified; progress properties
are usually dismissed or argued about informally.

In this paper, we show that progress properties can be often be checked ef-
ficiently by supplying hints to the checker. Typically, hints have been used in
automated verification systems to guide the prover through a search space in-
teractively, or in guiding the automated checking of safety properties ([BRS00]).
In our work, a hint is a regular expression over the actions of the program, sug-
gesting how a goal state is achieved. A central theorem asserts that a property
established under any hint is a property of the program. We motivate our work
using a small example below.

Consider a program consisting of three actions — [up], [down], [set] — that
operate on two program variables, an integer n and a boolean b. The actions are
as follows.

[up] —-b— n:i=n+1
[down] n:=n—1
[set] b := true

The action [up] increments n only if —b holds, otherwise (if b holds) its execution
has no effect. Actions are executed forever in arbitrary order subject to the
fairness rule that every action be executed infinitely often. It follows then that
eventually n < 0 holds no matter what the initial state is. If n is restricted
to a finite range, a model checker can verify this property. However, even for
moderate ranges of n the computation becomes prohibitively expensive.

Our approach is to provide a hint to the checker as to why the property
holds. The hint embodies our intuitive understanding of how n < 0 is achieved.
For this example, we realize that eventually action [set] will be executed, thus
setting b to true, and from then on neither [up] nor [set] has any effect on the
program state; each subsequent execution of [down] decreases n, establishing
n < 0 eventually. We encode this reasoning in the hint [set][down]” which is a
regular expression over the actions of the program; i.e., any execution sequence
consisting of [set] and a sufficiently large number of [down] actions achieves
n < 0. The key observation is that every wvalid execution sequence, under our

notion of fairness, includes every sequence described by a reqular expression as
a subsequence. Thus, a property proven under a hint (i.e., for specific execution
sequences) holds for all execution sequences as well. A model checker can use a
hint to eliminate some unnecessary fixpoint computations and to simplify others.

The precise operational meaning of progress under a given hint is surprisingly
difficult to state succinctly; see Sect. 3.5. A formal definition using predicate
transformers is given in Sect. 3.1 and an algebra of hints that is similar to the
Kleene algebra of regular expressions is developed in Sect. 3.3. Hints have been
incorporated into a model checker developed by the first author, and they seem
to deliver significant improvements in performance; see Sect. 4.

We couch our discussion in terms of the UNITY logic [CM88,Mis95b,Mis95a]
though the ideas can be applied to other formalisms. We discovered that the
definition of the leads-to operator of UNITY mirrors the structure of regular
expressions: transitivity of leads-to corresponds to concatenation, finite disjunc-
tivity to choice, and general disjunctivity (or induction) to Kleene closure. Also,
UNITY’s notion of unconditional fairness in execution — every action is executed
eventually — guarantees that every execution sequence includes any given finite
sequence of actions as a subsequence. This observation permits us to prove a
progress property for all execution sequences by proving it for a certain class of
finite executions.

1 Background

We give a brief overview of the UNITY programming notation and its temporal
logic, to the extent necessary for this paper. See [CM88] for the initial work and
[Mis01] for some recent developments.

1.1 A Programming Notation

The computational model of UNITY is that of a deterministic, total, labeled
state transition system. This model is well suited for describing many common
classes of systems (e.g. hardware circuits or protocols).

A program consists of (1) a declare section defining the state space of the
program, (2) an 4nitially section specifying the initial conditions, and (3) an
assign section specifying the actions of the program (its transition relation) as
guarded multiple assignment statements, that are deterministic and terminating.

An execution of a program consists of selecting a start state satisfying the
conditions of the initially section and then repeatedly selecting statements (from
the assign section) and executing them (if the guard of a selected statement
evaluates to false in the current state, the entire statement is equivalent to a
skip operation, i.e., it does not change the state). The selection of statements is
subject to the unconditional fairness constraint that every statement be selected
infinitely often.

1.2 TUNITY Logic

The UNITY logic, a fragment of linear temporal logic, has proof rules for rea-
soning about properties of programs. Different from many state-based computa-
tional models that reason about individual executions of programs, the UNITY
operators characterize properties of programs, i.e., properties of all uncondition-
ally fair execution sequences.

In the following, we introduce the UNITY operators and some rules for rea-
soning with them to the extent needed for this paper. Proofs of most rules are
straightforward and can be found in chapters 5 and 6 of [MisO1]. In our presen-
tation we make use of the following notation: for a program F' the predicate F.T
denotes the initial states as characterized by the initially section of F', and F.A
denotes the set of the actions of F'. For any state predicate p of F' we write [p)
to denote the universal quantification of p over the state space of F' [DS90]. We
write wp ., where « is any action in F.A, for the weakest precondition predi-
cate transformer; i.e., for a state predicate p, the predicate wp .a..p characterizes
those states from which the execution of o terminates in a state satisfying p3.

Safety. The fundamental safety operator of UNITY is constrains, or co for
short. The co operator is a binary relation over state predicates and is defined
as follows:

Na:a e FA:[p=wp.ag]), [p=d
p co g

The property p co ¢ asserts that in any execution, a state satisfying p is always
followed by a state satisfying ¢. In order to model stuttering steps p is required
to imply g. Several other safety operators are expressed in terms of co :

p co p (Ve :: stable z = e)
stable p constant x
stable p, [F.I = p] pA—g co pVq
invariant p p unless ¢

A predicate is stable, if it remains true once it becomes true. An expression x is
constant if its value never changes, i.e., if for any possible value e the predicate
x = e is stable. A predicate is invariant if it is stable and holds in all initial
program states. Finally, p unless ¢ holds if starting in any state that satisfies p
either p continues to hold forever, or holds up to (but not necessarily including)
a state satisfying gq.

% Recall that in the UNIT'Y model all actions are terminating.

The Substitution Axiom. The operation of a program is over the reachable
part of its state space. The UNITY proof rules, however, do not refer to the set
of reachable states explicitly. Instead, the following substitution axiom is used
to restrict attention to the reachable states.

invariant p

[p]

Since an invariant of a program is true over the reachable part of the state space,
it is equivalent to true in any program property. Thereby the substitution axiom
allows us to replace any invariant predicate of a program F' by true (and vice
versa) in any proof of a property of F.

Progress. The basic progress property is transient ; it is a unary relation
on state predicates. A transient predicate is guaranteed to be falsified in any
program execution: predicate p is transient in program F' if there is an action in
F whose execution in any state in which p holds establishes —p:

(Fa:ae FA:[p=wp.a.(-p))
transient p

From the unconditional fairness rule, the given action « is executed eventually,
falsifying p if it held before the execution of a.

The other basic progress property is ensures, a binary relation on state
predicates:

p unless ¢, transient p A —q

p ensures ¢

Given p ensures q , from the transient part of the definition there is an
action of F' that establishes —p V ¢ starting in any state in which p A =g holds;
from the unless part, once p holds it continues to hold up to the point at which
q is established. Therefore, starting in a state in which p holds, ¢ is established
eventually.

Since there is a single rule for establishing an ensures property of a pro-
gram, we can derive from the ensures rule and the substitution axiom the
following equivalence:

p ensures ¢ = [pA—-qg=wco.(pVq)] A
[(Ba:a€ F.A:pA—q= wp.a.g)]

where the predicate transformer wco is defined by [wco.p = (Va:a € F.A:
wp .a.p)]; in other words, wco .p denotes the states from which the execution of
any action of F' terminates in a state satisfying p.

In developing our theory we make use of another property, ensures, , which
resembles ensures but explicitly names the helpful action, a. For an action «
in F.A we define:

p ensures, ¢ = [pA-qg=wco.(pVq)]A[pA-g=wp.a.g

The fundamental progress property of UNITY is the +— (leads-to) operator,
a binary relation on state predicates. It is the transitive, disjunctive closure of
the ensures relation, i.e., the strongest relation satisfying the following three
conditions:

p ensures ¢

b — g (promotion)
b= qqr—T
e (transitivity)
(Vh:h € H:ph — q)
for any set H (disjunction)

(3h:he€eH:ph) — ¢q

There are also several derived rules for reasoning about progress properties
[CM88,Mis01]. Among them is the induction principle: for a well-founded set
(H, <) and a function M mapping program states to H we have

(Vh:he H:pANM=h — (pAM <h)Vq)
b= q

(induction)

The Predicate Transformer wlt. In [Kna90,JKR89] a predicate transformer,
wlt, weakest leads-to, was introduced for reasoning about progress properties. It
is related to the +— relation by

p=wltgq = pwrgq

Using this equivalence we can model check a property of the form p — ¢ for
program F' by first computing wlt .¢ and then evaluating (p = wlt .q) over the
reachable state space of F'. A fixpoint characterization suitable for computing
wlt is given in [JKR&9].

2 Hints and Generalized Progress

Progress properties are specified using the leads-to operator in UNITY logic,
formulae of the form AG(p = AFq) in CTL, or formulae like G(p = Fq) in
linear temporal logic. These operators specify the changes to the program state,
but not the way the change is effected. Usually a program designer has some
(possibly partial) knowledge of how progress is achieved in the program, either
as an operational argument, in the form of a high level proof sketch, or simply

based on experience with similar programs. We propose to exploit this knowledge
by providing a formal foundation for it.

We elaborate on the small example introduced in Sect. 0 to illustrate how
progress properties are generalized by including explicit action-based progress
information. We then argue how this theory and its associated methodology can
be used in program verification.

program UpDown
declare
var n : integer
var b : boolean

assign
[up] -b— n:=n+1
[down] ni=n—1
[set] b := true

end

Fig. 1. Program UpDown

We consider the UNITY program UpDown shown in Fig. 1. As we have
argued earlier, for any execution of this program n becomes non-positive even-
tually, which is expressed by the following leads-to property:

true — n<O0.

We reproduce the informal argument from Sect. O to justify this progress prop-
erty. From unconditional fairness, action [set] will eventually be executed, thus
setting b to true, and from then on neither [up] nor [set] has any effect on the
program state; each subsequent execution of [down| decreases n, establishing
n < 0 eventually. This argument suggests that the progress from true to n <0
is achieved by the strategy expressed by the regular expression

[set][down] ™,

over the alphabet of actions of UpDown, i.e., by one [set] action followed by
some finite number of [down] actions (possibly interleaved with other actions).
We combine the hint with the progress property:

[set][down]”
true — n < 0.

which is a generalized progress property of program UpDown. We now show that
this property is closely related to the structure of the proof of true — n <0 in
the UNITY deductive system.

0. true ensures b ; from program text via [set]
1. true — b ; promotion from 0
2. bAn=Fensures bAn<k ; from program text via [down]
3. bAn=kw— bAN<Ek ; promotion from 2
4. bA|nl=k — (bA|n|<k)Vn<0 ;casesplit and disjunction on 3
5 b — n<0 ; leads-to induction on 4 with
; metric |n| over the naturals
6. true — n<0 ; transitivity with 1 and 5

Steps 0 and 1 of this proof correspond to the [set] action in our proposed hint;
similarly steps 2 and 3 correspond to the [down] action. The inductive argument
of steps 4 and 5 establishes progress via [down]"; finally, step 6, combines the
subproofs through sequencing. We claim that this proof structure corresponds
to the regular expression [set][down]”. However, this regular expression is much
less detailed than the complete proof; in particular, the state predicates needed
to combine different parts of the proof are omitted. Thus, a general idea about
the proof structure, or even an operational argument of a progress property can
be turned into a hint.

3 Main Results about Generalized Progress

We now define the generalized leads-to relation, a relation of the form p W, q
for state predicates p and ¢ and regular expression hints W. This definition is
given inductively based on the structure of the regular expression W. In Sect. 3.2
we introduce a predicate transformer wltr and establish the central theorem that
p=wltr Wq] = »p AL q. This result permits us to prove p AR q by a
model checker by first computing wltr .W.q, using a fixpoint characterization of
wltr . W, and then checking for [p = wltr .W.qg|.

Notational Conventions. Henceforth, F is a program, « is an action in F.A,
p, p', q, v, and s are state predicates. Let U, V and W be regular expressions
over the alphabet in which each symbol names an unique action of A.

3.1 Definition of Generalized Progress

First, we define a metric over the reachable state space of a program. In the
following we use Ord to denote the set of ordinal numbers.

Definition 1. A metric M for a program F is {i : i € Ord : M.i}, a family of
state predicates which satisfy the following two conditions:

[(Fi:ie€ Ord: M.i)] (MetricExh)
(Vi,j:i€OrdAjeOrd:i#j= [~(MiADM.j) (MetricDis).

The first condition states that the predicates in M exhaust the reachable state
space of F', the second asserts that any two predicates with different indices are
disjoint.

The predicates in M are totally ordered by the ordering relation < induced
by the total order relation on the ordinals:

(Vi,j:i€0OrdAjeOrd:i<j = M.i=<M.j)
We proceed with the definition of the generalized leads-to relation:

Definition 2. For a given program F', p W, q 1s defined as follows:

P — q = [p = q} (AzEps)

p = q = (3 :[p=p]:p ensures, q) (AzAct)

D AN g = (Gr:=(p R r)A(r v, q)) (AxzSeq)

D =Y q = (@Grs:[rvs=p|:(r LR q) A (s v, q)) (AzAlt)

D AN qg = (I :p=p]:(3M: M is a metric: (AxStar)
(Vi:i€Ord:

PAMG v (P AEjj<i: M) V)

From these equivalences, using structural induction, we can establish that the
generalized leads-to relation is well defined; see [Kal96] for a proof.

Theorem 1. For a program F, (AxEps), (AzAct), (AxSeq), (AzAlt), and

(AzStar) define a unique family of relations {W :: p LR q}, for all predicates
p and q.

Ifp A q holds in a program, this can be shown by a finite number of applica-
tions of the above proof rules (due to the finiteness of the structure of W), and,

hence, there is a finite proof. In the following, we write F' - p 2, q to denote
the fact that such a proof exists for F', W, p, and gq.

It is worth mentioning that the use of ordinals is essential in (AxStar);
under unconditional fairness it is not possible, in general, to bound the number
of steps required to achieve progress from any particular start state. It can only
be asserted that a finite number of steps suffices; see, for example, the second
program in Sect. 2. Therefore, natural numbers are not sufficient as metric; all
ordinals of cardinality less than or equal to the cardinality of the size of the state
space have to be considered.

3.2 Predicate Transformers for Generalized Progress

We define a family of predicate transformers wltr .W, which is the set of states
from which any execution “characterized by W” leads to a state satisfying q.

In the following we use the notation (uZ :: f.Z) and (vZ :: f.Z) to denote
the least and greatest fixpoint of the predicate transformer f.

Definition 3. For a given program F', and o an action in F.A,

[wltr.e.q = (] (wltrEps)
[wltr.a.qg = (@Z: (wco.(ZVq) Awp.a.q)V q)] (wltrAct)
[wltr . (UV).q = wltr.U.(wltr.V.q)] (wltrSeq)
[witr (U +V).q = wltr.Ug VvV wltr.V.g] (wltrAlt)
[wltr U*.q = (uZ:q vV wltr.U.Z)] (wltrStar)
Recall that wlt and — are related by [p = wlt.q] = p — ¢, as described

in Sect. 1.2. Now, we establish the relationship between wltr and wlt. This is
a result of fundamental importance that permits us to claim that a property
proven under any hint is a property of the program.

Theorem 2. For a state predicate q:

[wltr W.q = wlt.q], for any W (wltrSound)
(FW = [wlt .q = wltr .W.q]) (wltrCompl)

The first part of the theorem can be referred to as a soundness result since it
asserts that the states from which a ¢ state is reached because of W are states
from which a ¢ state is reached eventually in the sense of ordinary progress.
Conversely, the second part can be seen as a completeness result since it shows
that any state from which a ¢ state is reached eventually is a state from which a
q state is reached because of some regular expression W; see [Kal96] for proofs.

Next, we establish the connection between the generalized leads-to relation
and the wltr predicate transformers. The result is analogous to the one relating
the ordinary leads-to relation to the wlt predicate transformer described in
Sect. 1.2. The proof of the following theorem appears in [Kal96].

Theorem 3. For state predicates p and q:

[p=wltr. Wq = »p Y, q

Finally, we state a number of rules that help us in establishing generalized leads-

to properties of any program. These rules resemble the corresponding rules in
UNITY (][CMSS])).

Theorem 4. For set S and mappings f and g from S to state predicates:

p=d = @+~ 9 (Tmply)

P=pAbpSq = @5 (LhsStr)

0% g Alg=d] = 5) (RhsWeak)

(Vm:meS: fm LA g.m) = (GenDisj)
((Hm:meS:f.m>»ﬂ>(Hm:mES:g.m})

(p 5 false) = [p] (Impossible)
14 w

pr— qvb) AN (b+— 1) = (p Al qVvr) (Cancel)

Theorem 5. For any W,

(p L q) = (p — q) (Sound)
pr—q = (IWVup W, q) (Compl)

3.3 Progress Algebras

In this section we define an algebraic structure, progress algebra, by presenting a
list of equalities and equational implications which define a congruence relation
on regular expressions. For a program F we refer to the resulting algebraic
structure as Ry from now on and call it the progress algebra for program F.
First we define the equational Horn theory for R, then show that Rp bears
many similarities to the well known Kleene algebras and to the algebra of regular
events. In the following, we use the familiar formalism and terminology of Kleene
algebras.

We start with the definition of progress algebra in which the binary relation
< (pronounced subsumed by) is defined by U <V = U+V =V.

Definition 4. A progress algebra K is the free algebra with binary operations -
and +, unary operation *, and constant € satisfying the following equations and
equational implications for oll U, V, and W in KC:

U+(V+W) = (U+V)+W (PrAlg0)
U+V =V+U (PrAlg1)
W4+WwW =W (PrAlg2)
uvw) = (UV)W (PrAlg3)
eW =W (PrAlg4)
We = W (PrAlgs)
UV +UW < UV +W) (PrAlg6)
U+V)W = UW+VW (PrAlg7)
e < W (PrAlg8)
e+WwW* < W+ (PrAlg9)
e+ W*W < W+ (PrAlg10)
UW < W = UW < W (PrAlg11)
WU < W = WU <W (PrAlg12)

A progress algebra satisfying (PrAlg11) but not necessarily (PrAlg12) is called
a right-handed progress algebra, and a progress algebra satisfying (PrAlg12) but
not necessarily (PrAlg11) is called a left-handed progress algebra.

There are three major differences between Kleene algebras and progress al-
gebras:

1. Progress algebras lack the equivalent of the () constant of Kleene algebras.
We could introduce such a constant by defining [wltr.0.q = false], which
would actually satisfy the Kleene axioms referring to (). Since such a regular
expression does not have a counterpart in either the operational model or
the deductive system, we omit it from further consideration.

2. A progress algebra does not have to satisfy the left distributivity of - over
+. Only the weaker inequality (PrAlg6) is required instead.

3. A progress algebra satisfies (PrAlg8) which is not present in Kleene alge-
bras.

3.4 Rp as Progress Algebra

Next, we show that the wltr predicate transformers can be regarded as a progress
algebra. To do so, we have to define the equational theory of wltr, relate the
operators -, 4+, *, and the constant ¢ of R to operations on predicate transform-
ers, and show that the equations and equational implications defining progress
algebras are met by wltr.

The equational theory and the algebraic structure of wltr are defined as ex-
pected: any W in Rp denotes the predicate transformer wltr .W over the state
predicates of F'; the meaning of the constant ¢ is given by (wltrEps) as the iden-
tity transformer; the meaning of the operators -, +, and * is given by (wltrSeq),
(wltrAlt), and (wltrStar) as functional composition of predicate transformers,
disjunction of predicate transformers, and a least fixpoint construction respec-
tively; the meaning of the basic elements « in F.A is given by (wltrAct) as
the wltr .« predicate transformer. Finally, equality of regular expressions over
F.A (written as =p) is defined as equivalence of the corresponding predicate
transformers, i.e., for all U, V in Rp:

U=pV = |[wltr.U=wltr.V].

The induced subsumption relation <p on Ry is then given by

U<pV = U+4+V=FV.

It follows that for all U and V in Rp:

U<rV
= {definition of <g}
U+V =V
= {(wltrAlt), definition of =g}
[wltr .U vV wltr .V = wltr.V]
= {predicate calculus}
[wltr U = wltr.V]

In other words, the subsumption relation <z on Rp is exactly the implication
of the corresponding predicate transformers. Therefore, the algebraic structure
of Rp is given by the following theorem; for a proof see [Kal96].

Theorem 6. For program F, the algebra R is a right-handed progress algebra.

3.5 On the Operational Meaning of Hints

It is natural to expect the following operational meaning of progress under hints.
An interpretation of p leads-to ¢ by hint W (which is written as p L q) is:
for any state s in which p holds, there exists a finite sequence of actions, w, such
that (1) w € W, and (2) any finite segment of an execution that starts in s and
includes w as a subsequence achieves ¢ at some point.

program PairReduce
declare
var z,y, d : integer
assign
[both) >0—z,y:=z—1,d
[one] y>0— y:=y—1
[up-d] d:i=d+1
end

Fig. 2. Program PairReduce

But this interpretation is too restrictive. In general, there are states for which
no predetermined action sequence can achieve the goal predicate. To see this
consider the program PairReduce of Fig. 2.

For this program we see that z > 0Ay > 0 — (z,y = 0,0) because each of [both]
and [one] decreases the pair (z,y) lexicographically, and [up-d] does not affect
(z,y). However, for any specific state, say (z,y,d) = (3,5,2), no action sequence
can be specified that corresponds to the operational interpretation given above.
A more elaborate interpretation based on games is given in [Kal96].

4 Empirical Results

The algorithm for checking generalized progress properties based on Theorem 3
has been implemented as part of the UNITY Verifier System(UV system for
short), our symbolic model checker for finite state UNITY programs and propo-
sitional UNITY properties ([Kal96,Kal94,Kal95]). The UV system can be used
to verify automatically whether UNITY programs satisfy the given safety and
progress properties, to obtain debugging information in the form of counterex-
ample states that violate asserted conditions in case a verification attempt fails,
and to exploit and manage design information in the form of user supplied in-
variants and progress hints.

The current version of the UV system employs ordered binary decision dia-
grams ([Bry86,BBR90]) to represent UNITY programs and properties symboli-
cally. The input language used for writing programs and properties is a strongly
typed version of the original UNITY notation that is restricted to finite data

types. Since the UV system is implemented using the Tcl/Tk package ([Ous94])
it has a customizable graphical user interface as well as a scripting interface.
The current version is available for SunOS, Solaris and Linux operating systems
and consists of about 35000 lines of C++ code. It has been used to model check
a variety of programs, in particular the ones presented in this section.

In this section we present empirical results of applying the UV system to
some practical problems. Each example has been chosen with the intention to
emphasize a particular aspect of the UV system. All examples were run on a
SPARC-20 workstation with about 20 MB of main memory allocated to the
model checker.

4.1 A Counter

In Sect. 2 program UpDown was used as an illustrative example to introduce the
concept of generalized progress properties and was discussed there in detail. A
finite state version of the program restricts the counter variable n to the range
from 0 to N — 1 for a positive integer N.

In the following table we summarize performance measurements for different
values of N for two progress properties: the ordinary leads-to property true +—
n = 0 (indicated by + in the table), and the generalized leads-to property

true [Set][difﬂm* n =0 (indicated by r- —). Three measurements are listed:
iterations states the number of inner fixpoint iterations needed to complete the
check, ops states the number of OBDD node lookup requests in thousands, and
time shows the execution time in seconds. All model checker invocations establish
the respective properties as correct.

N [10[20 50] 100] 200] 500[1000]10000]
itera- — [[107[320[1551[5608[21222[128000]506006] n/a
tions 1- — [| 41] 81] 201 401] 801] 2001] 4001]40001
ops — || 2.5] 11] 100] 548[2810[22283 88933 n/a
in 10°r- — [[0.8]2.1] 87| 18] 39[119] 243 3844
time — [[0.3]0.3] 1.1] 4.8] 27.3] 227.9/1028.4] n/a
ins 1+~ [[02[03] 03] 04] 05 11] 2.2] 380

It may be verified from this table that the number of iterations for the ordinary
leads-to check is quadratic in N, whereas it is only linear for the generalized
leads-to check.

4.2 Scheduling: Milner’s Cycler

The scheduling problem known as Milner’s Cycler ([Mil89]) has been used as
a benchmark in the literature to compare different verification methods and
systems. Here, we merely present the empirical results; consult[Kal96] for details.

The following table compares the ordinary progress check (indicated by —)
for the key progress property with the generalized one (indicated by r- —) using

a regular expression hint. The measurements listed are the same as in Sect. 4.1,
while N denotes the number of processes:

N [4] 8 12] 16] 20|
itera- — || 86[174] 268] 370] 480
tions T — || 12| 12| 12] 12 12
ops — || 22]287(2030(8917(29334
in103r-— || 7| 24| 52| 87| 145
time — [|0.4] 2.3[16.5]87.7] 369.8
ins r-+—1([0.3/0.5] 0.8/ 1.3 1.8

4.3 Elevator Control

Our final example, an elevator control for a building with N floors, has been
motivated by similar programs in the literature (e.g. , [CWB94|). Again, we
merely present the empirical results; consult[Kal96] for details:

N I 20] 50] 100
states 3.77-108]1.01 - 10'8]2.28 - 1033
itera- — 2264 13248 51576
tions 1- — 658 1798 3698
ops — 2.25 18.3 659
in 106 1- — 1.17 7.6 95
time — 10.8 280 >10000
ns r-+— 5.3 83 1150

5 Concluding Remarks

The motivation for developing the theory of generalized progress has been three-
fold: such a theory should (i) provide a novel way of establishing ordinary
progress properties of programs by allowing the user to characterize explicitly
how progress is achieved, (ii) make it possible to take advantage of design knowl-
edge in order to verify programs more effectively, and (iii) increase the efficiency
of mechanical verification procedures based on the developed theory. We have
addressed these goals by treating hints as formal objects (namely as elements of a
progress algebra) and by providing a calculus for reasoning about such hints, for
relating them to program executions, and for combining them with state-based
reasoning methods (such as proving safety properties).

References

[AS85] B. Alpern and Fred B. Schneider. Defining liveness. Information Processing
Letters, 21:181-185, 1985.

[BBRYO]

[BCMO1]

[BRSO00]

[Bry86]

[CES1]

[CESS6)

[CMS8S]

K. S. Brace, R. E. Bryant, and R. L. Rudell. Efficient implementation of a
BDD package. In Proceedings of the 27th ACM/IEEE Design Automation
Conference, 1990.

J. R. Burch, E. M. Clarke, and K. M. McMillan. Representing circuits more
efficiently in symbolic model checking. In Proccedings of the 28th Design
Automation Conference 1991, pages 403—407, 1991.

R. Bloem, K. Ravi, and F. Somenzi. Symbolic guided search for CTL model
checking. In Proccedings of the 37th Design Automation Conference 2000,
pages 29-34, 2000.

Randy E. Bryant. Graph-based algorithms for Boolean function manipula-
tion. IEEE Transactions on Computing, (6), 1986.

Edmund M. Clarke and Ernest Allen Emerson. Synthesis of synchronization
skeletons for branching time temporal logic. In Logic of Programs: Workshop,
volume 131 of Lecture Notes in Computer Sience, May 1981.

Edmund. M. Clarke, Ernest Allen Emerson, and A. P. Sistla. Automatic veri-
fication of finite-state concurrent systems using temporal logic specifications.
ACM Transactions on Programming Languages and Systems, (2), 1986.

K. Mani Chandy and Jayadev Misra. Parallel Program Design, A Foundation.
Addison Wesley, 1988.

[CWB94] Jorge Cuellar, Isolde Wildgruber, and Dieter Barnard. The temporal logic

[DS90]

[JKR89]

[Kal94]
[Kal95]

[Kal96]

[Kna90]
[Lam77]

[McM93]
[Mil89)]

[Mis95a]
[Mis95b)

[Mis01]

[Ous94]

of transitions. In Formal Methods Europe (Barcelona, Spain), 1994.

Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and Program
Semantics. Text and Monographs in Computer Science. Springer Verlag,
1990.

C. S. Jutla, Edgar Knapp, and J. R. Rao. A predicate transformer approach
to semantics of parallel programs. In Proceedings of the 8th ACM Symposium
on Principles of Distributed Computing, 1989.

Markus Kaltenbach. Model checking for UNITY. Technical Report TR94-31,
The University of Texas at Austin, December 1994.

Markus Kaltenbach. The UV System, User’s Manual, February 1995. Revi-
sion 1.18.

Markus Kaltenbach. Interactive Verification Ezploiting Program Design
Knowledge: A Model-Checker for UNITY. PhD thesis, The University of
Texas at Austin, December 1996.

Edgar Knapp. A predicate transformer for progress. Information Processing
Letters, 33:323-330, 1990.

Leslie Lamport. Proving the correctness of multiprocess programs. IEEE
Transactions of Software Engineering, 3(2):125-143, 1977.

Ken L. McMillan. Symbolic Model Checking. Kluwer, 1993.

Robin Milner. Communication and Concurrency. International Series in
Computer Science. Prentice Hall, 1989.

Jayadev Misra. A logic for concurrent programming: Progress. Journal of
Computer and Software Engineering, 3(2):273-300, 1995.

Jayadev Misra. A logic for concurrent programming: Safety. Journal of
Computer and Software Engineering, 3(2):239-272, 1995.

Jayadev Misra. A Discipline of Multiprogramming. Monographs in Computer
Science. Springer-Verlag New York Inc., New York, 2001. The first chapter
is available at http://www.cs.utexas.edu/users/psp/discipline.ps.gz.
John K. Ousterhout. T'cl and the Tk toolkit. Professional Computing Series.
Addison-Wesley, 1994.

