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1 Introduction

1.1 Message Communicating and Shared-Variable Systems

A system of processes in which the interactions are solely through messages is often called loosely-coupled.
Such systems are attractive from a programming viewpoint. They are designed by decomposing a specifica-
tion into its separable concerns, each of which could then be implemented by a process; the operation of the
system can be understood by asserting properties of the message sequences transmitted among the compo-
nent processes. A key attribute of loosely-coupled systems is a guarantee that a message that has been sent
cannot be unsent. As a consequence, a process can commence its computation upon receiving a message,
with the guarantee that no future message it receives will require it to undo its previous computations.
Processes that communicate through shared variables, where a shared variable may be read from/written
to by an arbitrary number of processes, are often called tightly-coupled. In contrast to loosely-coupled systems,
designs of tightly-coupled systems typically require deeper analysis. Since speeds of the component processes
are assumed to be nonzero and finite, but otherwise arbitrary, it is necessary to analyze all possible execution
sequences, however unlikely some of them may be, to guarantee the absence of “race conditions.” Special
protocols for mutual exclusion are often required for a process to access shared-variables in an exclusive
manner. Yet, shared-variables often provide succinct, and even elegant, solutions; for instance, broadcasting
a message can often be implemented by storing the message in a variable that can be read by every process.

1.2 Loosely-Coupled Processes

To motivate the discussion, we consider two examples of shared-variable systems. In the first case, we have
two processes sharing an integer variable x; one process doubles x and the other process increments x by 1,
from time to time; both processes read x and assign it to their local variables. We contend that these two
processes are tightly-coupled by x; each process needs to know the exact value of z before it can complete
its access—read or write—of x; no process can proceed with its computation with only a partial knowledge
of the value of x. Contrast this situation with a system in which two processes share an integer variable y;
the first process periodically increments y by 1; the second process periodically decrements y by 1 provided
y is positive, and then it proceeds with its computation. (The variable y implements a semaphore.) We
argue that these two processes are loosely-coupled; the second process can continue with its computation
knowing only that y is positive, without knowing the exact value of y. Similarly, the first process need not
know the exact value of y; it may merely transmit the message that y should be incremented by 1, to the
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second process; the latter increments y upon receiving this message. The value of y at the second process is
never more than the true value of y and it tends to “catch up” with the true value; hence the system will
not be permanently blocked.

1.3 Contributions of This Paper

The notions of tightly-coupled and loosely-coupled processes depend on the way the shared-variables are ac-
cessed. We propose a definition of loosely-coupled processes and show that all point-to-point message passing
systems are loosely-coupled under our definition. We argue that large-scale shared-variable programming
is feasible only if processes are loosely-coupled. First, the action-sequences in different processes are then
serializable [5]. Therefore, it may be imagined that accesses to shared variables are exclusive even though
explicit mutual exclusion is not implemented. Second, an important class of progress properties—of the
form, if p is true now then ¢ is or will become true—holds in a loosely-coupled system if it is implemented
in a “wait-free manner” by any component process of the system, and the post-condition ¢ is falsified by
no other process; this result does not hold for arbitrary—i.e., non-loosely-coupled—systems. Therefore, a
possible programming methodology is to design a loosely-coupled system in which each property of the above
form is implemented by a single process, with the restriction that no other process falsify the post-condition.

A problem in multiprocessor system design, called cache-coherence [9], has its roots in shared-variable
programming. Suppose that several processes hold copies of a shared-variable in their local caches. If
processes write into their local copies autonomously then these copies may become inconsistent (and then
the processes may read different values for the shared-variable). The traditional solutions to cache-coherence
restrict accesses to the caches at runtime so that the inconsistencies are avoided; one typical solution is
to lock all caches prior to a write by any process, and then broadcast the new value to all processes after
completion of the write.

The cache-coherence problem vanishes for loosely-coupled processes. Each process that accesses a shared
variable, x, initially keeps a copy of z in its local cache. Reads and writes are performed on the local copies.
Whenever a local copy of x is changed the new value is transmitted, asynchronously, to all processes that
hold a copy of z. Each process, upon receiving notification of a change, updates its local copy. We prove
that this implementation scheme is correct.

The suggested implementation allows the processes to compute asynchronously, using only a partial
knowledge of the values of the shared variables. Unlike traditional multiple-copy systems the copies of a
shared variable will, typically, have different values; furthermore, no permission is ever sought by a process
from other processes nor are the caches locked before a local copy is changed. Therefore, the performance of
the system will not degrade if the number of processes accessing a shared-variable is increased substantially;
see [8] for some of the issues in scaling up shared-memory multiprocessors. Since the implementation by
local copies is transparent to the programmer, programming loosely-coupled systems will retain much of the
succinctness of expression while admitting efficient implementations.

1.4 Related Work

It is easy to see that read-only shared variables cause no race conditions; however, processes cannot commu-
nicate information about the progress of their computations through such variables. Several concurrent logic
programming languages [12] support logic variables or write-once variables. A logic variable is initially un-
defined and it may be assigned a value at most once and by a single designated process, in any computation.
Logic variables have been used in place of message-communicating primitives ([1], [14], [3]). In particular,
the programming notation PCN by Chandy and Taylor [3] makes a distinction between ordinary program
variables—called mutables—and logic variables—called permanents; concurrently executing processes (in one
form of process composition) are prevented from changing the shared mutables, thus communicating through
the permanents only. It can be shown that these processes are then loosely-coupled. Kleinman et al [7] in-
troduce directed logic variable and use these to effect two-port communication of at most one message. In



particular, by embedding port names as parts of messages, they show how such variables can be used to
implement streams, remote procedure calls and process migration.

A slightly general form of shared variables has been employed in [10]. A shared variable assumes an
additional value, 1, analogous to the undefined value. A value can be assigned to a shared variable, x, only
if its current value is L; a value can be read from x only if its current value differs from | ; the reading causes
z to have the value 1. The variable x may be viewed as a buffer of size 1 for which the writer, reader act
as producer, consumer. Unlike logic variables, such shared variables may be assigned value more than once.
Processes employing such shared variables where each variable is shared between two processes only can be
shown to be loosely-coupled.

Gaifman, Maher and Shapiro [6] have observed that by restricting the updates of the common store to
be monotonic, nondeterministic computations can be replayed efficiently, for the purposes of debugging and
recovery. They also propose an easy solution to the snapshot problem for such programs.

Steele [13] has argued that asynchrony can be made safe by requiring that the “causally-unrelated” actions
of various processes commute. He argues that such restricted systems where each process is additionally
deterministic and the computation is terminating, have some of the properties of SIMD systems (in which
processes operate in lock-step) including determinacy. He shows how the violation of commutativity can be
detected at run-time. Chandy and Misra ([2], Sec. 8.4.2) had proposed a set of access conditions for shared
variables that allows the shared variables to be implemented by messages; the present work simplifies and
generalizes those conditions.

In response to an earlier draft of this paper, Cohen [4] gives a somewhat more general asymmetric theory
of loose-coupling in terms of program properties (i.e., without commutativity). The theory includes rules to
derive loose-coupling of systems from loose-coupling of their components and rules to lift arbitrary progress
properties of components to progress properties of a system. These rules have been successfully applied to
the solution of several concurrent programming problems.

2 A Theory of Loosely-Coupled Processes

2.1 Processes

We consider a system consisting of a finite set of processes. Each process has a local store which only that
process can access, and there is a global store which all processes can access. (The control point of a process,
i.e., the point in the process-text where control resides at some point in the computation, is a part of its local
store). Let A be the set of possible values that can be held in the global store, and L;, the set of possible
values for the local store of some specific process, P;. The set of system states is the cartesian product
A x; L;, ranging over all process indices i.

The states of the stores are modified by the actions of the processes. An action in process P; is given by
a function, f,

f i AxL, — AxIL,

denoting that P; may read only from the global store and its own local store, and may modify only those
stores. A function may be partial; i.e., it may be defined for a subset of A x L;.

The effect of applying an action in a given system state is to evaluate the corresponding function, if it is
defined, in that state and overwrite the appropriate part of the system state—the global store and the local
store of the process—by the function value; if the function is not defined in a system state the action has no
effect.

Each process consists of a finite set of actions. Execution of a system consists of an infinite number of
steps. In each step, an action is chosen from some process and applied in the current state; both choices—the
process and the action—are nondeterministic. The nondeterministic choice is constrained by the fairness
rule that every action from every process is chosen eventually.

This process-model is from UNITY [2]. At first sight, it may seem restrictive because the traditional
control structures—if-then-else, do-while, sequencing, etc.—have been eliminated. Yet, this model has all



the generality of the traditional models (except process creation and deletion), and it provides a simpler
basis for constructing a theory of loosely-coupled processes, by ignoring the issues of program syntax. {To
see how traditional control structures are encoded within this model, consider two actions, f and g, that are
to be applied in sequence. Let the program-counter, pc, be 0 when f is to be applied and 1 when g is to be
applied. In our model, pc is a part of the local store of the process. We define a function f’ at all system
states where pc is 0 and f is defined; the effect of applying f’ is the same as applying f except that the
former results in additionally setting pc to 1. Similarly, we define ¢’ (for all states where g is defined and pc
is 1). This scheme implements the desired sequencing implicitly. }

Convention: A function f,
f+ AxL, — AxIL;
has the same effect as a function f’, that is defined on system states:
o Ax, Ly — Ax; L
where f’ simply does not “read” or “update” any L;, j # i. Therefore, henceforth we view each function as

a mapping from system states to system states.

2.2 Definition of Loose-Coupling

A set of processes is loosely-coupled if for every system state x and every pair of functions, f,g, whenever
f-xr and g.x are both defined, then so are f.g.xz and g.f.z, and they are equal in value.

Observation 1: Any two functions from a single “sequential” process commute because there is no system
state where both functions are defined (since the functions are defined at system states where the program
counter for this process has different values). a

Observation 2: Let f, g be functions from distinct processes. If variables accessed by both f, g are read-
only variables, i.e., no variable written by an action is read or written by another action, then the functions
commute. Therefore, the test of commutativity need be applied only to functions where one accesses (i.e.,
reads or writes) a variable that the other writes into. |

2.3 Examples of Loosely-Coupled Processes

We give several examples of processes that are loosely-coupled. We adopt the UNITY syntax for writing the
process-codes (though the results are entirely independent of the syntax).

counting

An integer variable, ¢, is shared among processes FPy...Py. Process P;, 1 < ¢ < N, accesses ¢ in a
statement,

{P,} ¢ := c+d,; if b;

where b;, d; are local to P; and d; > 0. Process Py references c in
{Py} | := true it ¢>0

where [ is a local variable of P.

The functions from P;, Pj, i # j, 1 <i < N, 1< j < N, clearly commute (because b;, d; are local to P;
and addition is commutative). The functions from Py and P;, 1 <4 < N, commute because, since d; > 0,



bi N ¢>0 = c¢+d; >0 {Pycan be applied after applying P;} A
b; {P; can be applied after applying Py}

Also, the value of (¢,1) after applying Py, P; in either order is (¢o + d;, true), where ¢ is the value of ¢ before
the operations were applied. O

parallel search

N processes, N > 0, carry out a search in parallel. Shared variables are P,r, where P is a set of process
indices, 0 through N — 1 (P holds the indices of all processes that have yet to complete the search) and r is
the index of the lowest numbered process that has succeeded in the search; if no process has yet succeeded
in the search then r = N. Initially, P = {i| 0 <i < N — 1} and » = N. The code of process i, 0 < i < N, is
as follows:

{fit P,r:= P—{i},r min if b Ni€eP
| {¢:} P = P—{i} if ¢; ANi€P

Here b;,c; are local predicates of process ¢ denoting successful or unsuccessful completion of the search.
Process N accesses the shared variables, using

{h} d=r if P=¢

where d is a local variable of this process. Thus, d records the index of the lowest numbered successful
process, or N if there is no such process.
To see that these processes are loosely-coupled:

e f;, g; commute because b; and ¢; cannot hold simultaneously, i.e., the search cannot be both successful
and unsuccessful.

fis fj, 1 # j, commute because removing two different items from a given set in either order results in
the same set and min is commutative and associative.

fi»gj, % # j, commute for similar reasons.

Gi, 9, © # j, commute for similar reasons.

h, f; (or h,g;) are not both defined in any state because P = ¢ A i € P never holds. Therefore, they
commute trivially.

point-to-point communication

Two processes, a sender and a receiver, communicate using a FIFO channel, c. The sender sends messages;
the messages are eventually delivered to the receiver in the order sent. It is not surprising that this pair of
processes is loosely-coupled; we verify this, formally, below.

We regard the channel, ¢, as a variable—of type message sequence—shared between the sender and the
receiver. The action at the sender is of the form:

{send} ¢ := ¢;m if bs

Here “;” denotes concatenation and m,bs are local to the sender denoting, respectively, the next message
being sent and the condition for sending m. The action at the receiver is of the form:

{receive} h,c := head.c, tail.c it br A c# ()

Here h,br are local to the receiver (the received message is copied into h; the condition for receiving a
message is given by br) and “()” denotes the empty sequence.

The two corresponding functions commute in that they produce the same values for h, ¢ when applied in
either order, i.e.,



bs Nbr AN c#() = {condition for sending and receiving}
(head(c;m), tail(c;m))
{value of h, ¢ by first sending and then receiving}
= (head(c), tail(c);m))
{value of h,c by first receiving and then sending}

multi-input channel

This is a variation of the previous example. Two senders use a single channel to send messages to a
receiver.
The send actions are

{S1} ¢ := ¢;ml if bsl and
{52} ¢ = ¢m2 if bs2

wherem1, bs1 are local to Sender 1 and m2, bs2 to Sender 2. As before, the receiver action is
{receive}h,c = head.c, tail.e  if bf A c# ().
S1, S2 do not communte because, given bsl A bs2
(¢;ml); m2 # (¢;m2); ml.

This reflects the possibility that relative speeds of the processes and the communication network could
affect the outcome of the computation.

Note: The last example shows that a system containing a “fair-merge” process (in our case, the multi-input
channel implements a fair-merge) cannot be loosely-coupled. However, if the multi-input channel implements
a bag, rather than a sequence, then the system is loosely-coupled. In this case, the receiver cannot exploit the
order of the messages it receives. {The treatment of bags is problematic in our theory because no function
(at the receiver) can remove some element from a bag, nondeterministically. Special cases, however, can be
handled. For instance, if only a bounded set of messages can be sent—say, each message is a natural number
below 100—then the receiver could be structured as a set of functions, the i*" function removes message i if
it is in the bag.} It can also be shown that multiple senders and multiple receivers sharing a bag—as is the
case for a client-server system sharing a task-pool—are not loosely-coupled; this implies that some degree of
central control is required in this case to ensure that no task gets distributed to more than one server. O

broadcast

The value of a shared variable x is to be broadcast to processes P; ... Py. Process P, stores a new value
into x provided the previous value has been read by all processes. A process P;, 1 < i < N, records the value
of x, in a local variable x;, provided it is a new value. In order to determine if a value is new and also if the
processes have read the previous value, we introduce boolean variables b ...by, and the invariant: For any
i, 1 <i < N, P; has read the current value of x iff b; = by. Thus, if by equals every other b; then every P;
has read the value of z; a new value may then be stored in = and by changed (so that it differs from every
other b;). Also, P; reads x only if b; differs from by; reading is accompanied by setting b; to bg. Specifically,
the write action in Py is

{P()} ZL’,bO = U),_\b() if (V’L : ].SZSN o b():bz) A cw

where w, cw are local to Py; variable w holds the next value to be broadcast and cw is the condition for
broadcasting. The read action in P; is

{-Pz} xi,bi = .’E,bo if bZ#bo N cr;



where x;, cr; are local to P;; the value read is stored in x; and cr; is the condition for reading.
The functions in Py, P;, 1 < ¢ < N, commute because the corresponding actions cannot both be performed
in any state:

bi#bo/\(ViZISiSN o b():bi)

is false.

The operations in P;, P;, 1 < i < N, 1 < j < N, commute because common variables accessed by
these two actions are x and by, and both are only read by these two actions. Hence the processes are
loosely-coupled.

As a consequence of loose-coupling, we can show that simultaneous access to all b;’s, as required in Py’s
action, may be replaced by asynchronous accesses. O

2.4 Properties of Commuting Functions

In this section, we prove a number of properties of loosely-coupled processes. In particular, we show that if
in a given system state finite executions of two different processes are defined then so are their interleavings;
further, applications of all such interleavings result in the same system state. These results are essential for
proving properties of loosely-coupled systems and correctness of their implementations.

Henceforth, we deal with (partial) functions from D to D, for a fixed set D; in the context of loosely-
coupled processes D is the set A x; L;—the set of system states—and each function corresponds to an action
in some process.

Notation: Function composition is shown by concatenation and function application by a “.” written

between the function and its argument. Function application is from the right to the left. Thus, for a finite

sequence of functions a: if « is the empty sequence then a.z is defined and is equal to z; if & = o/ f then

a.z is defined only if both f.x and «'.(f.z) are defined (and then, a.z = . f.z). O
Functions f, g commute iff for every = in D,

f.x and g.x defined
= f.g.x and g.f.x defined, and f.g.x = g.f.x

Notational Convention: We write e = ¢’ to denote that both e, e’ are defined and they are equal. Thus,
the commutativity condition for f, g can be written:

f.x and g.x defined = fgx=g.fx

Note (Leibniz Rule with Partial Functions): Given e = e’ we can conclude f.e = f.e’ only if f.e or f.¢' is
known to be defined. |
Two sequences of functions, «, 3, commute if every function from a commutes with every function from

0.
Lemma 1: Let function g commute with every function in sequence «. For any x in D,

g.x and a.x defined = g.a.x=a.g.x

Proof: Proof is by induction on the length of «.

« is the empty sequence: Since g.z is defined, g.a.x = g.x and a.g.x = g.x



a=d[f:

f.x defined , .z defined and o = o' f
g.x defined , given
(1) fgr=g.fzx , f,g commute
o .(f.x) defined , a.x defined and o = o’ f
g.(f.x) defined , from (1)
o .g.(fx)=g.d . (fx) , using induction hypothesis on the above two
o . fgx=gad.fx , replacing g¢.f.z in the lhs of the above by
f.g.z, using (1)
Q.g.T = g.0.x , using @ = o/ f in both sides of the above a

Theorem 1 gives a generalization of Lemma 1, for a pair of sequences.

Theorem 1: Suppose a, § commute. Let 7, be any two interleavings of a, 5. For any z in D,

a.x and f.z defined = ~vyax=dx

Proof: It suffices to show that for any interleaving ~, 7.z is defined and it equals a particular interleaving,
say af, applied to x. Proof is by induction on the length of 5.
B is empty: Then 7.2 = a.z (because v = a and a.z is defined). Trivially, v.2 = a.5.2.

B = g : Since ~ is an interleaving of «, 3

v = AgB
where A, B are sequences of functions and B is a suffix—possibly empty—of a.
Furthermore, the sequence AB is an interleaving of o, 3’. For any x in D,

g.x defined , B.x defined and 8 = B'g

.z defined , given

a.g.x defined , using Lemma 1 on the above two
B .g.x defined , Box =03 .gx

(1) (AB).(9.x) = (af').(g.x) , using induction hypothesis, any interleaving
of a, #'—in particular AB—is defined at g.x and its
value equals (af').(g.x)

B.x defined , B is a suffix of o and a.x is defined
g.x defined , B.x defined and 8 = B¢
B.gx=g¢g.B.x , using Lemma 1 on the above two
A.B.gx = A.g.B.x , from the above; note A.B.g.x is defined (from 1)
a.f.x =7z , in the above replace A.B.g.x by a.f.z (from 1) in the
lhs and « by AgB in the rhs o

Often, arguments about commuting functions involve exchanging two such functions in a given sequence;
thus, a sequence afgf is transformed to agfB provided f,g commute. Such exchanges are permissible
provided for all x: f.g.x = g.f.x. Our notion of commuting is weaker and it does not allow us to perform
such exchanges. We do show a result—Theorem 2, below—which allows exchanges or, equivalently, moving
one sequence to the right of another under more stringent conditions.

Theorem 2: Suppose «, f commute. Let v be an interleaving of «, 8. For any =z,
B.x defined, vy.x defined = ~vy.x=a.f.x

Proof: Proof is similar to that of Theorem 1; we apply induction on the length of 3.



0 is empty: Then v = a. If v.x is defined then so is a and y.2 = a.f.x
8 =70g: Then + is of the form AgB where B is a suffix of « and AB is an
interleaving of «, '

B.x defined , B is a suffix of v and .z defined
g.x defined , B =g and .z defined
B.gx=g.B.x , Lemma 1 on the above two
(ABg).x = (AgB).x , from the above and (AgB).z, i.e., 7.z, defined
(1) (ABg).x =~.x , replacing AgB by + in the rhs of the above
(AB).(g.x) defined, §'.(g.x) defined , from above and § = #'g and .« defined
(AB).(g.x) = a.8'.(g.2) , induction hypothesis on above: AB is an
interleaving of «, 3’
v.x = a.f.x , replace lhs using (1) and rhs using
B=pyg. 0o

The reader should note that in Theorem 2, a.x may not be defined. In fact, it is possible for neither of
a.z, 3.2 to be defined and yet .2 to be defined. {To see this, consider three functions, f, g, h, each operating
on a pair of natural numbers to yield a pair of natural numbers as the result. The functions are given by

f(r,y)=(z,y—1)ify >0
g-(z,y) = (v + 1,y)
h(z,y)=(x—1Ly+1)ifx >0

It is easy to verify that every pair of these functions commutes. Now, suppose @ = fg, 8 = h, v = fhg.
Then «.(0,0), 3.(0,0) are undefined whereas v.(0,0) is defined.}

The next theorem—motivated by the above observation—asserts that if any two interleavings of «, 8 are
defined at = (and neither .z nor 8.« may be defined) then the two interleavings have the same value when
applied to z. First, we note a generalization of Theorem 2 which says that any suffix of § can be moved
to the “right” of 7, provided the suffix and v are both defined at x. Its proof is along the same lines as
Theorem 2.

Corollary 1: Suppose «, 8 commute. Let 8 = 3'B and v be an interleaving of «, 5.
B.x defined, v.x defined = ~.ox=+'.B.x

where v/ is some interleaving of «, '

Corollary 2: Suppose «a, g8 commute. Let « be an interleaving of «;, (3.

g.B.x and v.x defined = g.v.x defined

Proof: Since f.z is defined (from g.5.xz defined) and .z is defined, we have v.x = a.f.z, from Theorem

2. Now,
g.(8.z) defined , from the antecedent
a.(f.x) defined , from the above argument
g.a.f.x defined , Lemma 1 applied to the above two
g.7v.x defined ,v.r = a.f.x O

A consequence of this corollary is that if v.x is defined and g.7v.z is undefined then g.3.z is undefined;
this is the form in which we use this corollary in the proof of Theorem 6.



Theorem 3: Suppose «, 8 commute. Let v, be two interleavings of «, 8. Then,
~v.x defined, d.x defined = ~.z=d.x
Proof: Proof is by induction on the length of v (which is same as the length of 9).

v is empty: The consequenct holds, trivially, as x = x.

v=7"g:
g.x defined , 7 =7"g and .z defined
0.z defined , given
0.x = ¢'.g.x for some ¢’ , applying Corollary 1 (with B = g)
0'(g.x), ' .(g.z) defined , above and v =~'g
§.(g.x) =7".(g9.x) , induction hypothesis 0

Note: Our theorems readily generalize to interleavings of several finite sequences where each pair of se-
quences commute. In fact, we will normally be dealing with this more general case. O

2.5 Compositional Design of Loosely-Coupled Systems

We show how properties of a system of loosely-coupled processes may be deduced from the properties of its
component processes. These deduction rules can be used as a basis for system design.

We compose processes using the union operator of UNITY [2]; for processes F, G their union, written as
F | G, is a process in which actions from F,G are executed concurrently and asynchronously. In each step
of the execution of F' | G an action from either F or G is chosen and executed; the choice is to be made
fairly, in the sense that every action is chosen eventually for execution; see ([2], Sec. 7.2) for details.

The two classes of program properties—safety and progress—are expressed using the operators, unless
and leads-to. (UNITY employs another operator, ensures, as the basis for the inductive definition of leads-to;
we won’t be needing that operator for the theory developed in this paper.)

The basic safety property is of the form, p unless g, where p, ¢ are predicates (defined on the state space
of the program). The operational interpretation of p unless ¢ is that once p is true it remains true as long
as q is false. An important special case is p unless false which means that p remains true once it becomes
true; we write p stable for p unless false. A predicate p is invariant in a program if p is initially ¢rue and p
is stable.

The basic progress property is of the form p +— ¢ (read p leads-to q); its operational interpretation is:
Once p is true, q is or will become true. See ([2], Chapter 3) for formal definitions of these operators.

union theorem

Safety properties of composite programs can be deduced from the safety properties of their component
processes, as given below. This result applies to all processes, not just loosely-coupled processes.

Theorem 5 (union theorem for safety): ([2], Sec. 7.2.1)
punlessq inF|G=punlessq inF A punlessq inG a

This theorem provides a basis for designing a composite system: A system required to satisfy p unless ¢
can be designed as a union of two components, each of which satisfies p unless q.

There is no corresponding result for progress properties. Indeed, a progress property established by one
component process may be affected by the operations of another process, as shown in the following example.
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Example: Processes F,G share a variable x that can take three possible values—0, 1 or 2. Each process
has a single action.

F @ z:= (x+1) mod3
G = z:= (zx+2)mod3

The initial value of x is irrelevant. It is easy to see that

=0~ z2=2 inF
=0+ 2=2 inG

However,
xr=0r— 2=2 InF|G

does not hold: To see this consider the case where F, G alternate forever, starting in a state where z = 0.
Note, further, that F, G are loosely-coupled according to our definition.
O

(The union theorem [2] can be used to deduce a special class of progress properties, of the form p ensures ¢;
the theorem says that p ensures ¢ holds in a composite program iff p ensures g holds in at least one
component and p unless ¢ holds in all other components. No such result holds for p +— g¢.)

The lack of a theorem for progress, analogous to the union theorem for safety, is a serious drawback
for concurrent program design. In order to design a system in which p +— ¢ holds, we cannot easily
partition the design into several processes each satisfying some safety and progress properties. Conversely,
to assert a progress property for a given system, all its components have to be considered together. A major
simplification, proposed in [11], is to ascertain that the proof constructed for a single process is not affected
by the executions of the statements in the other processes; construction of such a proof is still an expensive
procedure.

We give a theorem that allows us to deduce progress properties of loosely-coupled systems. The essence of
the theorem is: If process F establishes p — ¢ in a “wait-free” manner (defined below), and F' is a component
in a system of loosely-coupled processes where every other process preserves g, then p +— ¢ holds in the entire
system. Thus, a progress property, p — ¢, of a loosely-coupled system can be implemented by designing a
single process to implement this property in a wait-free manner, and requiring the other processes to preserve
q (i.e., by having “q stable”).

Process F is wait-free for a pair of predicates (p, q) if once p A —q holds, every action of F is effective
(i.e., execution of the action changes state) at least until ¢ holds. This property can be established as follows.
Let ¢; be a condition under which the " action in F' is guaranteed to execute effectively. Then,

p A-g = (ANi = ¢) {every action can be executed effectively given p A —q}
(AN ¢) unless q {every action can be executed effectively at
least until ¢ holds}

The notion of wait-freedom captures our intuitive understanding that once p holds in F', process F' can
execute autonomously without waiting for any external signal.

Theorem 6: Let F, G be loosely-coupled.

p — q inkF,
F is wait-free for (p,q) ,
q stable in G

pr—gqg inF|G
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Proof (sketch): Consider an infinite execution, o, of F' | G starting in a state where p holds; call this
starting state x. We show that o has a finite prefix, 7, at the end of which ¢ holds.

Let o be the sequence obtained by retaining only and all the F-actions of 0. Since o is a (fair) execution
of F | G, oF is a (fair) execution of F. From p — ¢ in F', we know that every (fair) execution of F starting
in a state where p holds has a prefix at the end of which ¢ holds. Therefore, there is a prefix « of o after
which ¢ holds. Since F' is wait-free for (p, q), c.z defined.

{Note: Execution sequences are usually written in the order in which the actions are applied, from left
to right, e.g., the execution sequence fgh denotes first applying f, then g and then h. In the notation of
Section 2.4.1, executing such a sequence starting in state x is equivalent to computing (hgf).z.}

Let 7 be a prefix of ¢ such that 77 = a. We deduce the system state by applying 7 to state z, as follows.
First, remove all actions from 7 that are undefined in the corresponding state (those that behave as a skip);
let the new sequence be 7. Clearly, the system states by applying 7 and 7' to x are identical; furthermore,
7',z is defined. We show that ¢ holds in the state 7’.x.

Now, 7 is an interleaving of « and some sequence of G-actions, and a.x is defined. Therefore, according
to Corollary 2 of Theorem 2, the removed actions from 7 are G-actions only. Hence, 7/ is an interleaving of
a and a sequence, say 3, of G-actions. Since F, G are loosely-coupled, «, 8 commute. Given that 7’.2 and
a.x are defined, from Theorem 2,

2= B.ax

We know that ¢ holds for a.z and ¢ is not falsified by any action from [ (because ¢ is stable in G and /8
consists of G-actions only). Hence, ¢ holds for 7’.z. m]

2.6 A Programming Methodology for Loosely-Coupled Processes

Theorem 5 provides a basis for programming loosely-coupled processes. We implement a progress property
p +— ¢ by a single process in a wait-free manner; then we require that the other processes not falsify q. The
methodology for constructing a program from its specification, consisting of safety and progress properties,
is as follows:

Require that

e the component processes be loosely-coupled,
e each safety property hold for each component process, and

e cach progress property, of the form p — ¢, hold in a specific process (in a wait-free manner) and ¢ be
stable in the other processes.

This design methodology is driven by consideration of the progress properties; the safety properties
merely serve as the restrictions in designing the individual processes.

3 Implementing Loosely-Coupled Processes: The Cache Coher-
ence Problem

We show in this section that the cache-coherence problem vanishes for loosely-coupled processes. An imple-
mentation can employ an asynchronous communication mechanism to bring the caches into coherence, and
it is not required for a process to lock other process caches or ask for permission in updating its own cache.
The implication of this observation is that loosely-coupled processes can be implemented very efficiently in
a distributed, message-passing type architecture. Consequently, such systems are highly scalable, a property
that is not enjoyed by arbitrary shared-variable systems. Even when a system is not loosely-coupled, it
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pays to identify the processes that are loosely-coupled because their interactions can be implemented asyn-
chronously, as described above. (In fact, with slight assistance from the programmer, compilers can generate
code that minimizes cache-locking.)

The implementation of loosely-coupled processes employing a point-to-point communication network is
as follows. Initially, each process holds the contents of the global store and the local stores of all processes
in a local cache; hence, all caches are initially coherent. A process computes by reading values from its local
cache and writing new values into its local cache. Whenever a process changes a value in its local cache it
sends a message to every other process informing them of the change. Upon receiving a message a process
updates its local cache appropriately (the exact mechanism of update is explained below).

We show that this implementation is correct. Observe that the caches may never be coherent beyond the
initial state. Therefore, we cannot show that for every finite execution of the original system there is a finite
execution in the implementation that has the same final state. Instead, we show that whatever properties
hold in the original system also hold in the implementation; this is made more precise below.

3.1 Asynchronous Implementation of Caches

Let A denote the original system consisting of a global store and local stores for each process. Let s denote
the entire system state (i.e., contents of the global store and all local stores) during any computation of A.
An action in a process of A is of the form,

s = f.s if f.sis defined

(Note that the action can only modify the contents of the global store and the local store of the appropriate
process.)

Let B denote the system that implements A using asynchronous communication. In B, each process i
has a local store—a cache—which will be denoted by s;. Initially, all s;’s are equal to s (of A), i.e., all caches
are initially coherent and each of them has the entire system state. Processes communicate using directed
channels. Let ch(i,j) denote the contents of the channel directed from process ¢ to process j; ch(i,j) is a
sequence of function names. Initially all channels are empty. Channels are FIFO: messages sent along a
channel are appended to its tail and the message that is removed from a channel is its head.

There are three kinds of actions for a process i in B.

e Actions to change s;: an action of process i in A of the form
s = f.s if f.sis defined
is simulated by process ¢ in B through
s; = f.s; if f.s; is defined

Further, a message is sent by process i (see below).

e Sending messages: Any action in process ¢ of the above form, that changes s;, is accompanied by
sending a message consisting of the function symbol “f” to all other processes; i.e., for all j, ch(i, j) is
updated by appending “f” to its end.

e Receiving messages: A process j receives a message “f” from a channel ch(i, j) provided f.s; is defined
(i.e., f can be applied to the current state of process j). In this case, s; is changed to f.s;. If f.s; is
undefined, the message is not removed from ch(i, 7).

If messages can be received from several channels (when the corresponding functions are defined in
the present state) the choice of the message to be received next is arbitrary. However, we make the
following fairness assumption about receiving messages: If f is at the head of an incoming channel of
process j and f.s; remains defined forever, message f will be removed, eventually.

13



3.2 Proof of Correctness of the Implementation

We show that the implementation is correct by proving that every “property” of the original system, A,
holds in the implementation, B. We consider the two prototypical classes of properties: p unless ¢, for
safety, and p — ¢, for progress. Note, however, that predicates p,q are over the system state, s, whereas
the implementation does not have a global system state. Therefore, we consider yet another system, C', which
is same as the system B augmented with an auxiliary variable, s. The auxiliary variable, s, is modified as
follows. The action in process i of system B

s; = f.s; 1if f.s; is defined
is replaced by
s,8; := f.s,f.s; 1if f.s;is defined

in System C. (We will show that f.s is defined whenever f.s; is defined.) We will prove that, for predicates
p, q over system state, s:

p unless gin A = p unless ¢ in C
pr—gq nmA=p+—gq inC

Note: The close correspondence between A, C, as given by the above relationships, does not directly imply
that B is a faithful implementation of A. A more direct proof should show that any property of system A
also holds in any process of system B, i.e., for any ¢ (where p.s; denotes the predicate p in which s is replaced
by 82)

p unless g in A = p.s; unless ¢q.s; in B
pr—q inA= ps — ¢gs; inB a

A Safety Property Relating s, s;

We show that at every point in the computation of C, s may be obtained by applying the functions in
the incoming channels of 7 to s; in a certain order. Specifically, the following is an invariant for C.

invariant For process i there is an interleaving, v, of ch(j, ), for all j, j # ¢, such that

s =7.8;

Proof: Initially, the invariant holds with + as the empty sequence. To prove that every change to s or s;
preserves the invariant, we observe that these variables may be changed by: applying an action in process
(which may change both s, s;), applying an action in process j, j # 4 (which may change s and ch(j, ), but
does not change s;) or, process i receiving a message, g (thus changing s; but leaving s unchanged).

Action in process i: Executing
s,s; = f.s,f.si if f.s; is defined

preserves the invariant, trivially, if f.s; is undefined. Otherwise, prior to the execution

f.s; defined , assume
~.8; defined , § = ~v.s; from the invariant

(1) foy.si =7.f.8; , Lemma 1 (f commutes with ~)
f-s defined , from the above using s = ~.s;
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Thus assigning f.s to s is legal whenever f.s; is defined. Next, observe that

f.s
={s=1.si}
Iyesi
= {from (1)}

y-f-si

Hence, the invariant holds with f.s;, f.s in place of s;, s. No channel ch(j,), j # 4, is changed by the
action in process ¢; thus, v remains an interleaving of the incoming channels of i.

Action in process j, j # i:
5,8; = g.5,9.5; if g.s; is defined

has the effect that s may be changed; also ch(j,4) is then extended by appending “g” to it.

g.s
={s=1.5}
9-7-8i

Hence, the invariant is satisfied with the sequence g, which is an interleaving of all ch(j,4), in place of 7.

Receiving a message: Process i executes
Si = g.8; if g.s; is defined

and removes g from a sequence ch(j,i), j # 4. Since for some interleaving v, 7.s; is defined prior to the
execution, ch(j,7) is of the form f’g and g.s; is defined, then using Corollary 1 of Theorem 2 we have
~v.8; =~'.g.8;. Therefore, the above action preserves the invariant, where s; is replaced by g.s;, and v by ~+'.

A Progress Property Relating s, s;

The invariant, described above, tells us that the local caches—s;’s—are not “incoherent,” i.e., by applying
suitable interleavings of the messages from their incoming channels each process cache can be made equal
to s (and hence, all process caches can be made equal). Our next result concerns progress: We show that
system C evolves towards this ultimate coherent state. For instance, if no action in any process changes
the state (the state is then known as a fixed point; see [2]) then the messages from the various channels
will be consumed in such a way that, eventually, all caches will become identical. In the more general case,
when computation never ceases, the caches may never become equal but every progress property of A can
be shown to hold in C'. The following progress property of C relates s and s;, for any 3.

For any function f in process i:

f.s defined — f.s; defined in C.
Proof(sketch): We will show that
(1) s=8+— (si=a.S A fda)V fs; defined,

where S is any (constant) system state, and « is some sequence of functions. Consider a state in C' where
(s,s:) = (S, S;). From the invariant, there is an interleaving, +, of the incoming channels such that
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We show that eventually all functions in v would be removed from the channels and applied to s;. If v is
empty, this is trivial. If v = ~'g, where g is in the channel ch(j,4):

g.s; is defined , because 7.s; is defined and v = +'g.

Also, g.s; remains defined as along as g is not received, because after applying a sequence of functions
a, 8; = a.S; and g commutes with « (because the functions in « are not from process j). Since ¢.5; and «@.S;
are defined, using Lemma 1, g.a.S;, i.e., g.s; is defined. Therefore, according to the fairness rule, g will be
removed from ch(j, 1), i.e., eventually s; will become g.«.S;, for some «. By similar reasoning, all functions
in v will be applied, i.e., eventually

S; = 5Sl

where v is a subsequence of §. Now, 7.S; and 4.S; are defined, and by applying (a slight generalization
of) Theorem 2, s; = a.7.S;, for some sequence of functions « (where ¢ is an interleaving of a, ). That is,
eventually, s; = .5, replacing v.5; by S. Now if f ¢ « then (1) is established. If f € « then f.s; is defined
at some point during this computation, and hence (1) is established.

Now, in C":

f-S defined is stable
, S is constant

s=8 A f.S defined — (s;=a.S N f&a A f.S defined) V f.s; defined
,(see [2], Sec. 3.6.3) PSP on the above and (1)

s=8 A f.sdefined — (s;=a.S A f&a N f.S defined) V f.s; defined
,rewriting the lhs

s=8 A f.sdefined — (s; =a.S A f.a.5 defined) V f.s; defined
, Lemma 1 on rhs: f commutes with o because f € a and the processes are

loosely-coupled; also, f.S and «.S are defined

s=8 A f.sdefined — f.s; defined
, the first disjunct in the rhs implies f.s; defined

f-s defined — f.s; defined
, (see [2], Sec. 3.4.5) disjunction over all S

Preservation of Safety Properties by the Implementation

Theorem 7: p unless gin A = p unless q in C
Proof: Consider an action a in A,
a = s = fs if f.s defined
From the wunless-property in A,
{p A —q} a{pV g}
The corresponding action ¢ in C'is, for some i,
c 8,8 = f.sfs if f.s; defined
We have {p A —q} ¢ {p V ¢} because,
p A =g AN —(f.s; defined) = p V ¢ Jtrivially
and {p A —¢ A f.s; defined}
= (see the proof of the invariant: f.s; defined = f.s defined)
{p N =g A f.s defined}
c
{p V ¢, because c has the same effect on s as action a when f.s is defined}

The other actions in C—sending and receiving messages—do not affect s, and hence, p unless g holds in C.
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Preservation of Progress Properties by the Implementation

Theorem 8 p — gin A = p — ¢ginC

Proof (sketch): It is sufficient to show that
pensures gin A = p — qin C

Then, by structural induction on the proof of p +— ¢ in A, the result follows. The proof of p ensures ¢ in

A consists of (1) p unless ¢ in A, and hence p unless ¢ holds in C, from the last theorem, and (2) there is a
function, f, in process i, say, in A such that

{p N ~q} s = fs if f.s defined {q}
It follows from the above that
(3) p AN ~q = f.sdefined
We will show that,
(4) p— (p AN fs;defined) Vg inC
(5) p A f.s;defined — ¢ inC
Then, using cancellation (see [2]; Sec. 3.6.3)
p — ¢q inC.

Proof of (4): InC

p unless q , see (1) above
p A —q unless q , from the above: a fact about unless
f.s defined — f.s; defined , proven earlier

p A g A f.sdefined — (p A =g A f.s; defined) V ¢
, PSP (see [2], Sec. 3.6.3) on the above two

p A g — (p A f.s; defined) V ¢ , simplifying the lhs using (3) and the rhs
using predicate calculus

pAg— g , implication (see [2], Sec. 3.6.3)

p — (p A f.s; defined) V ¢ , disjunction on the above two (see
[2], Sec. 3.6.3)

Proof of (5) (sketch):
Show that this is an ensures property in C.
3.3 Notes on the Implementation
Implementing Tightly-Coupled Processes
The implementation scheme, proposed in Section 3.1, eliminates cache-locking completely for loosely-
coupled processes. Another way to interpret this result is that cache-locking is required only for accessing

those variables on which the processes are tightly-coupled. As an example, consider a task-pool shared
between a set of clients and a set of servers; a client may add a task to the task-pool and a server removes
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an arbitrary task from this pool whenever it is idle. As we have shown for multi-input channels (Section
2.3), these processes are not loosely-coupled. However, locking is required only when reading, i.e., removing
a task; no locking is required when adding tasks to the pool.

Our theory suggests exactly where locking of caches is required. In fact, we can design a compiler to tag
those accesses that require cache-locking (see below).

Optimizing the Implementation

The implementation proposed in Section 3.1 can be optimized in several ways. A process that does not
read a variable need not retain its value in its local cache; thus a local cache of a process need only contain
the values of the shared variables and its local variables. Thus, a process that updates a shared variable has
to send messages only to those processes that may read this variable. In many cases, variables are shared
between two processes, and often one of the processes is the writer and the other is the reader. Then, the
total storage and the communications can be reduced drastically.

The contents of messages are slightly more elaborate when processes include only the shared variable
values and their own local variable values in the local caches. When a process sends a function name, f, to
another process it has to include the relevant portion of its local store that will be required by the latter
process in order to apply f. For instance, when process ¢ adds the value of a local variable, d;, to a shared
variable ¢ (see the example of counting, Section 2.3) then it sends a message (to any process that may read
¢) that includes both the addition function and the value of d;.

There are many ways to encode the functions that are sent as parts of messages. Clearly, if all functions in
a channel are identical they may be omitted and only the relevant parameters may be transmitted. Further,
two successive functions f, g to be sent along a channel may be replaced by sending a single function, h,
where h = gf. This is particularly useful in the case when multiple updates can be replaced by a single
update, as in incrementing an integer variable k times, that can be replaced by adding k to it.

Compiler-Check for Loose-Coupling

We have not yet specified how the check for loose-coupling should be carried out. It is clearly impractical
to design a system and then check its processes for loose-coupling. Instead, variables to be shared should
be drawn only from certain specified types and structures (with a set of operations that are known to
commute). A compiler can then check for loose coupling and generate code for asynchronous message
transmission following shared variable updates. For instance, for a shared variable of type integer, addition
and subtraction commute whereas addition and multiplication do not; a compiler check of the shared variable
type and its access functions can in many cases establish that processes are loosely-coupled.

4 Summary

Message communication has played a central role in the development of asynchronous computing. The
traditional model of message communication involves a channel directed from a sender to a receiver (that
are engaged in point-to-point communication). We have proposed that certain types of shared variables may
be viewed as “generalized channels.” If the different operations on these variables commute, then this form of
interaction possesses most of the desirable properties of message communication. In particular, systems can
then be designed without explicit checks for interference, and they can be implemented using point-to-point
asynchronous message communication. These are prerequisites, we believe, for developments of large-scale
multiprocessor systems.
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