Maximally Concurrent Programs

Rajeev Joshi and Jayadev Misra
The University of Texas at Austin

April 26, 2000

Abstract

Typically, program design involves constructing a program P that im-
plements a given specification S; that is, the set P of executions of P is
a subset of the set S of executions satisfying S. In many cases, we seek
a program P that not only implements S, but for which P = S. Then,
every execution satisfying the specification is a possible execution of the
program; we then call P mazimal for the specification S. We argue that
maximality is an important criterion in the context of designing concur-
rent programs because it disallows implementations that do not exhibit
enough concurrency. In addition, a maximal solution can serve as a basis
for deriving a variety of implementations, each appropriate for execution
on a specific computing platform.

This paper also describes a method for proving the maximality of a
program with respect to a given specification. Even though we prove
facts about possible executions of programs, there is no need to appeal
to branching time logics; we employ a fragment of linear temporal logic
for our proofs. The method results in concise proofs of maximality for
several non-trivial examples. The method may also serve as a guide in
constructing maximal programs.

1 Introduction

Traditionally, a program specification is given by safety and progress properties.
A safety property — of the form that no two neighbors eat simultaneously in a
dining philosophers solution — is used to exclude certain undesirable execution
sequences. A specification with safety properties alone can be implemented by a
program that does nothing; then, the safety constraints have been implemented
by excluding all non-trivial executions. Therefore, it is necessary to specify
progress properties — of the form that some hungry philosopher eats eventually
— requiring that some execution sequences be included. Safety and progress
requirements are sufficient for specifying non-trivial sequential programming
tasks, but they are not sufficient for concurrent program design because, for
instance, in the case of the dining philosophers, the solution may allow only one
philosopher to eat at a time, thus eliminating all concurrency. We propose a

new requirement, called mazimality, to ensure that only the most concurrent
executions are included. Thus, the sequential solution to the dining philosophers
problem will be unacceptable as a solution since it does not meet the maximality
requirement.

Program design, typically, involves constructing a program P that imple-
ments a given specification S; that is, the set P of executions of P is a subset
of the set S of executions satisfying S. For instance, given a specification to
generate an infinite sequence of natural numbers, any program that generates
a sequence of zeroes implements the specification. So does the program that
generates the natural numbers in order. In many cases, we seek a program P
that not only implements S — i.e., P C S — but for which P = S. Then every
execution satisfying the specification S is a possible execution of P; we call P
mazximal for specification S. For instance, the program that generates a stream
of zeroes is not maximal for the specification to generate an infinite sequence of
natural numbers; nor is the solution that allows a single philosopher to eat at a
time maximal for the dining philosophers problem.

There are at least three reasons why we are interested in maximal solu-
tions. First, as we have remarked above, we exploit maximality to eliminate
those undesirable solutions for a given specification that restrict concurrency.
(Since a maximal solution admits maximal concurrency, it suffers from no such
restriction.)

Second, we often simulate an artifact by a program and the latter has to
simulate all behaviors of the former; in this case, the simulation program has to
be maximal for the specification of the artifact. Such constructions are common
in certain verification methods, such as model-checking. For instance, consider
the problem of proving the correctness of a protocol for communication over
a faulty channel (e.g., the Alternating Bit Protocol). A typical approach to
showing the correctness of this protocol is to show that the programs describing
the sender and receiver satisfy certain properties when composed with a program
describing the faulty channel. For such a proof, we clearly require that the
program used for the faulty channel be maximal for its specification.

The third reason for designing a maximal solution is that we often develop
(and prove correct) such a solution, and then refine it — by eliminating some
non-determinism, for instance — to obtain a program that is actually imple-
mented. This strategy may be easier than developing the implemented program
directly. A single maximal program for a problem may be the basis for a family
of interrelated programs, each of which may be appropriate for a different com-
puting platform. We show several refinements of a maximal solution for task
scheduling in section 5.5.

A maximal solution is, typically, non-deterministic; in many cases the non-
determinism is unbounded.

Overview of the paper In this paper, we suggest a method for proving the
maximality of a program with respect to a given specification. Given a program
P to be proven maximal, we have to show that any sequence of states, o,

meeting the specification is a possible output of the program. We first construct
a constrained program, P’, from P and o; the constrained program retains
the structure of P, but its actions are restricted by guards and augmented by
assignments to certain auxiliary variables. Next, we show that all fair executions
of P’ produce o and that any such execution corresponds to a fair execution of
P; hence, o is a possible output of P.

Even though we prove facts about possible executions of programs there is no
need to appeal to branching time logics; we employ a fragment of linear temporal
logic for our proofs. The method seems to be quite effective in practice, resulting
in concise proofs for non-trivial examples such as fair unordered channel of
section 4.2 and task scheduler of section 5. The proposed method may also
serve as a guide in constructing maximal programs from specifications.

2 Programs and their Specifications

2.1 Programming Model

We adopt a programming model based on UNITY [4]. A program has a set
of variables that define its state, an initial condition which is a predicate over
program states, and a nonempty set of actions, where each action is a relation
over program states.

A program ezxecution is an infinite sequence of the form t9Ag7y...7; A;Ti41.
where each 7; is a program state and A; is an action; 7y satisfies the initial
condition and, for all 4, (7;,7;41) € A;. In addition, each execution satisfies the
following fairness requirement: each action appears infinitely often.

We employ the following notation to describe the programming examples in
this paper. The initial condition is defined in an initially section where the initial
values of some of the variables are declared; the uninitialized variables have
arbitrary initial values. The program actions are written as guarded commands,
preceded optionally by a label, as in

a: g—s
Execution of a has no effect in a state if g does not hold in that state; otherwise
s is executed. We assume that execution of s terminates from any state where
g is defined.

As an example, consider the following program having two integer variables
x,m.

Program FairNatural
var z,n: integer
initially n =0
a:n:=n-+1
B xz,n:=mn,0

end {FairNatural}

We claim that x is assigned only natural numbers as values, and z is infinitely
often positive. We prove these claims in the section 2.2. We show in section

3.4 that any sequence of states satisfying these two properties is the result
of some execution of this program. Thus, this program is maximal for the
specification that requires generation of an infinite sequence of natural numbers
where, eventually, a positive number is generated. ! O

Stuttering FEach program contains skip as an action; this action will not be
shown explicitly in the program. The effect of executing skip is to leave the
program state unchanged; thus, the state is repeated in an execution. Note
that, because of the fairness requirement on actions, there are at most finitely
many consecutive occurrences of skip in any execution. (However, a program
state may repeat forever; this happens when execution reaches a state in which
no program action changes the state.) This use of stuttering in the context of
refinement is due to Lamport [6].

Interaction with an Environment An environment that interacts with
FairNatural will, typically, “call” [to receive the next value of x. The pro-
gramming model in this paper does not support procedure calls. A more general
model, such as Seuss [10], would allow (3 to be called as a procedure. Then, the
output of the program is the sequence of values of x returned to the caller. In
our current model, however, we can encode the interaction with the environment
as follows: introduce a counter ¢ that records the number of executions of (i.e.,
calls upon) §; that is, the action 8 increments c¢. A possible output sequence
of this program is a sequence of states (co, o), ..., (¢i, ;), .., where ¢; = i + 1.
The goal of maximality is to show that any such sequence is a possible output
of this program.

2.2 Specifications

A specification is a set of program properties. We use the following operators of
UNITY to specify the properties; see appendix A for a short summary and [8, 9]
for details. In the following, p, ¢ are predicates over the program states and s is
quantified over the actions of the program.

2.2.1 Safety

Safety properties are expressed using co and its derivatives. Property p co ¢
holds for a program if in every execution a state in which p holds is followed
immediately by a state in which ¢ holds. (See section 3 for a formal definition.)
A program has the property stable p if p continues to hold once it becomes
true, and invariant p holds in a program if p is always true. See the appendix
for details.

1Consequently, this program can assign arbitrary natural numbers to z, i.e., it has un-
bounded non-determinism.

Note: If p co g holds for a program 2, then p = ¢. To see this, recall that every
program contains skip as an action. Since executing skip from a p-state results
in a p-state, if the program satisfies p co ¢, it follows that p = ¢.

2.2.2 Progress

The elementary progress operator, en, or ensures, has the following informal
meaning. If p holds at any point in the computation it will continue to hold as
long as ¢ does not hold, and eventually ¢ holds. Further, there is one (atomic)
action which is guaranteed to establish ¢ starting in any p-state; see the appendix
for a formal definition.

Progress properties are described using the relation — (leads-to): p — ¢
means that any state in which p holds is eventually followed by a state in which
q holds. This operator is defined inductively, as shown in the appendix.

Proofs in this paper appeal to a number of derived rules that are given
in [8, 9]; see [1, 11] for mechanical proofs of some of these rules.

Example: Program FairNatural of section 2.1 has the following properties.

stable z > 0, i.e., once z is nonnegative, it stays nonnegative
true — x >0, i.e., if true holds now, eventually = becomes positive

Note that since true holds for every state, the leads-to property above is
equivalent to saying that z is positive infinitely often.

To prove that stable x > 0 is a property, we have to show that both actions
a and [preserve x > 0; this follows from the program text. The progress
property may be proven as follows. First, show that invariant n > 0. Then,

trueen n >0 , program text, and invariant n > 0
true — n >0 , basis rule (1)
n>0enz >0 , program text

n>0— x>0 , basis rule

true — x>0 , transitivity on (1) and the above

3 Maximality

Given a program P and a specification S it is possible to show that P satisfies S
(i.e., P meets all the properties in S) using the UNITY logic [9, 8] (as outlined
in section 2.2). To prove maximality, we show that any sequence that satisfies S
may be obtained from an execution of P, in the sense described below. First, we
define what it means for an infinite sequence o of states to satisfy S. A sequence
o satisfies S if it satisfies each property in S, as described below. We consider
only the following types of properties in S: initially p, pcogand p — ¢q. In
the following description, o; denotes element 4 of o (with oy denoting the first
element), and p(o;) means that p holds in the state o;.

2To be precise, this implication holds only over the “reachable” states of the program. But
that is a technicality that we will not be concerned with in this paper.

o satisfies initially p means p(og) holds.
o satisfies p co ¢ means (Vi :: p(0;) = q(0i41)).
o satisfies p — g means (Vi (3j:40<j:p(o;) = q(o)))-

Given an execution 7 of a program, and a subset V of the set of program vari-
ables, the “projection of 7 over V” is the (infinite) sequence of states obtained
by removing the action labels from 7, and projecting the resulting sequence of
states to the set V.

For any execution 7, subset V' of program variables, and sequence o of states
over V', we say that “r reduces to o over V7 provided the projection of 7 over
V is equivalent to o upto finite stuttering [6].

For example, in the program FairNatural, the fragment of the execution
sequence (1,0)a(1,1)a(1,2)8(2,0)x(2,1)5(1,0) — where each state is a pair of
values, of the form (z,n) — reduces to the fragment 121, and also to 1121, over
the set of variables {z}.

Definition. Program P is maximal for specification S and variable set V' pro-
vided P satisfies S and for any sequence o satisfying S there is an execution 7
of P such that 7 reduces to o over V.

To keep the notation simple, we will henceforth assume that V' is understood

in the specification, and we will write “P is maximal for specification S”.

3.1 Constrained Program

We next describe a method to prove maximality of a program P for a specifi-
cation S. Let o be a sequence of states that satisfies S; we have to show that
some execution of P reduces to . Our strategy is to construct a constrained
program P’ such that all executions of P’ reduce to o, and all executions of P’
correspond to fair executions of P, in the sense defined later.

The constrained program P’ is constructed from P as follows.

1. The variables of P are retained in P’; they are called the original variables.

2. New constants, called chronicles, are introduced in P’. Chronicles are like
history variables: they encode the given state sequence o. They are not
altered in the constrained program; their values are only read. There may
be several chronicles, one corresponding to each variable of the specifica-
tion, to encode the sequence of values taken on by the variables during a
computation.

3. Additional variables, called auxiliary variables, are introduced in P’. Aux-
iliary variables are used in the proof. In our examples, we use a special
auxiliary variable, which we call a point, to show the position in the chron-
icle that matches the current state of P’.

4. An action « of P is modified to

og—a; B

where ¢ is a guard that may name any variable of P’, and (3, which is
optional, may assign only to the auxiliary variables. Action o/ is an aug-
mented action corresponding to v and g is the augmenting guard of o’.
Augmenting an action may eliminate some of the executions of P.

Note: If a has a guard h then, effectively, o’ has guard g A h.

5. Constrained program P’ may also include additional actions of the form
g — 3 where g names any variable of P’ and 3 assigns only to the auxiliary
variables.

6. The initial condition of P’ implies the initial condition of P.

Note that in P’, chronicles remain unchanged during execution, since they
appear only in guards and other tests. Auxiliary variables appear only in guards
(and other tests) and in assignments to themselves. Original variables of P are
assigned values exactly as they were assigned in P, except that some of the
variables that were uninitialized in P may be initialized in P’.

Example Consider the program FairNatural of section 2.1. To prove its max-
imality for the specification

stable z > 0,
true — x>0

choose an arbitrary sequence X that satisfies the specification, i.e.:

(VZXl 20:>X2’+1 20)7 and
Miz(3j:i1<j:X;>0)).

Now, construct a constrained version FairNatural’ of the program, by in-
cluding the chronicle X and an auxiliary variable j denoting the point. The
augmented actions corresponding to « and 3 are o’ and (3. There are no su-
perposed actions.

Program FairNatural’
var z,n: integer; X: sequence of integer; j: integer
initially n=0Az =Xy A j=1
adtn<X; —-ni=n+1l
Blin=X; —-x,n:=n0; j:=j+1
end { FairNatural'}

We claim that in every fair execution of FairNatural’ the sequence of values
assigned to z is X, i.e., invariant j >0 A z = X,;_;. We also show that every
fair execution of FairNatural' corresponds to a fair execution of FairNatural.
Hence, X is the outcome of a possible execution of FairNatural.

Remark on the Constrained Program The following example shows that
a constrained program may not be executable.

Consider the following specification: output a sequence of integers where
each element is one more than the preceding element with, possibly, one excep-
tion where the element is one less than the preceding element. Given below is
a program that is maximal for this specification. The program has an integer
variable z and a boolean b. Neither variable is initialized. If b is true then =
only increases, and if b is false then eventually x decreases and then increases
forever. The output is the sequence of values assigned to x.

Program choice
var z: integer; b: boolean
a:zrz:=c+1
B nb—x:=x—1;b:= true
end {choice}

To prove maximality given a possible output sequence X, we have to con-
struct a constrained program in which the initial value of b depends on X.
However, no finite prefix of X can tell us how to initialize b: b has to be set true
if and only if X is an increasing sequence.

initially b= (Vi:i>0: X;3, = X; + 1)

Therefore, the constrained program is not executable.

3.2 Proving Maximality

We describe the proof steps required to establish the maximality of a program
for a given specification. The constrained program inherits all safety properties
of the original program since the assignments to the original variables are not
modified. We have to establish the following facts in the constrained program.

1. Chronicle Correspondence: Show that every fair execution of the con-
strained program assigns a sequence of values to the original variables that
match the values in the respective chronicles.

e (Safety) Show that the values of the original variables are identical to
those of the chronicles at the current point (recall that the point is,
typically, given by an auxiliary variable, such as j in FairNatural).
This proof obligation is stated as an invariant of the constrained
program.

e (Progress) The current value of the point will be incremented even-
tually. (This often follows from the progress proof for execution cor-
respondence.)

2. Execution Correspondence: Show that every fair execution of the con-
strained program corresponds to a fair execution of the original program
such that both executions compute the same values in the original vari-
ables.

e (Safety) The truth of the augmenting guard of each action is pre-
served by all other actions. That is, the augmenting guard of o/ may
be falsified by executing o’ only.

This condition is met trivially if all augmenting guards are pairwise
disjoint; in this case, each guard is falsifiable only by the action it is
associated with.

e (Progress) Show that each augmenting guard is true infinitely often.

Example For FairNatural’ our proof obligations are as follows. The detailed
proof is given in section 3.4 below.

1. Chronicle Correspondence:
(Safety) invariant j >0 A == X;_;.
(Progress) j = J — j = J + 1, for any natural J.

2. Execution Correspondence:

(Safety) n < X is preserved by /', and n = X is preserved by o’. (These
follow because the guards are disjoint.)

(Progress) true — n < X, true — n = Xj.

3.3 Justification for the Proof Rules

The chronicle correspondence rule establishes that the computation of the con-
strained program P’ matches the given chronicle. The safety requirement guar-
antees the match at the current point and the progress requirement guarantees
that successively longer prefixes of the chronicle will be computed.

Given that the execution correspondence conditions hold, we argue that for
any fair execution 7 of P’, with 7 = 79Ag71...7;4;T;11.., there is a fair execution
~v of P, with v = vy Bov1..-7:BiVi+1--, such that 7 reduces to the sequence of
states voy1..-7iVit+1.- over the variables of P.

We modify 7 by removing certain actions and states from it, as follows. For
each action A; in 7 that has an augmenting guard g, if g(7;) does not hold
then (7; = 741 in this case) remove 7;A4; from 7. We show that the resulting
sequence, 7/, is an infinite sequence, and hence, an execution.

From the progress condition of execution correspondence, the augmenting
guard, g, of an augmented action o’ is true infinitely often; from the safety con-
dition of execution correspondence, g remains true as long as o’ is not executed.
Each action o is executed infinitely often in a fair execution of P’. Therefore,
o’ is infinitely often executed in a state where its augmenting guard, g, is true.
Actions whose guards were false at the time of their execution were removed
from 7. Therefore 7/ contains every augmented action infinitely often, and the
corresponding guard is then true. In a state where the augmenting guard g of
o’ holds, o’ has the same effect on the original variables as the action « that it
corresponds to. (The superposed actions do not modify the original variables.)

Therefore, 7/ is an execution of the constrained program and it corresponds to
a fair execution, =y, of the original program such that the sequence of states for
the original variables in 7, 7/ and 7 are identical (upto finite stuttering).

Not all computations of the constrained program, P’, have counterparts
in P, the original program. In particular, if X is a sequence of zeroes then
FairNatural’ computes X by executing the following sequence of actions, (a/3')%;
in this execution, o’ has no effect and 3’ computes the next value. However, the
corresponding sequence, («f)“ in FairNatural, does not compute X. The execu-
tion correspondence rule ensures that every fair execution of P’ corresponds to
a fair execution of P that computes the same sequence of states (in the original
variables of P). In FairNatural’ the guard of o/, n < X;, does not hold infinitely
often if X is a sequence of zeroes, and, hence, the execution correspondence rule
does not apply.

3.4 Proof Sketch of Maximality of FuirNatural

We state certain properties of FairNatural that are required in the maximality
proof; these properties follow from the program text.

Pl. invariant j >0 A n < X; AN o= X;_;.

P2. j=Jcoj=JV(j=J+1An=0) for all natural J
P3. X;—n=K+1lenX; —n=K for all natural K
Pin=X;Aj=Jenj=J+1An=0 for all natural J

We also have the following properties of X from the specification of FairNatural.

(Vi::XiZO:XiHZO),and
VMiz(3j:i<j:X;>0)).

Property P5 below follows from the properties of X.

P5. There is a function, f, f : naturals — naturals, such that
f(i) > i and Xy;) > 0, for all 4.

Here, f(i) denotes the next position beyond ¢ where X (i) is positive. Such
a position exists because (Vi (3j:1<j:X; >0)).

Next, we show the proofs of chronicle correspondence and execution corre-
spondence.
3.4.1 Proof of chronicle correspondence

1. (Safety) invariant j >0 A z = X,_; follows from P1.

2. (Progress) j = J +— j = J + 1, for any natural J:

true — n=X; , see (2) of section 3.4.2
j=Jcoj=JV({i=J+1An=0)
P2

10

j=J = n=X;ANj=0)V({i=J+1An=0)

, PSP applied to the above two
n=X;ANj=J —j=J+1An=0

, basis rule of — on P4
j=J — j=J+1An=0 |, cancellation on the above two (*)
j=J - j=J+1 , weakening the rhs

3.4.2 Proof of execution correspondence
1. (Safety) The guards, n < X; and n = X, are disjoint.

2. (Progress) true —n = X;:

n<X;ANX;—n=K — nm<X;ANX;—n<K)Vn=X,
, basis rule of — on P3
n<X;j— X;=n , induction
true — n = X; , substitution axiom with
invariant n < X;

3. (Progress) true —n < X;:

j=Jd — j=fJ)-1 , induction on (2) of section 3.4.1
J=F) =15 j=f()An=0

,let J be f(J)—1in (*) of section 3.4.1

j=J — j=f(J)An=0 |, transitivity on the above two
j=J = n<Xj ,j:f(J)ﬁXj>0

true —n < X; , disjunction over all J

4 Random Assignment

A maximal solution is, typically, highly non-deterministic. In our previous ex-
ample, FairNatural, we exploited the non-determinacy of action execution; an
arbitrary natural number is computed because n is incremented an indetermi-
nate number of times. In many cases, it is convenient to have non-determinacy
in the code itself. To this end, we introduce random assignment that, essen-
tially, assigns a random value to a variable; see section 9.4 of [2] for an axiomatic
treatment of random assignment. We show the additional proof steps required
to prove the constrained program when random assignments are replaced by
specific assignments. As an example, we treat a fair unordered channel in which
random assignments are essential in constructing the solution.

4.1 The Form of Random Assignment

A random assignment statement is of the form
r =7

11

and execution of this statement assigns a random value of the appropriate type
to x. There is no notion of fairness in this assignment; repeated execution of
this statement may always assign the same value to x.

Random assignment is convenient for programming maximal solutions. How-
ever, it can be simulated using the existing features of our programming model.
For instance, the following program can be used to assign a random natural
number to x. The program is similar to FairNatural; every execution of
stores a random natural number in . (However, there is no requirement that
nonzero values be produced infinitely often.) The program is also maximal: any
sequence of natural numbers may be assigned to x.

Program RandomNatural
var z,n: integer
initially n =0
aztn:=n+1
f:n>0—-n:=n-—1
vixi=n

end {RandomNatural}

4.1.1 Note on the Maximality of RandomNatural

The proof of maximality of RandomNatural is similar to that of FairNatural;
so, we omit the proof. Note, however, that augmenting «, 3, by the guards
n < X;, n> X;, n =X, where X is a given sequence of natural numbers
as in FairNatural, is not sufficient for the proof of maximality. If X is an
increasing sequence, for instance, then n > X; will never hold, and execution
correspondence cannot be proven. Create a constrained program in which the
codes of the augmented actions o and ' are executed at least once following
each execution of 4/. This can be implemented by having another auxiliary
variable ¢, ¢ € {0,1,2}, with the following meaning: ¢ = 1 if the last executed
action is 7/, and then o/ is executed and c is set to 2; if ¢ = 2 then [’ is executed
and c is set to 0; when ¢ = 0 any of o/, 3,7 may be executed. The constrained
program is shown below.

Program RandomNatural’
var z,n: integer;
X: sequence of integer;
Jj: integer; ¢: {0,1,2}
initially n =0Az=XoAc=0Aj=1
ot (c=0An<X;)Ve=1—-n:=n+1;if c=1 then c:=2
B (c=0An>X;)Ve=2—
n>0—-n:=n—-1c:=0
Yie=0An=X;—z:=n;c:=1; ji=j5+1
end {RandomNatural’}

Note: The augmenting guard of 3’ implies n > 0, since n > X; = n > 0 and it
can be shown that invariant (¢ =2 = n > 0).

12

4.1.2 General Form of Random Assignment

We use a more general form of random assignment

r:=7stp
where variable x is assigned any value such that predicate p holds after the
assignment. It is the programmer’s responsibility to ensure that this assignment
is feasible. A refinement of this statement will assign a specific value to x that
satisfies p. For instance, for integer x

x:=?st (Fizaxz=2x17)
assigns any even number to x, and

x:=7 st x > "z, where 'z denotes the value of z before the assignment
increases the value of z arbitrarily.

4.1.3 Constraining Random Assignments

In constructing a constrained program a random assignment is replaced by a
specific assignment. If

x :=7 st p, is replaced by

ri=e
it has to be shown that p holds after the assignment = := e.

There is one caveat in constructing these proofs. Earlier, we had said that
a constrained program inherits all safety properties of the original program.
This is true only if the random assignments have been correctly constrained.
Therefore, it cannot be assumed that the constrained program inherits the safety
properties until the correctness of these assignments in the constrained program
have been shown. In particular, the proof of correctness of these assignments can
not assume any safety properties of the original program; any such assumption
has to be proven explicitly in the constrained program.

4.2 Fair Unordered Channel

In order to illustrate proofs with random assignments we take the example of
a channel interposed between a sender and a receiver. A first-in-first-out (fifo)
channel guarantees that the order of delivery of messages is the same as the
order in which they were put into the channel. In this section we consider a
fair unordered channel in which (1) the messages are delivered in random order,
and (2) every message sent is eventually delivered. A fifo channel implements
both requirements, but it is not maximal.

This problem, couched as a message transmission problem, has a number of
other applications. In particular, the solution can be used to output all natural
numbers in some order, and any order is possible. The solution can be used
as a fair scheduler for programs that have an infinite number of actions, and it
admits any fair schedule.

We consider the following simplification of the problem. A program has an
infinite input sequence x and it has to generate a sequence y that is a permu-
tation of x; any permutation is a possible output. We assume further that the

13

items in z are distinct, which can be assured by appending a unique sequence
number to each item of x. Then, every item in y corresponds to a unique
item in x, and vice versa. The specification of the program is as follows: the
safety conditions state that every item in y is from = and that the elements in
y are unique; the progress condition states that every item of x appears in y
eventually.

(Vju3izz=uy;)),
Vi, juyi=y; = i=7j), and
(Vi:true— (37 a; =y;)).

4.2.1 Maximal Solution for Fair Unordered Channel

Our solution consists of two actions, read and write. In the read action an item
is removed from x and stored in a set z; in the write action an item from z is
removed and appended to sequence y. It is not sufficient to remove a random
item of z in write; then, the progress property may not hold. Therefore, we
associate a height, a natural number, with each item that is placed into z and
in the write action remove any item with the smallest height from z. An item
is assigned any height greater than or equal to the value of variable ¢ when it is
added to z; we describe below how ¢ is computed.

In the following program, heights of items are stored in array H. Variables
1,j denote the number of items read from x and written to ¥, respectively.

Program FUnCh
var i, j, t: integer; c: item; x,y: sequence of item;
z: set of item;
H: array item of natural
initially i =0Aj=0At=0Ay=)A2=10
read:: ¢ :=x;; H[c] :=7 st H[c] > t;
z:=zU{chi:=i+1
write:: z #) —
c:="stcezAN(Vd:de€z:Hc < HI[d);
t, yj, 2z, j:=Hl]+1, ¢, z—{c}, j+1
end {FUnCh}

The following properties hold for FUnCh.

(Vju(3ina =y;)), and
(Vi true— (37 x; =y;)).

We leave it to the reader to prove these properties. For the progress property,
it has to be shown that each item u in z is selected eventually, as ¢, in write.
Let p be the number of items in z whose height is less than ¢. Show that in the
pair (H[u| 4+ 1 — t,p) both components are non-negative, the pair is unaffected
by the execution of read, and it decreases lexicographically whenever an item
is removed from z. Therefore, eventually, u is removed.

14

4.2.2 The Constrained Program

Let Y be any sequence that is a permutation of z, i.e.,

(Vju(Fina =Y;)),
Vi, j =Y, =Y; = i=j), and
Vi (3jux=Y;)).

We show that Y is a possible output of the program. A constrained program
is shown below in which, in addition to the transformations described in section
3.1, the random assignments have been replaced by specific assignments.

Program FUnCh’'
var i, j, t: integer; c: item; z,y,Y: sequence of item;
z: set of item;
H: array item of natural
initially i =0Aj=0At=0Ay=)Az=10
read:: Y; ¢ z —
c:=wm;; Hlc] :=k st c=Yy;
z:i=zU{ckhi:=i+1
write’:: Y; € z —
2#£0—
c:=Y};
t, yj, %, J=Hl+1, ¢, 2—{c}, j+1
end {FUnCh'}

Notes: The assignment to H|[c|] in read’ is not a random assignment; there is
a unique value Y;, that matches x;. The augmenting guard of write’, Y; € z,
implies the original guard, z # .

4.2.3 Proof of Maximality: Invariants

We write xg.; to stand for the set {xg,z1,...,2;-1}; thus, z¢.0 is the empty set.
The proofs of the following invariants are left to the reader.

P1. invariant z¢; = 2z U yo.;.

P2. invariant yo.; = Yo.;.

P3. invariant (Vd:d € z:d = Yy A j < H[d]).
P4. t = 5.

The proofs of P1, P2 are straightforward; these proofs use the fact that the
items in z are distinct. Proof of P3 needs some explanation. The action read’
adds c to z where H[c] = k A ¢ = Yj; hence, ¢ = Ypg. To see that j < H|c]
in read’: it follows from P1 that z; ¢ yo.;, hence, ¢ = z; = Y}, where j < k,
i.e., j < Hl[c]. The action write’ removes ¢ from z provided H|[c] is the smallest
height. From P3, all heights are distinct because all items in Y are distinct;
furthermore, each height is at least j. From the guard, Y; € z, the height of Y}
is the lowest and all other items in z have height exceeding j. Therefore, the
incrementation of j in write’ preserves j < H[d] for each d in z. The proof of
P4 is similar.

15

4.2.4 Correctness of Implementation of Random Assignments

We have to show
1. in read’: H[c] := k st ¢ =Y}, implements H|c] :=? st H|[c] > t.

2. in write’: ¢:=Y; implements ¢ :=?st c€ z A (Vd:d € z: H[c|] < H[d]).

Proof of (1) In read, prior to the assignment we have, from the invariant
P1,

Zo:; = 2 U Yoy
= {From P2, yo.; = Yp.;; = is a permutation of Y}
€T ¢ Y();j A (E’k' LTy = Yk)
= {Predicate calculus}
Fk:k>j:x;=Y)
= {k above is unique since items of Y are distinct; ¢ = z;}
Hic] .=k st ¢ =Y}, implements H|[c] :=? st H|c] > j
= {From P4, j =t}
Hic] := k st ¢ =Y} implements H|[c| :=7 st H[c] >t

Proof of (2) We have to show after the assignment ¢ :=Y; that c € z A (Vd :
d € z: H|c] < H[d]). Applying the axiom of assignment, we have to show before
the assignment that Y; € 2 A (Vd :d € z : H[Y;] < H[d]) holds. The first term
in the consequent, Y; € z, follows from the guard of write’. For the remaining
part,

(Vd:dez:H[Y;] < H[d))
< {H[Y;] =j from P3}
(Vd:dez:j<H[])
< {from P3}
true

4.2.5 Proof of Chronicle Correspondence

o (Safety) We have to show that yo.; = Y5.;, which follows from P2.

e (Progress) We have to show that j = J +— j = J + 1, for any natural J.
Each execution of write’ increments j. From the progress proof of write’
under execution correspondence the code of write’ is executed infinitely
often. Therefore, j increases without bound.

4.2.6 Proof of Execution Correspondence

e (Safety) The augmenting guards, Y; ¢ z and Y € z, are disjoint.

o (Progress of read’) true — Y; ¢ z:

16

YiezenY; ¢z , from program text

Yiez— Y ¢z , basis rule of —
Yi¢z— Y, ¢z , implication rule of —
true—Y; ¢ z , disjunction of the above two

e (Progress of write’) true — Yj € z: There is a unique k such that Y; = xy.
For any n,

Yi¢ 2z ANk—j=nenk—j<n ,from program text
Yi¢dzANk—j=n— k—j<n , basisrule of —

Yi¢z— Yjez , induction

true—Y; € z , similar to the proof for read’

4.3 Faulty Channel

We consider a faulty channel that may lose messages, duplicate any message an
unbounded (though finite) number of times, and permute the order of messages.
For any point in the computation, it is given that not all messages beyond
this point will be lost; otherwise, there can be no guarantee of any message
transmission at all. This is similar to the fault model of a channel assumed in
the Alternating Bit Protocol [12] (the difference being that in the latter, the
channel does not reorder messages). Such a protocol can be studied (proved
correct) by encoding the communication between the sender and the receiver
using a maximal solution for the faulty channel. As we have remarked earlier,
it is sometimes essential to have a maximal solution in this case, e.g., for use in
verifying a communication protocol using model-checking. In this section, we
sketch a maximal solution for faulty channel, but we leave the actual program,
correctness and maximality proof to the reader. The maximality proof is similar
to that for the FUnCh.

We simulate a faulty channel using a bag b, analogous to the set z in FUnCh.
The bag holds the messages that are to yet be delivered; it may hold several
copies of the same message to simulate duplication, and the nature of a bag
implements out-of-order delivery. To simulate message loss and duplication, we
compute a count n whenever a message is added to b; the count is an arbitrary
natural number, denoting the number of times that the message is to be deliv-
ered. If n = 0 for a message then it is immediately discarded (the message is
lost), and for n exceeding 0 the message is added n times to b. In order to imple-
ment the requirement that not all messages are eventually lost, we require that
n become non-zero periodically. Clearly, FairNatural can be used to compute
n.

17

5 A Task Scheduler

In this section, we consider a scheduling problem in which concurrency is essen-
tial; the requirement of concurrency can be succinctly stated using maximality.
The following scheduling problem is from [10]. We are given a finite number of
tasks and a compatibility relation among the tasks. Two tasks may be concur-
rently executed provided they are compatible. It is given that an executing task
will terminate eventually. The goal is to design a task scheduler that repeat-
edly selects tasks for execution so that: (1) only compatible tasks are executed
concurrently, and (2) each task is executed infinitely often.

The following abstraction captures the essence of the scheduling problem.
We are given a simple, finite undirected graph in which there are no self-loops;
the graph need not be connected. Each node in the graph is black or white; all
nodes are initially white. In this abstraction, a node denotes a task and a black
node an executing task. Two nodes are neighbors if they are incompatible, i.e.,
not compatible. We are given that every black node becomes white eventually,
i.e., each task terminates. It is required to devise a coloring (scheduling) strategy
so that

e No two neighbors are simultaneously black (i.e., only compatible tasks
may be executed simultaneously).

e Every node becomes black infinitely often.

Note that the scheduler can only blacken nodes; it may not whiten a node.

A simple scheduling strategy is to blacken a single node, wait until it is
whitened, and then blacken another node. Such a strategy implements the first
requirement trivially because there is at most one black node at any time. The
second requirement may be met by blackening the nodes in some fixed, round-
robin order. Such a protocol, however, defeats the goal of concurrent execution
of tasks. So, we impose the additional requirement that the scheduling strategy
be maximal: any valid blackening of the tasks may be obtained from a possible
execution of our scheduler. By suitable refinement of our maximal scheduler
we derive a centralized scheduler and a distributed scheduler, as described in
section 5.5.

5.1 Specification

Let b denote the set of black nodes at any stage in the execution. For sets x,y
and a node v, we write x = y + v to denote that v ¢ y Az =y U {v}.

S0. initially b = 0.

S1. (Vu,v : u neighbor v:—(u € bAv €b)).
S2.b=Bcob=BV((3v:b=B+vV B=b+v), for any B.
S3. For all v, true — v € b and true — v ¢ b.

The specification SO states that initially no tasks are executing; S1 states
that neighbors are never simultaneously black; S2 says that in a step at most

18

one node changes color. In S3, true +— v ¢ b is established by the tasks
themselves (each task terminates, and, hence, becomes white, eventually), and
the scheduler has to implement the remaining progress property, true +— v € b.

5.2 A Scheduling Strategy

Assign a natural number, called height, to each node; let H[u] denote the height
of node u. The predicate u.low holds if the height of w is smaller than all of its
neighbors, i.e.,

w.low = (Vv : u neighbor v : H[u] < H[v]).

The scheduling strategy is to set b to @ initially, and the node heights in such
a way that neighbors have different heights. Then, the following steps are re-
peated.

e (Blackening Rule) Eventually consider each node, v, for blackening; if
v ¢ b Av.low holds then blacken v.

e (Whitening Rule) Simultaneous with the whitening of a node v, increase
H{[v] to a value that differs from H[u], for all neighbors u of v.

Formally, the coloring strategy is described by the following program. There
is an action add(v), for each node v, that adds v to b provided v ¢ b A v.low.
The termination of task v is simulated by remove(v), that removes v from b
and increases H[v] to a value that differs from H[u], for all neighbors u of v.

Program Scheduler

var u,v: node; b: set of node
var H: array item of natural
initially b=0 A (Vu,v: u neighbor v : H[u| # H[v])
(Vo

add(v):: v ¢ bAvlow — b:=bU{v}

remove(v): v €b — b:=b— {v};

Hlv] :=? st H[v] > 'H[v] A (Vu:u neighbor v: Hlu] # H[v|)

)

end {Scheduler}

Note: 'H[v] is the value of H[v] before the assignment.

5.3 Correctness of the Scheduling Strategy
We show that neighbors have different heights at all times, i.e.,
PO. invariant (V z,y : neighbor y : H[z] # H|[y]).

Proposition PO holds initially. If PO holds prior to the execution of add(v)
then it holds following the execution, because add(v) does not affect heights. If
PO holds prior to the execution of remove(v) it holds afterwards, because only
H{v] changes and H[v] # Hu], for any neighbor u of v, following remove(v).

19

Proof of SO Follows from the initialization.

Proof of S1 The coloring strategy described above maintains the following
invariant: for all v, v € b = w.low. Observe that this proposition holds
initially since all nodes are initially white. A blackening step (add) preserves
the proposition because v.low is a precondition for blackening. A whitening step
(remove) preserves the proposition because the antecedent of the proposition
becomes false.

From this invariant, if u, v are both black then they are both low, and from
the definition of low, it follows that u, v are not neighbors. Therefore, neighbors
are not simultaneously black.

Proof of S2 In add(v), the assignment b := bU{v} has the precondition v ¢ b.
In remove(v), the assignment b := b — {v} has the precondition v € b. Hence,
S2 is satisfied.

Proof of S3 We show that every node becomes black infinitely often in every
execution. Suppose that there is a node = that becomes black only a finite
number of times in a given execution. Each blackening and the subsequent
whitening increases the height of a node. Therefore, if some neighbor y of
x becomes black infinitely often then its height will eventually exceed H|z],
establishing —y.low, and y will never be blackened subsequently. Hence, every
neighbor of z is blackened finitely often. Applying this argument repeatedly,
no node connected to z can become black infinitely often. Therefore, beyond
some stage, ¢, in an execution, all nodes in the component of the graph to
which z belongs will remain white forever. Let v be a node with the smallest
height in this component at ¢ in the execution; since all nodes remain white
beyond ¢ their heights do not change and v remains a node with the smallest
height. Whenever v is considered for blackening beyond ¢, it will meet all the
conditions for blackening (v is white and v.low holds); thus v will be blackened,
contradicting the conclusion that v remains white forever beyond q.

The proof by contradiction, given above, is typical of the style in which
many concurrent algorithms are proven in the literature. Next, we present
an alternative proof, based on the style of UNITY, that avoids arguments by
contradiction.

Formal proof of S3 It is required to prove that every node becomes black
eventually, i.e., for all x, true — = € b. Define the relative height x.rh of node =
to be the sum of the height differences of x and all its neighbors of lower heights,
ie.,

x.rh = (+y : neighbor y N Hlz] > Hly] : H[h]| — H[y])

The following properties can be proven directly from the program text; each
— property is indeed an ensures property. For all z,y,n,

20

1. zloww— x €b.
2. xrh=n A (x neighbor y) A y.low
— (z.rh =n) A (x neighbor y) A y € b.
3. z.rh=n A (x neighbor y) N y € b z.rh <n.

We give an informal argument for the validity of these three properties. A
node’s height does not change as long as it remains white. Therefore, if x is low
and white then it remains low (because its neighbors’ heights can only increase)
and white, until blackened. Eventually, x is considered for blackening and then
blackened, establishing property (1). Proof of (2) is similar: the node y of the
lowest height among the neighbors of x will eventually be black and until then
x.rh is unchanged. Property (3) says that that node y, as described above, will
eventually become white and then z.rh is decreased because the height of y is
increased. The proof of true — x € b follows.

x.rh =n A (x neighbor y) A y.low
— (x.rh =n) A (z neighbor y) N y €b

, From (2)
zrh=n A (x neighbor y) A yloww— z.rh <n

, transitivity with (3)
xorh=n A (Jy:: (z neighbor y) A y.low)— xz.rh <n

, disjunction over all y
zrh=n A —z.low— x.rh <n

, using Invariant PO and

the definition of low

zrh=n A zlow— z €b , strengthening LHS of (1)
xrh=n —zxrh<n V z€b

, disjunction on above two
true— x € b , induction on the above

5.4 Proof of Maximality

Let z be a sequence of sets, denoting a possible sequence of values of b in an
execution; assume that z is stutter-free, i.e., successive values in z are distinct.
Let z satisfy the specification (S0, S1, S2, S3), i.e., (S0’, S1’, S2’, S3’) hold.

SO/. ZOZQ.
S1’. For all 4, (Vu,v : u neighbor v : =(u € z; Av € z)).
S2'. For all i, (v zi41 =2zi +0V 2z =241 +0).
S3’. For all v,
(Viz(3j:i<j:veg)),and (Viz(Fj:i<j:v¢z)).

We create the following constrained program that includes a variable ¢, de-
noting the current point of computation. The variable u.next is an abbreviation
for the next value, j, above ¢t where u is in z;. Formally,

wnert =(minj:j >t Au€ z;:j).

Note that u.next is always defined, on account of S3'.

21

Program Scheduler’
var u,v: node; b: set of node; t: integer
initially b=0 A t =0 A (Vv :: H[v] = v.next)
(Vo
add' (v):: 241 =2+ v —
vgbAvlow —=b:=bU{vkt:=t+1
remove’ (v):: z¢ = zp41 + U —
veb —=b:=b—{v}; Hp] :=v.next; t : =t +1
)

end {Scheduler'}

5.4.1 Invariants of the Constrained Program

The following invariants hold for Scheduler’. The variable v is quantified over
all nodes.

Pl. b= Zt-

P2. zyp = zZyh—1 +v where vh denotes H[v]
P3. (Vu,v : u neighbor v : H[u] # H|[v]).

P4. v.next > Hv] Av.next > t.

P5. (H[v] =v.next) =v ¢ b.

Proof of P1 Initially, b = 0, ¢ = 0, and from (S0’) zo = 0. Each action
increments ¢ and modifies b appropriately.

Proof of P2 This follows from the text of Scheduler’ and S2’.

Proof of P3 This property is similar to invariant PO proved for Scheduler.
However, we can not assert that this property is inherited by Scheduler’ until
we show that the random assignment is correctly implemented. Therefore, we
have to construct a new proof. Let wh,vh denote H [u|, H[v] respectively, and
suppose that uwh = vh. Then, from P2

Zoh = Zoh—1 TV A Zyh = Zuh—1 T U
= {By assumption, uh = vh}

Zuh = Zuh—1 TV N Zyh = Zuh—1 T U
= {Set theory}

U=

Thus, for distinct nodes u, v, we have H[u] # H[v]. Hence, the same result
applies for neighbors u, v.

Proof of P4 To see the first conjunct, note that initially, (Vv :: Hv] =
v.next). The only assignment to H[v] is H[v] := v.next in remove’(v); so
v.next > Hlv] is preserved by this assignment. Also, v.next is monotone in t;
therefore, v.next never decreases in Scheduler’ because t never decreases.

The second conjunct follows from the definition of v.next.

22

Proof of P5 Initially P5 holds because b is) and (Vv :: H[v] = v.next). First,
we show that P5 is preserved by the execution of add’(v).

Define v.next.i = (minj : j > i Av € z; : j). Thus, v.nert = v.next.t.
Rewrite condition P5 as (H[v] = v.next.t) = v ¢ b. This holds as a postcondi-
tion of the assignments

b:=bU{vht:=t+1
provided H[v] # v.next.(t + 1) holds as a precondition. We show below that
the precondition of add'(v), z:41 = 2zt + v Av ¢ b Awvlow and P5, implies
H[v] # v.next.(t + 1).

1=z +tvAvéb
= {From the definition of v.next, (zt41 = 2 +v) = (v.next =t +1)}
vnext =t+1Av¢b
= {P5: (H[v] = v.next) =v ¢ b}
Hpl=t+1
= {from definition, v.next.(t +1) >t + 1}
H[v] # v.next.(t + 1)

It can be shown that H[u] and u.next are unaffected by the execution of
add' (v), for v # wu. Also, from the text of remove’(v) it is seen that v ¢
b A (H[v] = v.next) is established.

5.4.2 Rewriting the guard of add’(v)

We show from the given invariants that the augmenting guard of add’(v), 2411 =
z¢ + v, implies the original guard, v ¢ b A v.low. Hence, the original guard may
be dropped in the constrained program. This result is needed for the proof of
progress in chronicle correspondence; see (2) of section 5.4.4.

From b = z; (see P1) and 2441 = 2z + v, we have v ¢ b. We show that v.low
holds, i.e., for neighboring nodes w, v, H[v] < H|u].

241 = 2TV

= {b=z from P1}
VEDAVE Z ANV E 2z

= {Definition of v.next}
vEébAvmnext=t+1Av & 2 AvE z¢41

= {From P5, (H[v] = v.next) =v ¢ b}
Hpl=t+1ANv ¢ 2z AV € 2141

= {Given u,v are neighbors, v € 2311 = u ¢ 2441, from S1'}
Hv)]=t+1A0v & 2t AvE 2441 ANu € 2419

= {Given v ¢ z; Av € ze41 Au ¢ 2zp41 from S2/; u ¢ 2z}
Hl=t+1AvézAvEz i Aué ze Aué zpqq

= {using b = z; (P1), (H[u] = w.next) =u ¢ b (P5), and u.next >t (P4)}
Hvl| =t+ 1A Hlu] = u.next A u.next >t

= {H[v]=t+1AH[u] >t Apply }
Hlv] < H[u]

23

5.4.3 Correctness of the Implementation of Random Assignment

The random assignment

Hlv]:=? st H[v] > 'H[v] A (Yu:u neighbor v: H[u] # H[v])
is implemented in the constrained program by

H[v] := v.next.

The precondition of the assignment, z; = z;+14v and (from P1) b = z;, imply
that v € b. Hence, from P4 and P5, H([v] < v.next prior to the assignment;
now H[v] = v.next after the assignment, thus establishing H[v] > 'H[v]. The
condition (¥ u : u neighbor v : H[u] # H|[v]) follows from P3.

5.4.4 Proof of Chronicle Correspondence

1. (Safety) b = z; follows from P1.

2. (Progress) t = N — t = N + 1, for any natural N: exactly one guard
of Scheduler’ holds at any stage in the computation because the guards
are disjoint and their disjunction is true. Execution of any action whose
guard is true increments ¢.

5.4.5 Proof of Execution Correspondence

1. (Safety) Guards of all the actions are disjoint.

2. (Progress) We have to show
true — zi11 = z¢ + v, and
true — 2z = 2441 + 0.
We sketch a proof. From S3’ we can deduce that
(Vi (3j:i<j:zj+1=2+v)), and
Vi (3j:i<j:zj=2j41+0v)).

From (2) of section 5.4.4, ¢t assumes values of successive natural numbers.
Therefore, eventually, 241 = 2z + v and also eventually, z; = 2,41 + v.

5.5 Refining a Maximal Solution: Implementation of the
Scheduling Strategy

We consider the situation where each task (node) is executed on a separate
processor. First, we show how a central scheduler may schedule the tasks given
the compatibility relation. Next, we show how the scheduling may be distributed
over the processors.

5.5.1 Central scheduler

A central scheduler maintains a list of nodes and their current colors and heights.
Periodically, it scans through the nodes and blackens a node v provided v.low A

24

v ¢ b holds. Whenever it blackens a node it sends a message to the appropriate
processor specifying that the selected task may be executed. Upon termination
of the task, the processor sends a message to the scheduler; the scheduler whitens
the corresponding node and increases its height, ensuring that no two neighbors
have the same height. The scheduler may scan the nodes in any order, but every
node must be considered eventually.

This implementation may be improved by maintaining a set, L, of nodes
that are both white and low, i.e., L contains all nodes v for which v ¢ b Av.low
holds. The scheduler blackens a node of L and removes it from L. Whenever a
node z is whitened and its height increased, the scheduler checks x and all of its
neighbors to determine if any of these nodes qualify for inclusion in Lj; if some
node, y, qualifies then y is added to L. It has to be guaranteed that every node
in L is eventually scanned and removed; one possibility is to keep L as a queue
in which additions are made at the rear and deletions from the front. Observe
that once a node is in L it remains white and low until it is blackened.

5.5.2 Distributed scheduler

The proposed scheduling strategy can be distributed so that each node blackens
itself eventually if it is white and low. The nodes communicate by messages of
a special form, called tokens. Associated with each edge (z,y) is a token. Each
token has a value, a positive integer equal to |H[z] — H[y]|. This token is held
by either x or y, whichever has the smaller height.

It follows then that a node that holds all incident tokens has a height that
is smaller than all of its neighbors; if such a node is white, it may color itself
black. A node, upon becoming white, increases its height by a positive amount
d, effectively reducing the value of each incident token by d (note that such a
node holds all its incident tokens, and, hence, it can alter their values). The
quantity d should be different from all token values so that neighbors will not
have the same height, i.e., no token value becomes zero after a node’s height is
increased. If the value of token (z,y) becomes negative as a result of reducing it
by d, indicating that the holder x now has greater height than y, then x resets
the token value to its absolute value and sends the token to y.

Observe that the nodes need not query each other for their heights, because
a token is eventually sent to a node of a lower height. Also, since the token
value is the difference in heights between neighbors, it is possible to bound the
token values whereas the node heights are unbounded over the course of the
computation. Initially, token values have to be computed and the tokens have
to be placed appropriately based on the heights of the nodes. There is no need
to keep the node heights explicitly from then on.

We have left open the question of how a node’s height is to be increased
when it is whitened. The only requirement is that neighbors should never have
the same height. A particularly interesting scheme is to increase a node’s height
beyond all its neighbors’ heights whenever it is whitened; this amounts to send-
ing all incident tokens to the neighbors when a node is whitened. Under this
strategy, the token values are immaterial: a white node is blackened if it holds

25

all incident tokens and upon being whitened, a node sends all incident tokens
to the neighbors. Assuming that each edge (z,y) is directed from the token-
holder x to y, the graph is initially acyclic, and each blackening and whitening
move preserves the acyclicity. This is the strategy that was employed in solving
the distributed dining philosophers problem by Chandy and Misra [3]; a black
node is eating and a white node is hungry; constraint (S1) is the well-known
requirement that neighboring philosophers do not eat simultaneously. Our cur-
rent problem has no counterpart of the thinking state, which added a slight
complication to the solution in [3]. The tokens are called forks in that solution.

6 Summary

We have described the notion of maximality, which rules out implementations
with insufficient non-determinism. A maximal program for a given specification
has (upto stuttering) all the behaviors admitted by the specification. We showed
several examples of maximal solutions, including a fair unordered buffer and a
fair task scheduler. Notions similar to maximality have been studied elsewhere
in the literature, e.g., the various flavors of bisimulation due to Milner and
others [7]. However, unlike bisimulation, which relates two programs (i.e., agents
of a process algebra), our notion of maximality relates a program written using
guarded-commands with a specification written in a UNITY-like temporal logic.
Although we have concerned ourselves here only with showing maximality, our
proof method may be used with any given set of executions, to show that a
given program admits all those executions.

Acknowledgments This paper has been enriched by comments and sugges-
tions from the PSP research Group at the University of Texas at Austin, and
the Distributed Systems Reading Group at the Technische Universitat Miinchen,
Germany.

A Summary of UNITY logic

The UNITY logic, a fragment of linear temporal logic, has proof rules for reason-
ing about properties of programs. A short summary is given here; consult [8, 9]
for details.

A.1 Safety

The fundamental safety operator of UNITY is constrains, or co for short. The
property p co ¢ asserts that in any execution a state satisfying p is always
followed by a state satisfying ¢. In order to model stuttering steps p is required
to imply g. The co operator and its derivative operators are defined as follows,
where s is quantified over the actions of the program, and wp denotes weakest
precondition [5]

26

pcoq = (Vs:p= wp.s.q)
stable p = pcop
invariant p = initially p and stable p

A predicate is stable if it remains true once it becomes true. A predicate is
invariant if it is stable and it holds in all initial program states. Observe that
pA—q co pV qis a property of a program if from any state where p holds it
continues to hold until ¢ holds; if ¢ never holds then p holds for ever.

The Substitution Axiom The operation of a program is over the reachable
part of its state space. The UNITY proof rules, however, do not refer to the set
of reachable states explicitly. Instead, the following substitution azxiom is used
to restrict attention to the reachable states: if invariant p is a property of a
program then p may be replaced by ¢rue in any context.

A.2 Progress

The elementary progress operator, en, used in this paper has the following
informal meaning. If p holds at any stage in the computation it will continue
to hold as long as q does not hold, and ¢ holds eventually. Further, there is
one (atomic) action which guarantees to establish ¢ starting in any p-state.
Formally,

A
peng = (p A ~gcop V q) A (T s (p A ~q) = wp.5.q)

where s is quantified over all the actions of the program.

Given p en ¢, from the second conjunct in its definition, there is an action of
the program that establishes ¢ starting in any state in which p A =¢ holds; from
the first conjunct, once p holds it continues to hold at least until g is established.
Therefore, starting in a state in which p holds ¢ will eventually be established.

Most of the progress properties of UNITY are expressed using the — (leads-
to) operator, a binary relation on state predicates. It is the transitive, disjunc-
tive closure of the ensures relation, i.e., the strongest relation satisfying the
following three conditions:

=
[¢]
=]
RS

(basis)

S
I

pr—4q4qg =T
p =T

(transitivity)

(disjunction) In the following, S is any set of predicates.
(Vp:peS:prq
Fp:pes:p —gq

27

Derived Rules for leads-to There are several derived rules for reasoning
about the progress properties. Here, we mention only the ones used in this
paper.

e implication
P = q
p = q
e lhs-strengthening, rhs-weakening
p—q

P AD = q,
pr—qVd

e cancellation

pr—qVr,r—s

p— qV s
e PSP

pr— q,rcob
p AT — (gNANb) V (-rADb)

e Induction: In the following M is a total function mapping program states
to a well-founded set (W, <).

Vm:meW @ pANM=mw— (pAM=<m) V q)
p = q
In this paper we have used induction over natural numbers only.

References

[1] Flemming Andersen, Kim Dam Petersen, and Jimmi S. Pettersson. Pro-
gram Verification using HOL-UNITY. In HUG’93: HOL User’s Group
Workshop, volume 780 of LNCS, pages 1-17. Springer—Verlag, 1993.

[2] Krzysztof R. Apt and Ernst-Riidiger Olderog. Verification of Sequential
and Concurrent Programs. Springer—Verlag, 1997.

[3] K. M. Chandy and J. Misra. The drinking philosophers problem. ACM
Transactions on Programming Languages and Systems, 6(4):632-646, 1984.

[4] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foun-
dation. Addison Wesley, 1988.

[5] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood
Cliffs, New Jersey, 1976.

28

[6]

Leslie Lamport. What good is temporal logic? In R. E. A. Mason, editor,
Information Processing 83: Proceedings of the IFIP 9th World Congress,
pages 657668, Paris, Sep 1983. IFIP, North-Holland.

R. Milner. Communication and Concurrency. International Series in Com-
puter Science, C. A. R. Hoare, Series Editor. Prentice-Hall International,
London, 1989.

Jayadev Misra. A logic for concurrent programming: Progress. Journal of
Computer and Software Engineering, 3(2):273-300, 1995.

Jayadev Misra. A logic for concurrent programming: Safety. Journal of
Computer and Software Engineering, 3(2):239-272, 1995.

Jayadev Misra. A discipline of multiprogramming, work in progress, ftp
access at ftp://ftp.cs.utexas.edu/pub/psp/seuss/discipline.ps.Z,
1996.

Lawrence C. Paulson. Mechanizing UNITY in Isabelle. Technical Report
467, Computer Laboratory, University of Cambridge, May 1999.

R. A. Scantlebury, K. A. Bartlett, and P.T. Wilkinson. A note on reliable
full-duplex transmission over half-duplex links. Communications of the
ACM, 12(5):260-261, May 1969.

29

