
Orchestrating Computations on the World-wide
Web

Young-ri Choi, Amit Garg, Siddhartha Rai, Jayadev Misra, Harrick Vin

Department of Computer Science
The University of Texas at Austin

Austin, Texas 78712
Email: {yrchoi, amitji, sid, misra,vin}@cs.utexas.edu

Abstract

Word processing software, email, and spreadsheet have revolutionized office ac-
tivities. There are many other office tasks that are amenable to automation, such
as: scheduling a visit by an external visitor, arranging a meeting, and handling
student application and admission to a university. Many business applications
—protocol for filling an order from a customer, for instance— have similar struc-
ture. These seemingly trivial examples embody the computational patterns that
are inherent in a large number of applications, of coordinating tasks at different
machines. Each of these applications typically includes invoking remote objects,
calculating with the values obtained, and communicating the results to other
applications. This domain is far less understood than building a function library
for spreadsheet applications, because of the inherent concurrency.

We address the task coordination problem by (1) limiting the model of com-
putation to tree structured concurrency, and (2) assuming that there is an en-
vironment that supports access to remote objects. The environment consists of
distributed objects and it provides facilities for remote method invocation, per-
sistent storage, and computation using standard function library. Then the task
coordination problem may be viewed as orchestrating a computation by invoking
the appropriate methods in proper sequence. Tree structured concurrency per-
mits only restricted communications among the processes: a process may spawn
children processes and all communications are between parents and their chil-
dren. Such structured communications, though less powerful than interactions
in process networks, are sufficient to solve many problems of interest, and they
avoid many of the problems associated with general concurrency.

1 Introduction

1.1 Motivation

Word processing software, email, and spreadsheet have revolutionized home and
office computing. Spreadsheets, in particular, have made effective programmers
in a limited domain out of non-programmers. There are many other office tasks
that are amenable to automation. Simple examples include scheduling a visit
by an external visitor, arranging a meeting, and handling student application
and admission to a university. Many business applications —protocol for filling
an order from a customer, for instance— have similar structure. In fact, these
seemingly trivial examples embody the computational patterns that are inherent
in a large number of applications. Each of these applications typically includes
invoking remote objects, applying certain calculations to the values obtained,
and communicating the results to other applications. Today, most of these tasks
are done manually by using proprietary software, or a general-purpose software
package; the last option allows little room for customization to accommodate
the specific needs of an organization.

The reason why spreadsheets have succeeded and general task coordination
software have not has to do with the problem domains they address. The for-
mer is limited to choosing a set of functions from a library and displaying the
results in a pleasing form. The latter requires invocations of remote objects and
coordinations of concurrent tasks, which are far less understood than building a
function library. Only now are software packages being made available for smooth
access to remote objects. Concurrency is still a hard problem; it introduces a
number of subtle issues that are beyond the capabilities of most programmers.

1.2 Current Approaches

The computational structure underlying typical distributed applications is pro-
cess network. Here, each process resides at some node of a network, and it
communicates with other processes through messages. A computation typically
starts at one process, which may spawn new processes at different sites (which,
in turn, may spawn other processes). Processes are allowed to communicate in
unconstrained manner with each other, usually through asynchronous message
passing.

The process network model is the design paradigm for most operating sys-
tems and network-based services. This structure maps nicely to the underlying
hardware structure, of LANs, WANs, and, even, single processors on which the
processes are executed on the basis of time slices. In short, the process network
model is powerful.

We contend that the process network model is too powerful, because many
applications tend to be far more constrained in their communication patterns.
Such applications rarely exploit the facility of communicating with arbitrary pro-
cesses. Therefore, when these applications are designed under the general model
of process networks, they have to pay the price of power: since a process network

2

is inherently concurrent, many subtle aspects of concurrency —synchronization,
coherence of data, and avoidance of deadlock and livelock— have to be incorpo-
rated into the solution. Additionally, hardware and software failure and recovery
are major considerations in such designs.

There have been several theoretical models that distill the essence of process
network style of computing. In particular, the models in CSP [9], CCS [15] and
π-calculus [16] encode process network computations using a small number of
structuring operators. The operators that are chosen have counterparts in the
real-world applications, and also pleasing algebraic properties. In spite of the
simplicities of the operators the task of ensuring that a program is deadlock-free,
for instance, still falls on the programmer; interactions among the components
in a process network have to be considered explicitly.

Transaction processing is one of the most successful forms of distributed com-
puting. There is an elaborate theory —see Gray and Reuter [8]— and issues in
transaction processing have led to major developments in distributed comput-
ing. For instance, locking, commit and recovery protocols are now central to
distributed computing. However, coding of transactions remains a difficult task.
Any transaction can be coded using remote procedure call (or RMI in Java).
But the complexity is beyond the capabilities of most ordinary programmers,
for the reasons cited above.

1.3 Our Proposal

We see three major components in the design of distributed applications: (1)
persistent storage management, (2) computational logic and execution environ-
ment, and (3) methods for orchestrating computations. Recent developments in
industry and academia have addressed the points (1) and (2), persistent storage
management and distributed execution of computational tasks (see the last para-
graph of this subsection). This project builds on these efforts. We address the
point (3) by viewing the task coordination problem as orchestration of multiple
computational tasks, possibly at different sites. We design a programming model
in which the orchestration of the tasks can be specified. The orchestration script
specifies what computations to perform and when, but provides no information
on how to perform the computations.

We limit the model of computation for the task coordination problem to tree
structured concurrency. For many applications, the structure of the computation
can be depicted as a tree, where each process spawns a number of processes,
sends them certain queries, and then receives their responses. These steps are
repeated until a process has acquired all needed information to compute the
desired result. Each spawned process behaves in exactly the same fashion, and
it sends the computed result as a response only to its parent, but it does not
accept unsolicited messages during its execution. Tree structured concurrency
permits only restricted communications, between parents and their children. We
exploit this simplicity, and develop a programming model that avoids many of
the problems of general distributed applications. We expect that the simplicity

3

of the model will make it possible to develop tools which non-experts can use to
specify their scripts.

There has been much work lately in developing solutions for expressing appli-
cation logic, see, for instance, the .NET infrastructure[13], IBM’s WebSphere Ap-
plication Server [10], and CORBA [6], which provide platforms that distributed
applications can exploit. Further, such a platform can be integrated with persis-
tent store managers, such as SQL server [14]. The XML standard [7] will greatly
simplify parameter passing by using standardized interfaces. The specification of
sequential computation is a well-understood activity (though, by no means, com-
pletely solved). An imperative or functional style of programming can express
the computational logic. Thus, much of distributed application design reduces
to the task coordination problem, the subject matter of this paper.

2 A Motivating Example

To illustrate some aspects of our programming model, we consider a very small,
though realistic, example. The problem is for an office assistant in a university
department to contact a potential visitor; the visitor responds by sending the
date of her visit. Upon hearing from the visitor, the assistant books an airline
ticket and contacts two hotels for reservation. After hearing from the airline and
any one of the hotels he informs the visitor about the airline and the hotel. The
visitor sends a confirmation which the assistant notes. The office assistant’s job
can be mostly automated. In fact, since the office assistant is a domain expert,
he should be able to program this application quite easily given the proper tools.

This example involves a tree-structured computation; the root initiates the
computation by sending an email to the visitor, and each process initiates a
tree-structured computation that terminates only when it sends a response to
its parent. This example also illustrates three major components in the design of
distributed applications: (1) persistent storage management, as in the databases
maintained by the airline and the hotels, (2) specification of sequential compu-
tational logic, which will be needed if the department has to compute the sum
of the air fare and hotel charges (in order to approve the expenditure), and (3)
methods for orchestrating the computations, as in, the visitor can be contacted
for a second time only after hearing from the airline and one of the hotels. We
show a solution below.

————————————
task v isit(message :: m,name :: v) confirmation

;true → α : email(m, v)
α(date) → β : airline(date); γ1 : hotel1(date); γ2 : hotel2(date)
β(c1) ∧ (γ1(c2) ∨ γ2(c2)) → ε : email(〈c1, c2〉, v)
ε(x) → x

end
————————————

4

A task is the unit of an orchestration script. It resembles a procedure in that it
has input and output parameters. The task v isit has two parameters, a message
m and the name of the visitor, v. It returns a value of type confirmation.

On being called, a task executes its constituent actions (which are written
as guarded commands) in a manner prescribed in section 3. For the moment,
note that an action is executed only when its guard holds, actions are chosen
non-deterministically for execution, and no action is executed more than once.

In this example, v isit has four actions, only the first of which can be executed
when the task is called (the guard of the first action evaluates to true). The effect
of execution of that action is to call another task, email, with message m and
name v as parameters; the call is identified with a tag, α (the tags are shown in
bold font in this program). The second action becomes ready to be executed only
after a response is received corresponding to the call with tag α. The response
carries a parameter called date, and the action invokes an airline task and two
tasks corresponding to reservations in two different hotels. The next action can
be executed only after receiving a response from the airline and response from at
least one hotel (response parameters from both hotels are labeled c2). Then, an
email is sent to v with parameters c1 and c2. In the last action, her confirmation
is returned to the caller of visit , and the task execution then terminates.

The task shown here is quite primitive; it assumes perfect responses in all
cases. If certain responses, say, from the airline are never received, the execution
of the task will never terminate. We discuss issues such as time-out in this
paper; we are currently incorporating interrupt (human intervention) into the
programming model.

A task, thus, can initiate a computation by calling other tasks (and objects)
which may reside at different sites, and transferring parameters among them.
A task has no computational ability beyond applying a few standard functions
on the parameters. All it can do is sequence the calls on a set of tasks, transfer
parameters among them, and then return a result.

3 Programming model

The main construct of our programming model is a task. A task consists of a set
of actions. Each action has a guard and a command part. The guard specifies
the condition under which the action can be executed, and the command part
specifies the requests to be sent to other tasks and/or the response to be sent
to the parent. A guard names the specific children from whom the responses
have to be received, the structure of each response —an integer, tuple or list, for
instance— and any condition that the responses must satisfy, e.g., the hotel’s
rate must be below $150 a night. The command part may use the parameters
named in the guard. The syntax for tasks is defined in section 3.1.

Each action is executed at most once. A task terminates when it sends a
response to its parent.

A guard has three possible values: ⊥, true or false. An important property of
a guard is that its value is monotonic; the value does not change once it is true

5

or false. The structure of the guard and its evaluation are of central importance
in our work. Therefore, we treat this topic in some detail in section 3.2.

Recursion and the list data structure have proved to be essential in writing
many applications. We discuss these constructs in section 3.3.

3.1 Task

A task has two parts, a header and a body. The header names the task, its formal
parameters and their types, and the type of the response. For example,

task v isit(message :: m,name :: v) confirmation

describes a task with name v isit that has two arguments, of type message and
name, and that responds with a value of type confirmation.

The body of a task consists of a set of actions. Each action has two parts, a
guard and a command, which are separated by the symbol → .

When a task is called it is instantiated. Its actions are then executed in
arbitrary order according to the following rules: (1) an action is executed only
if its guard is true, (2) an action is executed at most once, and (3) the task
terminates (i.e., its actions are no longer executed) once it sends a response
to its caller. A response sent to a terminated task —a dangling response— is
discarded.

Example (Non-determinism): Send message m to both e and f . After a
response is received from any one of them, send the name of the responder to
the caller of this task.

————————————
task choose(message :: m, name :: e, name :: f) name

;true → α : email(m, e); β : email(m, f)
α(x) → x
β(x) → x

end
————————————

A slightly simpler solution is to replace the last two actions with

α(x) ∨ β(x) → x

Command The command portion of an action consists of zero or more requests
followed by an optional response. There is no order among the requests.

A request is of the form

tag : name(arguments)

6

where tag is a unique identifier, name is a task name and arguments is a list
of actual parameters, which are expressions over the variables appearing in the
guard (see section 3.2).

A response in the command part is differentiated from a request by not
having an associated tag. A response is either an expression or a call on another
task. In the first case, the value of the expression is returned to the caller. In the
second case, the call appears without a tag, and the response from the called
task, if any, is returned to the caller.

An example of a command part that has two requests and a response x is,

α : send(e); β : send(f); x

Tag A tag is a variable that is used to label a request and it stores the response,
if any, received from the corresponding task. A tag is used in a guard to bind
the values received in a response to certain variables, which can then be tested
(in the predicate part of the guard) or used as parameters in task calls in the
command part. For instance, if tag α appears as follows in a guard

α(−, 〈x, y〉, b : bs)

it denotes that α is a triple, its second component is a tuple where the tuple
components are bound to x and y, and the last component of α is a list whose
head is bound to b and tail to bs.

Guard A guard has two parts, response and predicate. Each part is optional.

guard ::= [response] ; [predicate]
response ::= conjunctive-response
conjunctive-response ::= disjunctive-response {∧ (disjunctive-response)}
disjunctive-response ::= simple-response {∨ (simple-response)}
simple-response ::= positive-response | negative-response
positive-response ::= [qualifier] tag [(parameters)]
negative-response ::= ¬[qualifier] tag(timeout-value)
qualifier ::= full. | nonempty.
parameters ::= parameter {, parameter}
parameter ::= variable | constant

Response A response is in conjunctive normal form: it is a conjunction of
disjunctive-responses. A disjunctive-response is a disjunction of simple-responses,
each of which is either a tag, optionally with parameters, or negation of a tag
with a timeout-value. The qualifier construct is discussed in page 11. Shown
below are several possible responses.

α(x)
α(x) ∧ β(y)
α(x) ∨ β(x)

7

¬α(10ms)
¬β(5ms) ∧ (γ(y) ∨ δ(y))

The following restrictions apply to the parameters in a response: (1) all simple
responses within a disjunctive-response have the same set of variable parameters,
and (2) variable parameters in different disjunctive-responses are disjoint. A
consequence of requirement (1) is that a disjunctive-response defines a set of
parameters which can be assigned values if any disjunct (simple-response) is
true. If a negative-response appears within a disjunctive-response then there is
no variable parameter in that disjunctive-response. This is illustrated below; in
the last example Nack is a constant.

¬α(10ms) ∨ ¬β(5ms)
α ∨ ¬β(5ms)
¬α(10ms) ∨ α(Nack)

Predicate A predicate is a boolean expression over parameters from the re-
sponse part, and, possibly, constants. Here are some examples of guards which
include both responses and predicates.

α(x); 0 ≤ x ≤ 10
α(x) ∧ ¬β(5ms) ∧ (γ(y) ∨ δ(y)); x > y

If a guard has no response part, it has no parameters. So the predicate can
only be a constant; the only meaningful constant is true. Such a guard can be
used to guarantee eventual execution of its command part.

We conclude this subsection with an example to schedule a meeting among
A,B and C. Each of A,B and C is an object which has a calendar. Method
lock in each object locks the corresponding calendar and returns the calendar as
its response. Meet is a function, defined elsewhere, that computes the meeting
time from the given calendars. Method set in each object updates its calendar
by reserving at the given time; it then unlocks the calendar. The meeting time
is returned as the response of schedule.

————————————
task schedule(object :: A, object :: B, object :: C) Time

;true → α1 : A.lock; β1 : B.lock; γ1 : C.lock
α1(Acal) ∧ β1(Bcal) ∧ γ1(Ccal) →

α2 : A.set(t); β2 : B.set(t); γ2 : C.set(t); t
where t = Meet(Acal, Bcal, Ccal)

end
————————————

What happens in this example if some process never responds? Other pro-
cesses then will have permanently locked calendars. So, they must use time-outs.
The task has to employ something like a 3-phase commit protocol [8] to overcome
these problems.

8

3.2 Evaluation of guard

A guard has three possible values, ⊥, true or false. It is evaluated by first eval-
uating its response part, which could be ⊥, true or false. The guard is ⊥ if
the response part is ⊥ and false if the response is false. If the response is true
then the variable parameters in the response part are bound to values in the
standard way, and the predicate part —which is a boolean expression over vari-
able parameters— is evaluated. The value of the guard is then the value of the
predicate part.

An empty response part is taken to be true. The evaluation of a response fol-
lows the standard rules. A disjunctive-response is true if any constituent simple-
response is true; in that case its variable parameters are bound to the values of
any constituent simple-response that is true. A disjunctive-response is false if
all constituent simple-responses are false, and it is ⊥ if all constituent simple-
responses are either false or ⊥ and at least one is ⊥. A conjunctive response is
evaluated in a dual manner.

The only point that needs some explanation is evaluation of a negative-
response, ¬β(t), corresponding to a time-out waiting for the response from β.
The response ¬β(t) is (1) false if the request with tag β has responded within t
units of the request, (2) true if the request with tag β has not responded within
t units of the request, and (3) ⊥ otherwise (i.e., t units have not elapsed since
the request was made and no response has been received yet).

Monotonicity of guards A guard is monotonic if its value does not change
once it is true or false; i.e., the only possible change of value of a monotonic
guard is from ⊥ to true or ⊥ to false. In the programming model described so
far, all guards are monotonic. This is an important property that is exploited
in the implementation, in terminating a task even before it sends a response,
as follows. If the guard values in a task are either true or false (i.e., no guard
evaluates to ⊥), and all actions with true guards have been executed, then the
task can be terminated. This is because no action can be executed in the future
since all false guards will remain false, from monotonicity.

3.3 Recursion and Lists

Recursion The rule of task execution permits each action to be executed at
most once. While this rule simplifies program design and reasoning about pro-
grams, it implies that the number of steps in a task’s execution is bounded by the
number of actions. This is a severe limitation which we overcome using recursion.
A small example is shown below.

It is required to send messages to e at 10s intervals until it responds. The
exact response from e and the response to be sent to the caller of bombard are
of no importance; we use () for both.

9

————————————
task bombard(message :: m,name :: e) ()

;true → α : email(m, e)
α → ()
¬α(10s) → bombard(m, e)

end
————————————

In this example, each invocation of bombard creates a new instance of the
task, and the response from the last instance is sent to the original invoker of
bombard.

List data structure To store the results of unbounded computations, we in-
troduce list as a data structure, and we show next how lists are integrated into
our programming model.

Lists can be passed as parameters and their components can be bound to
variables by using pattern matching, as shown in the following example. It is
required to send requests to the names in a list, f , sequentially, then wait for a
day to receive a response before sending a request to the next name in the list.
Respond with the name of the first responder; respond with Nack if there is no
responder.

————————————
task hire([name] :: f) (Nack | Ack name)

f([]) → Nack
f (x : −) → α : send(x)
α(y) → Ack(y)
¬α(1day) ∧ f(− : xs) → hire(xs)

end
————————————

Evolving tags Let tsk be a task that has a formal parameter of type t ,

task tsk(t :: x)

We adopt the convention that tsk may be called with a list of actual parameters
of type t ; then tsk is invoked independently for each element of the list. For
example,

α : tsk(xs)

where xs is a list of elements of type t creates and invokes as many instances of
tsk as there are elements in xs; if xs is empty, no instances are created and the
request is treated as a skip.

Tag α is called an evolving tag in the example above. An evolving tag’s value
is the list of responses received, ordered in the same sequence as the list of
requests. Unlike a regular tag, an evolving tag always has a value, possibly an

10

empty list. Immediately following the request, an evolving tag value is an empty
list. For the request α : tsk([1, 2, 3]) if response r1 for tsk(1) and r3 for tsk(3)
have been received then α = [r1, r3]. Given the request α : tsk(xs), where xs is
an empty list, α remains the empty list forever.

If a task has several parameters each of them may be replaced by a list in
an invocation. For instance, let task tsk(t :: x, s :: y) have two parameters.
Given

α : tsk(xs, ys)

where xs and ys are both lists of elements, tsk is invoked for each pair of elements
from the cartesian product of xs and ys. Thus, if

xs = [1, 2, 3] ys = [A,B]

the following calls to tsk will be made:

tsk(1, A) tsk(1, B) tsk(2, A) tsk(2, B) tsk(3, A) tsk(3, B)

We allow only one level of coercion; tsk cannot be called with a list of lists.

Qualifier for evolving tag For an evolving tag α, full.α denotes that corre-
sponding to the request of which α is the tag all responses have been received,
and nonempty.α denotes that some response has been received. If the request
corresponding to α is empty then full.α holds immediately and nonempty.α
remains false forever. An evolving tag has to be preceded by a qualifier, full or
nonempty, when it appears in the response part of a guard.

Examples of evolving tags Suppose we are given a list of names, namelist,
to which messages have to be sent, and the name of any respondent is to be
returned as the response.

————————————
task choose(message :: m, [name] :: namelist) name

;true → α : send(m,namelist)
nonempty.α(x : −) → x

end
————————————

A variation of this problem is to respond with the list of respondents after
receiving a majority of responses, as would be useful in arranging a meeting. In
the second action, below, |α| denotes the (current) length of α.

————————————
task rsvpMajority([name] :: namelist) [name]

;true → α : email(namelist)
;2× |α| ≥ |namelist| → α

end
————————————

11

A much harder problem is to compute the transitive closure. Suppose that
each person in a group has a list of friends. Given a (sorted) list of names, it is
required to compute the transitively-closed list of friends. The following program
queries each name and receives a list of names (that includes the queried name).
Function merge, defined elsewhere, accepts a list of name lists and creates a
single sorted list by taking their union.

————————————
task tc([name] :: f) [name]

;true → α : send(f)
full.α; f = β → f , where β = merge(α)
full.α; f 6= β → tc(β), where β = merge(α)

end
————————————

Note that the solution is correct for f = [].

Evaluation of guards with evolving tags An evolving tag appears with a
qualifier, full or nonempty, in the response part of a guard. We have already
described how a tag with a qualifier is evaluated. We describe next how time-outs
with an evolving tag are evaluated. Receiving some response within t units of
the request makes ¬nonempty.α(t) false, receiving no response within t units of
the request makes it true, and it is ⊥ otherwise. Receiving all responses within
t units of the request makes ¬full.α(t) false, not receiving any one response
within t units of the request makes it true, and it is ⊥ otherwise.

Monotonicity of guards with evolving tags A guard with evolving tag may
not be monotonic. For instance, if its predicate part is of the form |α| < 5 where
α is an evolving tag. It is the programmer’s responsibility to ensure that every
guard is monotonic.

3.4 An Example

We consider a more realistic example in this section, of managing the visit of a
faculty candidate to a university department. A portion of the workflow is shown
schematically in Figure 1. In what follows, we describe the workflow and model
it using Orc.

Here is the problem: An office assistant in a university department must
manage the logistics of a candidate’s visit. She emails the candidate and asks
for the following information: dates of visit, desired mode of transportation and
research interest. If the candidate prefers to travel by air, the assistant purchases
an appropriate airline ticket. She also books a hotel room for the duration of
the stay, makes arrangements for lunch and reserves an auditorium for the can-
didate’s talk. She informs the students and faculty about the talk, and reminds
them again on the day of the talk. She also arranges a meeting between the

12

candidate and the faculty members who share research interests. After all these
steps have been taken, the final schedule is communicated to the candidate and
the faculty members.

The following orchestration script formalizes the workflow described above.
It is incomplete in that not all actions are shown.

————————————
task FacultyCandidateRecruit(String :: candidate, [String] :: faculty,

[String] :: student, [String] :: dates,
[String] :: transportation,
[String] :: interests) String

;true → A : AskUserData(candidate, dates);
B : AskUserData(candidate, transportation);
C : AskUserData(candidate, interests)

/* If the candidate prefers to fly, then reserve a seat./
B(x) ∧ A(y); x = “plane” → D : ReserveSeat(y, candidate)
/* Reserve a hotel room, a lunch table and an auditorium. */
A(x) → E : ReserveHotelRoom(x);

F : ReserveAuditorium(x);
G : ReserveLunchTable(x)

/* Arrange a meeting with faculty. */
C (x) → H : [AskUserInterest(l, x) | l ← faculty]
/* The notation above is for list comprehension */
H (x) ∧ A(y) → I : FindAvailableT ime(x, y)

/* If the auditorum is reserved successfully */
F (x); x 6= “” → J : Inform(x, “Talk Schedule”, faculty);

K : Inform(x, “Talk Schedule”, student)
F (x) ∧ J (y) → L : Reminder(x, “Talk Schedule”, faculty)
F (x) ∧ K (y) → M : Reminder(x, “Talk Schedule”, student)

/* Notify faculty and students about the schedule. */
H (x) ∧ I (y) → N : [Notify(l, y) | l ← x]
D(x); x 6= “” → O : Notify(candidate, x)
F (y) ∧ I (z); y 6= “” → P : NotifySchedule(candidate, y, z)
L(x) ∧ M (y) → “Done”

D(x); x = “” → ErrorMsg(“assistant@cs”, “No available flight”)
F (x); x = “” →

ErrorMsg(“assistant@cs”, “Auditorium reservation failed”)
¬E (86400) →

ErrorMsg(“assistant@cs”, “Hotel reservation failed”)
end

————————————

13

Fig. 1. Faculty candidate recruiting workflow.

3.5 Remarks on the Programming Model

What a task is not A task resembles a function in not having a state. How-
ever, a task is not a function because of non-determinism. A task resembles a
transaction, though it is simpler than a transaction in not having a state or
imperative control structures. A task resembles a procedure in the sense that it
is called with certain parameters, and it may respond by returning values. The
main difference is that a task call is asynchronous (non-blocking). Therefore, the
caller of a task is not suspended, nor that a response is assured. Since the calling
task is not suspended, it may issue multiple calls simultaneously, to different
or even the same task, as we have done in this example in issuing two calls to
email, in the first and the last action. Consequently, our programming model
supports concurrency, because different tasks invoked by the same caller may
be executed concurrently, and non-determinism, because the responses from the
calls may arrive in arbitrary order.

A task is not a process. It is instantiated when it is called, and it terminates
when its job is done, by responding. A task accepts no unsolicited calls; no
one can communicate with a running task except by sending responses to the
requests that the task had initiated earlier.

We advocate an asynchronous (non-blocking) model of communication —
rather than a synchronous model, as in CCS [15] and CSP [9]— because we
anticipate communications with human beings who may respond after long and

14

unpredictable delays. It is not realistic for a task to wait to complete such calls.
We intend for each invocation of a task to have finite lifetime. However, this
cannot be guaranteed by our theory; it is a proof obligation of the programmer.

Why not use a general programming language? The visit task we have
shown can be coded directly in an imperative language, like C++ or Java, which
supports creations of threads and where threads may signal occurrences of cer-
tain events. Then, each call on a task is spawned off as a thread and receipt
of a response to the call triggers a signal by that thread. Each action is a code
fragment. After execution of the initial action —which, typically, calls certain
tasks/methods— the main program simply waits to receive a signal from some
thread it has spawned. On receiving a signal, it evaluates every guard corre-
sponding to the actions that have not yet been executed, and selects an action,
if any, whose guard has become true, for execution.

Our proposed model is not meant to compete with a traditional programming
language. It lacks almost all features of traditional languages, the only available
constructs being task/method calls and non-deterministic selections of actions
for executions. In this sense, our model is closer in spirit to CCS [15], CSP [9],
or the more recent developments such as π-calculus [16] or Ambient calculus [3].
The notion of action is inspired by similar constructs in UNITY [4], TLA+ [12]
and Seuss [17].

One of our goals is to study how little is required conceptually to express
the logic of an application, stripping it of data management and computational
aspects. Even though the model is minimal, it seems to include all that is needed
for computation orchestration. Further, we believe that it will be quite effective
in coding real applications because it hides the details of threads, signaling,
parameter marshaling and sequencing of the computation.

Programming by non-experts The extraordinary success of spreadsheets
shows that non-experts can be taught to program provided the number of rules
(what they have to remember) is extremely small and the rules are coherent.
Mapping a given problem from a limited domain —budget preparation, for
instance— to this notation is relatively straightforward. Also, the structure of
spreadsheets makes it easy for the users to experiment, with the results of ex-
periments being available immediately.

A spreadsheet provides a simple interface for choosing pre-defined functions
from a library, applying them to arguments and displaying the results in a pleas-
ing manner. They are not expected to be powerful enough to specify all functions
—elliptic integrals, for instance— nor do they allow arbitrary data structures
to be defined by a programmer. By limiting the interface to a small but coher-
ent set, they have helped relative novices to become effective programmers in a
limited domain.

In a similar vein, we intend to build a graphical wizard for a subset of this
model which will allow non-experts to define tasks. It is easy to depict a task

15

structure in graphical terms: calls on children will be shown by boxes. The pa-
rameter received from a response may be bound to the input parameter of a
task, not by assigning the same name to them —as would be done tradition-
ally in a programming language— but by merely joining them graphically. The
dependency among the tasks is easily understood by a novice, and such depen-
dencies can be depicted implicitly by dataflow: task A can be invoked only with
a parameter received from task B; therefore B has to precede A.

One of the interesting features is to exploit spreadsheets for simple calcu-
lations. For instance, in order to to compute the sum of the air fare and hotel
charges, the user simply identifies certain cells in a spreadsheet with the param-
eters of the tasks.

4 Implementation

The programming model outlined in this paper has been implemented in a sys-
tem that we have christened Orc. Henceforth, we write “Orc” to denote the
programming model as well as its implementation.

The tasks in our model exhibit the following characteristics: (1) tasks can
invoke remote methods, (2) tasks can invoke other tasks and themselves, and
(3) tasks are inherently non-deterministic. The first two characteristics and the
fact that the methods and tasks may run on different machines, require im-
plementation of sophisticated communication protocols. To this end, we take
advantage of the Web Service model that we outline below. Non-determinism of
tasks, the last characteristic, requires the use of a scheduler that executes the
actions appropriately.

Web Services A web service is a method that may be called remotely. The
current standards require web services to use the SOAP[2] protocol for com-
munication and WSDL[5] markup language to publish their signatures. Web
services are platform and language independent, thus admitting arbitrary com-
munications among themselves. Therefore, it is fruitful to regard a task as a web
service because it allows us to treat remote methods and tasks within the same
framework.

The reader should consult the appropriate references for SOAP and WSDL
for details. For our needs, SOAP can be used for communication between two
parties using the XML markup language. The attractive feature of SOAP is that
it is language independent, platform independent and network independent. The
WSDL description of a web service provides both a signature and a network
location for the underlying method.

4.1 Architecture

Local Server In order to implement each task as a web service, we host it as
an Axis[1] servlet inside a local Tomcat[18] server. A servlet can be thought of
as a server-side applet, and the Axis framework makes it possible to expose any
servlet as a web service to the outside world.

16

Web Service

 AskUser

 Local

 Task

Orc Script

Java Code

Tomcat
Server

Remote
Web Server

Local

Java
Templates

WSDL2Java

WSDL2Java

Stub Generation

Java Reflection

Code Generation

Parsing

 Remote
 Task

 Remote

Web Service

Fig. 2. Components of Orc.

Translator The Orc translator is implemented in C and converts an orchestra-
tion script into Java. As shown in figure 2, it begins by parsing the input script.
In the next step, it creates local java stubs for remote tasks and services. To this
end, the URL of the callee task’s WSDL description and its name are explicitly
described in the Orc script. Thus the translator downloads the WSDL file for
each task and uses the WSDL2Java tool, provided by the Axis framework, to cre-
ate the local stub. Java reflection (described in the next paragraph) is then used
to infer the type signature of each task. Finally, Java code is generated based
on certain pre-defined templates for Orc primitives like action, evolving tag and
timeouts. These templates are briefly described in the following subsection.

Java reflection API [11] allows Java code to discover information about a
class and its members in the Java Virtual Machine. Java reflection can be used
for applications that require run-time retrieval of class information from a class
file. The translator can discover a return type and parameter type by means of
Java reflection API.

AskUser Web Service The ability to ask a user a question in an arbitrary
stylized format and receive a parsed response is basic to any interactive applica-
tion. In Orc, this function is captured by the AskUser web service. Given a user’s
email address and an HTML form string, askUser launches an HTTP server to
serve the form and receive the reply. It then sends the user an email containing
the server’s address.

It is interesting to note that the AskUser web service can also be used to im-
plement user interrupts. In order to create a task A that user B can interrupt,
we add these two actions to task A:

17

; true → α : AskUser(B, “Interrupt task?”)
α() → β : Perform interrupt handling and Return

The request with tag α asks user B if she wants to interrupt the task, and
if a response is received from B, the request with tag β invokes the interrupt
procedure and ends the task.

4.2 Java Templates for Orc Primitives

Sleep

Start

Evaluate
Guards

Response

Invoke
Tasks

Manager Thread

Start

Task Thread

Timer

Start

TimeoutResponse

If false

If true

Events

Fig. 3. The Runtime System.

The Manager Class The Orc translator takes an Orc script as input and emits
Java code. The most interesting aspect of the implementation was to build non-
determinism into an essentially imperative world. The action system that an Orc
script describes is converted into a single thread as shown in figure 3. We call this
the Manager thread. All other tasks are invoked by the Manager thread. Every
distinct task in the Orc model is implemented as a separate thread class. The
manager evaluates the guards of each action in the Orc script and invokes the
tasks whose guards are true. When no guard is true it waits for the tasks it has
already started to complete, and then checks the guards again. Orc follows the
once only semantics. This means that a task in an Orc program may be invoked
at most once. Each task follows a particular interface for communicating with
the manager. Tasks in Orc may be written directly in Java, or might have been
generated from web services. Note that though a web service is essentially a
task, once it is invoked it performs some computation and returns a result, the
WSDL2Java tool does not translate the tasks in the particular format as required
by the manager. We generate a wrapper around the class that the WSDL2Java
tool generates, to adhere to the task interface which the manager requires.

18

Timeouts Every task in this implementation of Orc includes a timer, as shown
in figure 3. The timer is started when the manager invokes a task. A task’s timer
signals the manager thread if the task does not complete before its designated
timeout value.

Evolving Tags Orc allows the same task to be invoked on a list of input
instances. Since the invocations on different input instances may complete at
different times, the result list starts out empty and grows as each instance returns
a result. Such lists are called evolving tags in our model. The interface used for
tasks that return evolving tags is a subclass of the interface used for regular
tasks. It adds methods that check if an evolving tag is empty or full, and makes
it possible to iterate over the result list.

The templates that we have described here allow a task written in Orc to uti-
lize the already existing web services and extend their capabilities using timeout
and evolving tags. The implementation of remaining Orc features is straightfor-
ward and not described here.

5 Concluding Remarks

We have identified task coordination as the remaining major problem in dis-
tributed application design; the other issues, persistent store management and
computational logic, have effective solutions which are widely available. We have
suggested a programming model to specify task coordination. The specification
uses a scripting language, Orc, that has very few features, yet is capable of spec-
ifying complex coordinations. Our preliminary experiments show that the Orc
scripts could be two orders of magnitude shorter than coding a problem in a
traditional programming language. Our translator, still under development, has
been used to coordinate a variety of web services coded by other parties with
Orc tasks.

Acknowledgement This work is partially supported by the NSF grant CCR–
9803842.

References

1. Apache axis project. http://xml.apache.org/axis.
2. Don Box, David EhneBuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn,

Henrik Frystyk Nielson, Satish Thatte, and Dave Winer. Simple object access
protocol 1.1. http://www.w3.org/TR/SOAP.

3. Luca Cardelli. Mobility and Security. In Friedrich L. Bauer and Ralf Steinbrüggen,
editors, Proceedings of the NATO Advanced Study Institute on Foundations of Se-
cure Computation, NATO Science Series, pages 3–37. IOS Press, 2000.

4. K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

19

5. Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.
Web services description language 1.1. http://www.w3.org/TR/wsdl.

6. The home page for Corba.
http://www.corba.org, 2001.

7. Main page for World Wide Web Consortium (W3C) XML activity and informa-
tion.
http://www.w3.org/XML/, 2001.

8. Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, 1993.

9. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall International,
1984.

10. The home page for IBM’s webSphere application server.
http://www-4.ibm.com/software/webservers/appserv, 2001.

11. Java reflection (API).
http://java.sun.com, 2001.

12. Leslie Lamport. Specifying concurrent systems with TLA+. In Manfred Broy
and Ralf Steinbrüggen, editors, Calculational System Design, pages 183–247. IOS
Press, 1999.

13. A list of references on Microsoft .Net initiative.
http://directory.google.com/Top/Computers/Programming/Component Frameworks/NET/,
2001.

14. The home page for Microsoft SQL server.
http://www.microsoft.com/sql/default.asp, 2001.

15. R. Milner. Communication and Concurrency. International Series in Computer
Science, C.A.R. Hoare, series editor. Prentice-Hall International, 1989.

16. Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge
University Press, May 1999.

17. Jayadev Misra. A Discipline of Multiprogramming. Monographs in Computer
Science. Springer-Verlag New York Inc., New York, 2001. The first chapter is
available at http://www.cs.utexas.edu/users/psp/discipline.ps.gz.

18. Jakarta project. http://jakarta.apache.org/tomcat/.

20

