
Parallel Processing Letters
c© World Scientific Publishing Company

PROOF OF A REAL-TIME MUTUAL-EXCLUSION ALGORITHM

J. ALLEN CARRUTH

and
JAYADEV MISRA

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712, USA

Received ??/??/??
Revised ??/??/??

Communicated by

ABSTRACT

Michael Fischer has proposed a mutual exclusion algorithm that ingeniously exploits
real time. We prove this algorithm using the time-honored technique of establishing an
appropriate invariant.

Keywords: Real-time, mutual exclusion, formal verification

1. Introduction

Michael Fischer[1] has proposed a mutual exclusion algorithm that ingeniously
exploits real time. We prove the correctness of this algorithm using only the fact that
time never runs backwards. Other important facts about time — that eventually
time increases beyond any bound — are unnecessary for this proof.

The structure of the proof follows the usual pattern of suggesting an invariant,
verifying that the suggested invariant is indeed an invariant and showing that the
invariant implies mutual exclusion. The invariant is, as usual, a state predicate.
We introduce some auxiliary variables that simplify reasoning about time: For a
state-predicate p, let p denote the last value of time at which p became true. We
call p the punch of p (the time at which p last punched the clock). We specify the
timing constraints of the algorithm succinctly using such variables.

2. Informal Description of the Algorithm

There are N processes, numbered 1 through N , and a global variable x that
assumes an integer value between 0 and N . Figure 1 shows the state transitions of
process i, 1 ≤ i ≤ N . A process transits from e to a to wait for entry to its critical
section. The edges of the other transitions are labeled with either an assignment,

1



r
a

-
x = 0?
r
b

-
x := i
r
c

6

x = i?

rd� x := 0re

?

Fig. 1. The state transitions of a process i, 1 ≤ i ≤ N .

x := i or x := 0, or a test, x = 0? or x = i?. An assignment on an edge denotes
that the state transition is accompanied by an assignment of the corresponding
value to x. A test on an edge denotes that the transition takes place only if the test
succeeds. Process state is d when it is in the critical section. Assume that all tests
and assignments are atomic. Initially, all processes are in states e and x = 0.

It is easy to construct a scenario where two processes are in their critical sections
simultaneously. Timing constraints, given below, guarantee that this possibility is
avoided.

(T1) Transition from b to c is completed within a unit of time. Observe that this
transition only requires assigning a value to x, and, therefore, the transition
is entirely within the control of a process.

(T2) Transition from c to d takes more than one unit of time. This requirement is
implemented by process i waiting for more than a unit of time before testing
x = i?. Observe that this transition may never complete.

We will show that mutual exclusion is now guaranteed, i.e., two different processes
are never in their d-states simultaneously.

Remark: There is no requirement, as yet, that a process transit out of its d or
e-state. Thus, a process may stay forever in e (i.e., never attempting to enter its
critical section) or in d, thereby preventing all other processes from entering their
critical sections forever. 2

2



3. Formal Description of the Algorithm

Let si denote the state of process i; si takes values from {a, b, c, d, e}. The initial
state of the system is

initially (∀ i :: si = e) ∧ x = 0

The state transitions of process i are given by

{αi} si := a if si = e
[] {βi} si := b if si = a ∧ x = 0
[] {γi} si, x := c, i if si = b
[] {δi} si := d if si = c ∧ x = i
[] {εi} si, x := e, 0 if si = d

There is no fairness requirement on the executions of these statements. Execut-
ing a statement in a state where its guard does not hold — such as executing βi

when x 6= 0 — causes no state change; any execution of a statement when its guard
is true is called an effective execution.

Notation: We will use the following abbreviations

ai ≡ si = a bi ≡ si = b , . . . , ei ≡ si = e

Observe that these predicates are mutually exclusive, i.e.,

ai ∧ bi ≡ false, etc.,

and ai ∨ bi ∨ ci ∨ di ∨ ei ≡ true 2

3.1. Formalization of Time

In order to state the timing constraints, we introduce a variable now [2]. Infor-
mally, the value of now at any point during the computation is the current time.
The value of now is changed by some mechanism outside the given program; the
mutual exclusion program can read the current time and assign it to a variable t by
executing

t := now

The mechanism (or process) that changes now could operate synchronously or
asynchronously with the actions of the given program. Thus, the value of now
before and after the execution of

t := now

may be different (denoting that execution of this statement consumes some time).
The value assigned to t in this case is the value of now just before the execution
of this statement is started. This interpretation supports the axiom of assignment:
Predicate p(t) holds after this assignment if p(now) holds before.

3



For this paper, we require only that (1) now assumes non-negative real values
and (2) now is monotone nondecreasing. For a formal basis for the introduction of
time, including the requirement about the eventual increase of now, see Abadi and
Lamport [2].

It is convenient to introduce the following auxiliary variables for study of real
time systems. For a state predicate p, let p be the value of now when p last became
true (more precisely, p is the value of now just prior to the execution of the action
that last truthified p); initially p equals now if p holds, else p < 0. This definition
of p can be expressed directly as a property of the program, or p can be defined by
augmenting a program text, as shown below; both definitions are equivalent. We
introduce three such variables, bi, ci, di , by augmenting βi, γi, δi,

{βi} si, bi := b,now if si = a ∧ x = 0
{γi} si, x, ci := c, i,now if si = b
{δi} si, di := d,now if si = c ∧ x = i

Initially, ei = now and bi, ci, di are negative. From the fact that now is non-
negative and monotone nondecreasing, we can derive, for any p,

(Observation 1) p ≤ now .

Remark: The auxiliary variables p can be used to state the most common kinds
of real-time constraints:

Once p becomes true it remains true for at least ∆ units,

can be written as

¬p ∧ p ≥ 0 ⇒ now > p + ∆

and, p is falsified within τ units of being true, is expressed by

p ⇒ now ≤ p + τ 2

3.2. Timing Constraints

We can now state (T1,T2) formally. For all i, 1 ≤ i ≤ N ,

(T1) (ci ∨ di) ⇒ ci ≤ 1 + bi

(T2) di ⇒ 1 + ci < di

The antecedent of (T1), ci ∨ di, guarantees that in the current state both bi and
ci are defined; similar remarks apply for the antecedent of (T2).

4. Proof of Mutual Exclusion

We establish the following two predicates as invariants. In the following, j, k
satisfy 1 ≤ j ≤ N and 1 ≤ k ≤ N .

(I1) (∀ j, k :: x = k ⇒ bj ≤ ck)
(I2) (∀ k :: dk ⇒ x = k)

4



Mutual exclusion is immediate from I2:

di ∧ dj ⇒ x = i ∧ x = j ⇒ i = j

Next, we prove that for the program of Section 3 augmented with the timing con-
straints, the predicates (I1,I2) are invariants.

Note: To be completely formal, we should also show that (I1,I2) cannot be falsified
by the process that changes now. Since now does not appear in either predicate,
this demonstration is trivial. 2

4.1. Proof of the invariance of (I1)

We rewrite (I1) as (∀ j, k :: x 6= k ∨ bj ≤ ck) to simplify logical manipulations.
Initially, x = 0. Therefore, initially x 6= k, for any k, 1 ≤ k ≤ N , and, hence, (I1)
holds initially. Next, consider the actions that can falsify the terms in (I1), for
arbitrary j, k.

• x 6= k can only be falsified by setting x to k, i.e., by effectively executing γk,
which is

{γk} sk, x, ck := c, k,now if sk = b

To see that this action establishes bj ≤ ck as a postcondition we have to
show, using the axiom of assignment to replace ck by now, that bj ≤ now is a
precondition. This follows from Observation 1. Therefore, γk preserves (I1).

• the term bj ≤ ck can be affected only by the actions βj (that may change bj)
and γk (that may change ck). We have shown above that γk preserves (I1).
We now show that βj also preserves (I1). A precondition for the effective
execution of βj is x = 0, and βj preserves x = 0. Therefore, x = 0, i.e., x 6= k
is a postcondition of an effective execution of βj .

4.2. Proof of the invariance of (I2)

Initially 〈∀ k :: ek〉. Therefore, (I2) holds initially. Next, consider the actions
that can falsify ¬dk ∨ x = k, for arbitrary k.

• ¬dk can be falsified only by setting sk to d, i.e., by effectively executing δk.
A precondition for the effective execution of δk is x = k. The action δk does
not assign to x, and, hence, preserves x = k. Therefore, ¬dk ∨ x = k holds
as a postcondition of δk.

The predicate x = k can be falsified by (1) setting x to 0, i.e., executing εi, for
some i, or (2) setting x to i, i 6= k, i.e., executing γi, i 6= k. We consider these two
possibilities, next.

5



• Executing εi, for some i: Action εi has a precondition di. Then using (I2), for
k 6= i, ¬dk holds as a precondition; also, ¬dk is preserved by εi. Furthermore,
¬di is a postcondition of εi. Therefore, ¬dk holds as a postcondition of εi, for
any i.

• Executing γi, i 6= k: We show that the effective execution of γi preserves
(I2), i.e., if (I2) holds prior to the execution of γi (I2) also holds after the
completion of γi.

For this proof, we have (I1) as a precondition, and we have assumed (I2) to
be a precondition. The text of γi is,

{γi} si, x, ci := c, i,now if si = b

From this text, a postcondition of γi is ci, and using (T1) we have ci ≤ 1 + bi

also as a postcondition. Summarizing, we are given for γi

precondition: (I1) and (I2)
postcondition: ci ≤ 1 + bi

and we have to show for γi

postcondition: (I2)

In order to demonstrate that (I2) is a postcondition of γi, it is sufficient to
show, using the axiom of assignment, that dk ⇒ i = k is a precondition for
arbitrary k; we show the stronger result that ¬dk is a precondition of γi, or
equivalently, dk ⇒ ¬dk.

dk

⇒ { from I2 }
x = k

⇒ { from I1, using i for j }
bi ≤ ck

⇒ { arithmetic }
1 + bi ≤ 1 + ck

⇒ { now ≤ 1 + bi, apply the axiom of assignment to the postcondition of γi: ci ≤ 1 + bi }
now ≤ 1 + ck

⇒ { dk ≤ now, from observation 1 }
dk ≤ 1 + ck

⇒ { from T2 }
¬dk

6



4.3. The role of the timing constraints

The structures of the proofs make it clear where and why the timing constraints,
(T1) and (T2), are required. Both of them are needed to show that execution of γi

preserves (I2), that the ith process is prevented from setting x (to i) if some process
is in its critical section. The crucial part in the proof that uses (T1) is the assertion
that now ≤ 1 + ck is a precondition for the execution of γi, i.e., γi executes within
one unit of the effective execution of γk, for any k. The proof step that exploits
(T2) is (dk ≤ 1 + ck) ⇒ ¬dk, i.e., any process k takes at least a unit of time to
transit to state d, its critical section.

Acknowledgement: We are grateful to Jacob Kornerup for suggestions about
the structure of the proof. Leslie Lamport has raised a number of issues about
real-time programming that go considerably beyond what has been attempted in
this paper.

1. M. J. Fischer. Personal communication with Leslie Lamport, 1985.

2. Martin Abadi and L. Lamport. An old fashioned recipe for real time. TOPLAS,
16(5):1543–1571, Sep. 1994.

7


