General Conjunction and Disjunction Rules for unless
Notes on UNITY: 01-88

Jayadev Misra*
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712

(512) 471-9547

misra@cs.utexas.edu

9/14/88

1 The Rules

The conjunction and disjunction rules for unless, as given in [1], are as follows.

p unless q , p’ unless ¢’

p A p unless (pAg)V (PAq) V (gN) {conjunction}
p VvV p unless (-pA¢q) VvV (=p'Aq) V (¢Nq) {disjunction}

The generalizations of these rules to arbitrary—possibly infinite—sets of unless prop-
erties is the subject of this note. These generalizations were discovered independently by
Ernie Cohen [2] and Carel S. Scholten [4]. In the following, 7 is a dummy variable that takes
on values from an arbitrary set and p.i, q.7 are predicates in which i is free.

(Vi : pd unless q.4)

(Vi = pi) unless (Vi @ piVgi) A (3i : qi) {conjunction},
(3 pi) unless (Vi = —piVagi) A (i i) {disjunction}

2 Proofs of the Rules

In a program we have the restriction that every statement is deterministic and execution of
any statement in any program state terminates. Then we have,

Vi = {pi} s {qi})
{Vi::pa)} s {{(Vi = qi)},
{Fi = pi)} s {(Fi = qi)}

(These facts can be justified by observing that for any s, the weakest precondition func-
tion, wp.s, is positively conjunctive, and for deterministic s, wp.s is universally disjunctive.
For details see Dijkstra and Scholten [3].)

Furthermore, we have

(1)

*This work was partially supported by ONR Contracts N00014-87-K-0510 and N00014-86-K-0763 and
by a grant from the John Simon Guggenheim Foundation.

p=p,{p} s {d},.d = q

) s {a) ®

2.1 Proof of the Conjunction Rule

We are given,

(Vi :: pa unless q.i)
ie, (Vi =
(Vs = {pi A —qi} s {pi V qi})

)

We consider an arbitrary statement s in the following proof. Applying (1) we deduce,
{Vi = pi A —gi)y s {{Vi e piV qi)}

We are required to show
(Vi pi) unless (Vi = pa Vo qi)y A (i = q.i)

That is, for statement s,

{Viwpi)y Aa[(Vi o pi Vogi)y AN(3i = qi)]}
{Vi = pi) vV [Vi:upiVagid)AN{(3i:zqgi}

Using (2), it is sufficient to show

(Vi pi) AN =[(Vi o opid Vogiy AN(3i o qi)
= (Vi = pi A —qa) (3)

and,

(Vi pi Vg
= (Vi pi)y VvV I[Vi:upiVgisy AN@i qi) (4)

Proof of (3)

antecedent of (3)
= {using deMorgan}
Vi pi) N[~Vi o opad Voga) V (Vi o)]
= {distributing A over V}
(Vi = pi) A =(Vi = piVqgi) V[Vi:upiy ANVi s —qi)
= {the first term is false; combining the conjuncts in the second term}
Vi = opi A —q.i)

Proof of (4)

antecedent of (4)
= {idempotence of A}

Vi piVgiy NNVizpiVgi)
= {weakening the second term}

Vi = pi Vgiy N[(Vi o opd) V(TP g
= {distributing A over V}

(Vi piVagi)NNVizp) VIV piVgi) A (Fi:

= {simplifying the first term}
Vi opd) VI[Viu piVgi) AN {(Ti o qi)

2.2 Proof of the Disjunction Rule

q.1)]

The structure of the proof is similar to that for the conjunction rule. For any statement s,

from
(Vi = p.i unless q.)
we have

Vi A{pi A —qit s {pi VvV qi}).

Using the disjunctive form of (1) we get, from the above,
{3 = pi AN gy} s {(3i = piVoqi)}.

Our goal is to prove,
(i pi) unless (Vi =2 —pd V oqi) A (Fi = q.i)

i.e., for statement s
{3 = pi)y A=[(Vi 0 —pd vV oqi) A (Fi o qgi)]}

{3 = pi)y v Vi —pi VvV qi) AN(Ti = qi)]}

Using (2), it is sufficient to show that

(Fixopi) AN [Vion o pa Vogd) A(FE o

= (3i = pi A i)
and

(Fi = pi Vg

= (3i = pi)y VvV I[Vi:u —piVgi) A {(Fiz

Proof of (5)

q.1)]

antecedent of (5)
= {deMorgan}
(Fi opd) AT opad A ga) V (Vi)]
= {distributing A over V}
(T pi)y AN (Ti pi A —gd)] V(i pi) ANVi o g
= {the first conjunct in the first term is implied by the second conjunct;
weaken the second term}
(i opi A o)y V(3P opid A qai)
= {idempotence of V}
(Fi = pi A —q.i)

Proof of (6)

antecedent of (6)
= {distributing 3 over V}
(Fi opd) V(Fi o oqa)
= {absorption law}
(Fi opid) VI3 opi) AT g
= {deMorgan}
(Fi =opi) vV [(Vi o opd)y A (Fi = qa)]
= {weakening the first conjunct in the second term}
(Fi opi) VIViu —opd Vogd) AN(Ti g

3 Some Derived Results

e The following result generalizes Corollary 5 in Section 3.6.1 in [1]. Tts special cases
appear several times in [1], in particular in Sections 16.3.2 and 16.5.3.

(Vi :: p.i unless pi N q.i)
(Vi pi) unless (Vi = pa) A (Fi =z qi)

Proof:
(Vi i pi unless pi A q.0)
, given
(Vi o pi) unless (Vi 2 pi V (piAgd)) AN {(Fi = piAga)
, conjunction rule
(Vi = pa) unless (Vi = pa)y A (31 = pi A qi)
, simplifying the first term in the right side
(Vi pi) unless (Vi = pay A (3@ = q.i)
, weakening the second term in the right side \V/

e A dual of the above rule, discovered by Mark Staskauskas, is called unless-refinement
rule in [5]. Its proof follows by applying the disjunction rule.

(Vi :: p.i unless —p.i A q.4)
(i pa) unless (Vi = —pad) V (i = q.a)

e The following result is the subject of exercise 14.3 in [1]. Let ¢ satisfy 0 < ¢ < N, and
let ® denote addition mod V.

(Vi = p.iunless p.(i ® 1))
(3@ pa) unless (Vi = pa)

Proof:
(Vi :: pi unless p.(i® 1))
, given
(3 pi) unless (Vi 2 —pi V p.(id1)) A (Fi = p(idl))
, disjunction rule
(i = pa) unless (Vi =2 —pi V p.(id 1)) A (Fi = pa)
, simplifying the second term
(3 :: pi) unless (Vi :: p.a)
, using induction to simplify the right side \V4

In a similar manner, exercise 11.3 of [1] may be proven without using explicit induction:

Vi :0<i<N : pi A p(i+1)unlesspi A —p.(i+1))
(Ni : 0<i<N : pi)unless (Ni : 0<i<N : pi) A —-p.N

e Let x denote a set of variables of a given program. Suppose p, ¢ do not name k as a free
variable.

Mk = p ANax=kunless(p N x#k) V q)
p unless q

Proof
Mk = p ANax=kunless(p N x#k) V q)
, given
Fk wpAax=k)unless (VEk 2 =(p AN x=k)V (p AN xz#£k) V q)
ANFEk = (p ANx#£k)V q
, disjunction rule
punless Vk = —pV ok Vg N3Gk pANc£k)V g
, in the left side (3 k& :: x = k) is replaced by true
punless[-p vV qV (VE = a#k)] AN [Tk = (p A x#k)) V(|
, rewriting both terms in the right side
punless [-p V g AN [pV q]
, replacing (V k :: x # k) by false in the first term and weakening the second term
in the right side
p unless q
, simplifying the right side \V4

e Let R be a transitive relation and = be a program variable.

(Vk = x=kunlessz#k N z REk)
(Vm = x R m is stable)

Proof: Consider any arbitrary constant m.
Vk:kERm = x=kunlessx#k N z RE)
, from the antecedent, restricting k for which k£ R m holds
Fk :kRm : z=k)unless(Vk : kRm = x#k V (x#k Nz REk)) A
Fk :kRm = z#k AN xRE)
, disjunction rule
x Rmunless(Nk : kRm = x#k) N 3k : kRm = x Rk)
, simplifying left side and first term in the right side and weakening the second term in
the right side
x Rm unless -z Rm A x Rm
, simplifying the first term in the right side using predicate calculus (Leibniz) and the

second term using the transitivity of R
x R m is stable
, definition of stable \V4

e A corollary of the above result is, for any partial ordering relation >,

(Vk = x=kunless x > k)
(V k = x>k is stable)

e A similar result is, for any function f,

Mk x=kunlessxc#k N f(z)= f(k))
(Vm = f(x) =m is stable)

4 References

1. K. M. Chandy and J. Misra, Parallel Program Design: A Foundation, Addison-Wesley,
1988.

2. E. Cohen, personal communication, June 1988.

3. E. W. Dijkstra and C. S. Scholten, Predicate Calculus and Programming Semantics,
Chapter 7, (Semantics of Straightline Programs), Springer-Verlag (to be published),
1989.

4. C. S. Scholten, “Unless and Junctions,” CSS 141, July 1988, Beekbergen, The Nether-
lands.

5. M. Staskauskas, “The Formal Specification and Design of a Distributed Electronic
Funds-Transfer System,” (to appear in the special issue of IEEE Transactions on
Computers, on Parallel and Distributed Algorithms).

