A Composition Theorem About Fixed Points

Notes on UNITY: 03-88

Jayadev Misra*
Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712
(512) 471-9547
misra@cs.utexas.edu

9/14/88

Let F,G be arbitrary programs, T,p,q be predicates, and F.FP be the fixed point predicate of F.

We prove three results of the following from where \circ is unless, ensures, or \mapsto .

$$T \Rightarrow F.FP,$$

$$T \text{ is stable in } G,$$

$$p \circ q \text{ in } G$$

$$\overline{(T \wedge p) \circ (T \wedge q) \text{ in } F \parallel G}$$

Theorem 1:

$$\begin{array}{c} T \Rightarrow \textit{F.FP}, \\ T \text{ is stable in } G, \\ p \textit{ unless } q \text{ in } G \\ \hline T \ \land \ p \textit{ unless } T \ \land \ q \text{ in } F \ \llbracket \ G \end{array}$$

Proof:

$$\begin{array}{lll} (T \wedge p) \wedge F.FP \text{ is stable in } F & \text{, stability at fixed point (Section 3.6.4 of [1])} \\ T \wedge p \text{ is stable in } F & \text{, } T \wedge F.FP = T \text{ from } T \Rightarrow F.FP \\ p \textit{ unless } q \text{ in } G & \text{, given} \\ T \text{ is stable in } G & \text{, given} \\ T \wedge P \textit{ unless } T \wedge q \text{ in } G & \text{, conjunction of the above two} \\ T \wedge p \textit{ unless } T \wedge q \text{ in } F \parallel G & \text{, corollary to the union} \\ & \text{ theorem on the above and (1)} \end{array}$$

Theorem 2:

$$\begin{array}{c} T \; \Rightarrow \; F.FP, \\ T \; \text{is stable in } G, \\ p \; ensures \; q \; \text{in } G \\ \hline T \; \wedge \; p \; ensures \; T \; \wedge \; q \; \text{in } F \; \| \; G \end{array}$$

 $^{^*}$ This work was partially supported by ONR Contracts N00014-87-K-0510 and N00014-86-0763 and by a grant from the John Simon Guggenheim Foundation.

Proof: Similar to the proof of Theorem 1; replace unless by ensures.

 ∇

Theorem 3:

$$\begin{array}{ccc} T \; \Rightarrow \; F.FP, \\ T \; \text{is stable in } G, \\ p \; \mapsto \; q \; \text{in } G \\ \hline T \; \wedge \; p \; \mapsto \; T \; \wedge \; q \; \text{in } F \; \| \; G \end{array}$$

Proof: We consider the three possible ways in which $p \mapsto q$ in G could have been proven, and we apply induction on the number of *leads-to* inference rules used in this proof.

```
Case 1) p ensures q in G:
                                                                                            , using Theorem 2
                 T \wedge p \text{ ensures } T \wedge q \text{ in } F \parallel G
                 T \ \land \ p \ \mapsto \ T \ \land \ q \ \text{in} \ F \ \llbracket \ G
                                                                                            , using definition of \mapsto
Case 2) p \mapsto r \text{ in } G, r \mapsto q \text{ in } G:
                 T \wedge p \mapsto T \wedge r \text{ in } F \parallel G
                                                                                            , induction hypothesis
                 T \wedge r \mapsto T \wedge q \text{ in } F \parallel G
                                                                                            , induction hypothesis
                 T \wedge p \mapsto T \wedge q \text{ in } F \parallel G
                                                                                            , transitivity on the above two
                \langle \forall m :: p.m \mapsto q \text{ in } G \rangle \text{ and } p = \langle \exists m :: p.m \rangle
Case 3)
                 \begin{array}{lll} \langle \exists \ m \ :: \ T \ \land \ p.m \rangle \ \mapsto \ T \ \land \ q \ \text{in} \ G & , \ \text{disjunction on the above} \\ T \ \land \ \langle \exists \ m \ :: \ p.m \rangle \ \mapsto \ T \ \land \ q \ \text{in} \ G & , \ m \ \text{is not free in} \ T \end{array}
                 T \ \land \ p \ \mapsto \ T \ \land \ q \ \mathrm{in} \ G
                                                                                            , p = \langle \exists m :: p.m \rangle
                                                                                                                                                                 \nabla
```

References

 K. Mani Chandy and Jayadev Misra, Parallel Program Design: A Foundation, Addison-Wesley, 1988.