Proving Unless Properties by Parts Notes on UNITY: 09-89

Jayadev Misra*
Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712
(512) 471-9547
misra@cs.utexas.edu

6/19/89

Consider a property of the form

$$p(x,y) \text{ unless } q(x,y)$$
 (1)

where x, y are program variables.

We show that if the values of x, y are not simultaneously changed—this property is stated formally below—then (1) can be proven in two parts, replacing x by a free variable and replacing y by a free variable, i.e., by proving

$$p(m,y)$$
 unless $q(m,y)$ (2)

and

$$p(x,n)$$
 unless $q(x,n)$ (3)

where m is free in (2) and n is free in (3).

The fact that x, y are not simultaneously changed can be written as,

$$(x,y) = (m,n) \text{ unless } (x \neq m \land y = n) \lor (x = m \land y \neq n)$$

$$(4)$$

Now we show that (1) can be deduced from (2,3,4). Conjunction of (3,4) yields

$$p(x,n) \wedge (x,y) = (m,n) \ unless$$

$$(p(x,n) \wedge x \neq m \wedge y = n) \vee (p(x,n) \wedge x = m \wedge y \neq n) \vee (q(x,n) \wedge x = m \wedge y = n) \vee (q(x,n) \wedge x \neq m \wedge y = n) \vee (q(x,n) \wedge x = m \wedge y \neq n)$$

The lhs is equivalent to

$$p(x,y) \wedge (x,y) = (m,n)$$

 $^{^*}$ This work was partially supported by ONR Contracts N00014-87-K-0510 and N00014-86-0763 and by a grant from the John Simon Guggenheim Foundation.

The rhs implies

$$\begin{array}{ll} (p(x,y) \ \land \ (x,y) \neq (m,n)) \lor \\ ([p(x,n) \ \lor \ q(x,n)] \ \land \ x = m \ \land \ y \neq n) \lor \\ q(x,y) \end{array}$$

So we deduce

$$p(x,y) \wedge (x,y) = (m,n) \text{ unless}$$

$$(p(x,y) \wedge (x,y) \neq (m,n)) \vee$$

$$([p(x,n) \vee q(x,n)] \wedge x = m \wedge y \neq n) \vee$$

$$q(x,y)$$
(5)

Working with (2,4), we similarly deduce

$$p(x,y) \wedge (x,y) = (m,n) \text{ unless}$$

$$(p(x,y) \wedge (x,y) \neq (m,n)) \vee$$

$$([p(m,y) \vee q(m,y)] \wedge x \neq m \wedge y = n) \vee$$

$$q(x,y)$$
(6)

Taking conjunction of (5,6) and simplifying

$$p(x,y) \wedge (x,y) = (m,n) \text{ unless } [p(x,y) \wedge (x,y) \neq (m,n)] \vee q(x,y)$$

Taking disjunction of the above over all m, n (see Notes on Unity 01-88 for the general disjunction rule) yields

Simplifying the first term in the rhs and weakening the second term—by removing $(x,y) \neq (m,n)$ from it—we obtain

```
\begin{array}{lll} p(x,y) \ unless \\ \langle \forall \ m,n \ :: \ \neg p(x,y) \ \lor \ (x,y) \neq (m,n) \ \lor \ q(x,y) \rangle \ \land \\ \langle \exists \ m,n \ :: \ p(x,y) \ \lor \ q(x,y) \rangle \end{array}
```

Simplifying the terms in the rhs,

$$p(x,y) \ unless \\ [\neg p(x,y) \ \lor \ q(x,y) \ \lor \ \langle \forall \ m,n \ :: \ (x,y) \neq (m,n) \rangle] \ \land \ [p(x,y) \ \lor \ q(x,y)]$$

We have as an axiom $(\exists m, n :: (x, y) = (m, n))$. Hence the rhs can be simplified.

$$p(x,y) \ unless \ [\neg p(x,y) \lor q(x,y)] \land \ [p(x,y) \lor q(x,y)]$$
 i.e.,
$$p(x,y) \ unless \ q(x,y)$$

$$\Box$$