
Monotonicity, Stability and Constants
Notes on UNITY: 10-89

Jayadev Misra∗

Department of Computer Sciences

The University of Texas at Austin

Austin, Texas 78712

(512) 471-9547

misra@cs.utexas.edu

12/16/89

An underexploited concept of UNITY is constant. A predicate was defined to be
constant—see Section 3.4.3 of the book—if the predicate and its negation are both sta-
ble. This definition can be extended to arbitrary expressions: expression e is constant if for
all possible values m, e = m is stable. (It follows that a constant predicate is stable.) Some
of the useful properties of constants are given below.

(Constant Definition)

If x is not modified in program F then x is constant in F .

Thus, all local variables of program G are constant in F whenever F, G are disjoint (i.e.,
F, G do not share statements).

(Constant Formation)

Any expression of constants and free variables is constant.

Note that a free variable merely indicates that the property can be instantiated with all
possible values of the free variable; all such instantiations yield expressions consisting of
constants only and hence the expression is constant.

Notation: Henceforth, m,n, k are free variables and x, u, v are program variables.

(Constant Introduction) For a function f over x,

x = m unless x 6= m ∧ f(x) = f(m)
f(x) constant

The constant introduction rule is quite powerful. To see an application, suppose that for
integer valued program variables u, v

(u, v) = (m,n) unless (u, v) = (m− 1, n + 1) ∨ (u, v) = (m + 1, n− 1)
∗This work was partially supported by ONR Contract 26-0679-4200 and by a Texas Advanced Research

Program grant 003658–065.

1



Then we may conclude that u + v is constant because we have,

(u, v) = (m,n) unless (u, v) 6= (m,n) ∧ u + v = m + n

We prove the constant introduction rule in this note as a special case of a more general
result on monotonicity, treated next.

Monotonicity An expression e is monotone with respect to a transitive relation ∼ means,
for all possible values m of e,

e ∼ m stable

That is, e never “decreases” in the relation ∼. Hence

e constant ≡ e is monotone with respect to =

(Note that “=” is transitive.)

Theorem (Monotonicity)

For a transitive relation ∼
x = m unless x 6= m ∧ f(x) ∼ f(m)

f(x) is monotone with respect to ∼
Proof: See appendix. 2

Corollary 1 (Constant Introduction)

x = m unless x 6= m ∧ f(x) = f(m)
f(x) constant

Proof: Set “∼” to “=” in the theorem and use the definition of constant. 2

Corollary 2: For a predicate p over x

x = m unless x 6= m ∧ p(x)
p(x) stable

Proof: The term p(x) is the rhs of the antecedent can be weakened to p(x) ⇐ p(m) where
“⇐,” called “follows from,” is transitive. Hence, from the theorem,

p(x) ⇐ k stable
p(x) ⇐ true stable , setting k to true
p(x) stable , p(x) ≡ [p(x) ⇐ true] 2

Corollary 3: Let “>” be an irreflexive, transitive relation. Suppose a function f satisfies

m > n ⇒ f(m) > f(n)

{There are two different relations “>”—one in the domain of f and the other in the range
of f . We use the same symbol for both.}

x = m unless x > m

f(x) is monotone with respect to >

2



Proof:
x = m unless x > m , antecedent
x = m unless x 6= m ∧ x > m , irreflexivity of “>”
x = m unless x 6= m ∧ f(x) > f(m) , weaken rhs using x > m ⇒ f(x) > f(m)
f is monotone with respect to > , from the theorem using transitivity of “>” 2

Corollary 4:

x = m unless x > m

x is monotone with respect to >

Proof: Set f to the identity function in Corollary 3. 2

Appendix: Proof of the Main Theorem

We prove a more general result.

Theorem: In the following, m does not occur free in q. Let ∼ be transitive.

x = m unless [x 6= m ∧ f(x) ∼ f(m)] ∨ q

f(x) ∼ k unless q

Proof:

Consider any arbitrary k. Take disjunction of the antecedent over all m where f(m) ∼ k.
Applying the disjunction rule—see Notes on UNITY 01–88—gives us

〈∃ m : f(m) ∼ k :: x = m〉
unless

〈∀ m : f(m) ∼ k :: x 6= m ∨ [x 6= m ∧ f(x) ∼ f(m)] ∨ q〉
∧ 〈∃ m : f(m) ∼ k :: [x 6= m ∧ f(x) ∼ f(m)] ∨ q〉

The lhs ≡ f(x) ∼ k
The first term in the rhs

≡ 〈∀ m : f(m) ∼ k :: x 6= m ∨ q〉
≡ q ∨ 〈∀ m : f(m) ∼ k :: x 6= m〉
≡ q ∨ ¬[f(x) ∼ k]

The second term in the rhs
⇒ 〈∃ m :: f(m) ∼ k ∧ f(x) ∼ f(m)〉 ∨ q
⇒ {using transitivity of ∼} 〈∃ m :: f(x) ∼ k〉 ∨ q
≡ f(x) ∼ k ∨ q

Hence rhs
⇒ (q ∨ ¬[f(x) ∼ k]) ∧ (f(x) ∼ k ∨ q)
≡ q

Combining the lhs and the rhs, we obtain
f(x) ∼ k unless q 2

Acknowledgment: Thanks to J. R. Rao for suggestions.

3


