Monotonicity, Stability and Constants
Notes on UNITY: 10-89

Jayadev Misra*
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712

(512) 471-9547

misra@cs.utexas.edu

12/16/89

An underexploited concept of UNITY is constant. A predicate was defined to be
constant—see Section 3.4.3 of the book—if the predicate and its negation are both sta-
ble. This definition can be extended to arbitrary expressions: expression e is constant if for
all possible values m, e = m is stable. (It follows that a constant predicate is stable.) Some
of the useful properties of constants are given below.

(Constant Definition)
If x is not modified in program F' then x is constant in F'.

Thus, all local variables of program G are constant in F' whenever F,G are disjoint (i.e.,
F, G do not share statements).

(Constant Formation)

Any expression of constants and free variables is constant.
Note that a free variable merely indicates that the property can be instantiated with all
possible values of the free variable; all such instantiations yield expressions consisting of
constants only and hence the expression is constant.

Notation: Henceforth, m,n, k are free variables and x,u, v are program variables.

(Constant Introduction) For a function f over z,

x=m unless x#m N f(z)= f(m)
f(z) constant

The constant introduction rule is quite powerful. To see an application, suppose that for
integer valued program variables u, v

(u,v) = (m,n) unless (u,v)=(m—1,n+1) vV (u,v) =(m+1,n—-1)

*This work was partially supported by ONR Contract 26-0679-4200 and by a Texas Advanced Research
Program grant 003658-065.

Then we may conclude that u + v is constant because we have,
(u,v) = (m,n) unless (u,v)# (m,n) AN u+v=m+n

We prove the constant introduction rule in this note as a special case of a more general
result on monotonicity, treated next.

Monotonicity An expression e is monotone with respect to a transitive relation ~ means,
for all possible values m of e,

e ~ m stable
That is, e never “decreases” in the relation ~. Hence
e constant = e is monotone with respect to =
(Note that “=” is transitive.)
Theorem (Monotonicity)

For a transitive relation ~

z=m unless x#m A f(x) ~ f(m)

f(x) is monotone with respect to ~

Proof: See appendix. O

Corollary 1 (Constant Introduction)

x=m unless x#£m A f(x)= f(m)
f(z) constant

Proof: Set “~” to “=” in the theorem and use the definition of constant. O

Corollary 2: For a predicate p over x

x=m unless ©#m N p(x)
p(x) stable

Proof: The term p(z) is the rhs of the antecedent can be weakened to p(x) < p(m) where
“«=" called “follows from,” is transitive. Hence, from the theorem,

p(z) < k stable
p(x) < true stable , setting k to true
p(x) stable ,p(x) = [p(z) < true] a

Corollary 3: Let “>” be an irreflexive, transitive relation. Suppose a function f satisfies
m>n = f(m)> f(n)

{There are two different relations “>”—one in the domain of f and the other in the range
of f. We use the same symbol for both.}

r=m unless T>m

f(x) is monotone with respect to >

Proof:

r=m unless T >m , antecedent

xr=m wunless x#m N x>m , irreflexivity of “>”

x=m unless x#m A f(x)> f(m) , weaken rhs using z >m = f(z) > f(m)

f is monotone with respect to > , from the theorem using transitivity of “>” O

Corollary 4:

Tz =m unless T>m

x is monotone with respect to >
Proof: Set f to the identity function in Corollary 3.]
Appendix: Proof of the Main Theorem
We prove a more general result.

Theorem: In the following, m does not occur free in q. Let ~ be transitive.

x=m unless [x£m A f(x) ~ f(m)] V ¢
f@) ~ k wunless ¢

Proof:

Consider any arbitrary k. Take disjunction of the antecedent over all m where f(m) ~ k.
Applying the disjunction rule—see Notes on UNITY 01-88—gives us

Gm:f(rrlz)wk: nox=m)
o fm) ~ B s zdm v [Em A f@) ~ fm)] Vg
A@Em o fim) ~k o [zFEm A flx) ~ f(m)] Voq)

Thelhs = f(z) ~ k

The first term in the rhs

Vm : f(m) ~k = z#m V q
gV Vm : f(m) ~ k = x#m)
gV lf(m) ~ K

The second term in the rhs

= (@dm = fm) ~ kA f(z) ~ f(m)) V q
= {using transitivity of ~} (I m = f(x) ~ k) V ¢
= fl@) ~k Vg
Hence rhs
= (¢ Vv lf(@) ~ k) A (flz) ~ Kk V q)
= 49
Combining the lhs and the rhs, we obtain
f@) ~ k wunless q a

Acknowledgment: Thanks to J. R. Rao for suggestions.

