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The definition of ensures in a UNITY program is tied to the set of statements in the
program. This seems to be too restrictive because “semantically equivalent” programs
that consist of different statements may not have the same ensures properties: In this
context, two programs are semantically equivalent if all possible sequence of states, arising
in fair executions, are identical for both programs (formal definitions are given below).
Thus, semantically equivalent programs have the same unless and leads-to properties. We
show that this notion of semantic equivalence is too coarse. In particular, we show two
semantically equivalent programs that exhibit different behavior when composed with a
third program; ensures properties of the two programs, however, are distinct. We claim
that ensures provides a finer distinction that is essential if we have to deduce progress
properties of a composite program from the properties of its components.

Consider a program F , whose state transitions are shown pictorially in Figure 1. The
program has three possible states—0,1,2—and two transitions (i.e., statements)—α, β. Any
transition can be applied in any state and it results in a unique next state; a transition that
leaves the state unchanged is not shown in Figure 1. The initial state is 0.

A fair execution sequence is an infinite sequence of transitions in which each transition—
α and β for F—appears infinitely often. A fair history, corresponding to an initial state
and a fair execution sequence, is an infinite sequence of states in which the first state is
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Figure 1: State transitions in Program F
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Figure 2: Program G
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Figure 3: Program H

the given initial state and each subsequent state is obtained by applying the next transition
from the given fair execution sequence to the current state.

Observation: Every fair history of program F is of the form O 1∗ 2w, and vice versa
(where 1∗ is a finite sequence of 1s and 2w is the infinite sequence of 2s).

Consider program G given in Figure 2. It has the same set of states and the same initial
state as F . It has two transitions, α′ and β′, that nearly correspond to α, β, respectively:
In every state except state 1, (α, α′) and (β, β′) result in identical next states.
Observation: Every fair history of program G is of the form 0 1∗ 2w, and vice versa.

Thus, programs F and G cannot be distinguished by their fair histories. In particular,
they have the same set of unless and leads-to properties. Now consider program H given in
Figure 3; it has one transition—γ—and it has the same states: 0,1,2.

Consider compositions of programs F, H and G,H. The composition of F,H—written
as F [] H in UNITY—consists of the three transitions α, β, γ; similarly, for G [] H.

Observation: Fair histories of F [] H and G [] H are different.

Proof: We show that (0 1 1)w is a fair history of F [] H, but it is not a fair history of
G [] H. To see that (0 1 1)w is a fair history of F [] H consider its fair execution sequence
(β α γ)w. To see that (0 1 1)w is not a fair history of G [] H: Every fair execution sequence
in G [] H contains α′—by definition—and application of α′ in state 0 or state 1 results in
state 2; hence, every fair history of G [] H contains a “2”. 2

From this proof it is clear that state 2 is eventually reached in every fair execution in
G [] H, though this claim is not true for F [] H. Equating programs by their fair histories
is too coarse for such deductions. Programs F, G are distinguished by ensures:

(State 0 ∨ State 1) ensures State 2 in G
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A similar propety does not hold in F . Also we have

(State 0 ∨ State 1) stable in H.

Hence, we can conclude, applying the union theorem, that

(State 0 ∨ State 1) ensures State 2 in G [] H

and hence,

(State 0 ∨ State 1) 7→ State 2 in G [] H.

No such property holds for F [] H.
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