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1 Problem Statement

Consider a set of asynchronous processes where each process executes a sequence of phases; a process
begins its next phase only upon completion of its previous phase. What constitutes a phase is
irrelevant for our purposes. It is required to design a synchronization mechanism which guarantees
that:

e No process begins its (k + 1)*" phase until all processes have completed their k*phase, k > 0.
(Initially, all processes are assumed to have completed their 0** phase.)

e No process will be permanently blocked from executing its (k+ 1) phase if all processes have
completed their k** phase, k > 0.

Assume that the processes communicate through shared variables; contentions for access (read
or write) to a shared variable by different processes are resolved arbitrarily but fairly (i.e., any
process attempting to read/write a shared variable will do so eventually). Nothing may be assumed
about the initial values of the shared variables. In the absence of this requirement, the following
simple algorithm suffices: A counter variable ¢ is initially 0; ¢ is incremented by 1 whenever a
process completes a phase; a process begins its (k + 1) phase only if ¢ > k x N, where N is the
number of processes. One of the applications of phase synchronization is to initialize the variables
of a multiprocess system before any variable is read, where different processes initialize different
portions of the shared store. Here, initialization may be thought of as the first phase and regular
computation as the second phase. In order to solve such problems, we assume nothing about the
initial values of variables.

Phase synchronization arises in a variety of problems (in addition to the shared store initialization
problem described above). It is a basic paradigm for constructing synchronous systems out of
asynchronous components: A PRAM, for instance, consists of processes each of which read values
from a common store, compute and write to the common store in one step; steps are synchronized
in the sense that no process begins its next step until all processes have completed their current
step. Another application of phase synchronization is to abort a computation if a process detects a
condition under which the computation should be aborted; it simply does not complete its current
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phase thus preventing the remaining processes from starting their next phase. It is easy to take
global snapshots [1985] or system checkpoints for a synchronized computation: Upon detecting a
global “checkpoint” condition every process executes a checkpoint phase and upon completion of this
phase, it resumes the regular computation; from the synchronization conditions it follows that no
process starts its checkpoint phase until all processes have detected the checkpoint condition—and
thus frozen their regular computations—and no process resumes the regular computation while some
process is still taking a checkpoint.

Phase synchronization can be solved by using a general synchronization algorithm; see Chapter
14 of [1988]. In this paper we show a very simple scheme for solving this problem.

2 An Informal Description of the Solution

In this section, we propose a solution and prove its correctness in informal terms. The solution is
developed through a series of refinements.

2.1 A Simple Solution

We introduce an array n of integers that is shared among the processes; element n.i corresponds to
process i. Roughly speaking, process i will set n.i to k upon completing its k*"phase, and a process
enters its (k + 1)** phase only after detecting that every n.i is at least k. This basic protocol has
to be modified because a process that is attempting to enter its second phase may detect n.i > 1,
though process ¢ has not yet begun its first phase—in this case, n.t happens to be positive initially.

The synchronization protocol for process i is as follows. Initially it sets all n.j to 0 in arbitrary
order. After completion of its k*"phase, k > 1, process i checks if all n.j are at least k; if such is the
case it begins its (k + 1)** phase; otherwise, it sets n.i to k.

Protocol for process i
e Initially, set each n.j to 0 in arbitrary order.
e Upon completion of the k**phase, k > 1, execute
do(3j = nj<k) — ni:= kod

The test, (35 = n.j < k), requires simultaneous access to all n.j. The next refinement of the
solution (in Section 2.3) removes this requirement.

2.2 Correctness of the Simple Solution

We show that

e (Synchronization) No process begins its (k + 1)** phase, k£ > 0, until all processes complete
their k*"phase, and

e (Progress) If all processes have completed their k*"phase, k > 0, each process will enter its
(k +1)*" phase.

Since all processes have completed their 0" phase initially, these two facts hold for & = 0. In the
following proofs, k > 0.

2.2.1 Synchronization

For processes 4, j, we show that process i does not enter its (k4 1) phase until process j completes
its k*"phase. Process i sets n.j to 0 initially and it detects n.j > k before entering its (k + 1)t*
phase. The only process that sets n.j to a positive value—mnote k > 0—is process j, and process
j sets m.j to values lower than k before completing its k*" phase. Therefore, process j must have
completed its k**phase for the condition n.j > k to hold.



2.2.2 Progress

Suppose that all processes have completed their k**phase, k > 0. We show that every process will
begin its (k + 1)!" phase eventually. When all processes have completed their k*phase either (1)
(Vi = mj>k)holds, or (2) (35 : nj < k) holds, in which case every process i will keep
setting n.i to k. Once n.i > k holds it holds forever because (1) no process other than i writes into
n.i after completing its k*"phase, k > 0, and (2) process i writes k or a higher value into n.i after
completing its k*"phase. Therefore, eventually (¥ j :: n.j > k) holds and continues to hold.
Hence, every process will exit its loop (after the k*"phase) and begin the (k + 1)** phase.

Note: It is not sufficient for process ¢ to set n.i to k only once. In particular, after completion
of its first phase, process i may set n.i to 1, but later n. may be set to 0 during initialization by
another process. We show later that it is sufficient for process i to set n.i to k once provided k
exceeds 1.

2.3 Checking the Shared Variables Asynchronously
2.3.1 A Refined Solution

In the solution of Section 2.1, a process tests all n.j simultaneously. We show that these variables
may be tested one by one; once a process detects that n.j > k, for some j, the process need not test
n.j again before entering its (k + 1)t phase. We introduce a local variable, s.i, of process i that is
used to store a set of process indices; it remains for process i to test n.j for all j in s.i. The protocol
for process i upon completing its k"phase, k > 0, is as follows.

s.i := set of all process indices;
do ([ j
jE€si Anj<k — ni:=k
lj€si ANnj>k — si,ni = si—{jhLk
)
od

Note on notation: We use “| j :” to denote that the body of the loop—until “)”—should
be instantiated over all process indices. Thus, the loop contains two guarded commands for each
process.

2.3.2 Proof of Synchronization

We show that at any point after process i assigns to s.i upon completing its k**phase and before it
enters its (k + 1) phase, all processes outside s.i have completed their k**phase. The assignment
to s.i of all process indices, after process ¢ completes its k" phase, establishes this assertion. Now,
process ¢ sets n.j to 0 initially; no process other than j sets n.j to a positive value—note, k > 0—
and process j sets n.j to k, or a higher value, only after completing its k*"phase. Thus, if process
i detects n.j > k for some j in s.i, then process j has completed its k*"phase. Process i enters its
(k + 1)*" phase only when s.i is empty (to see this, take the conjunction of the negation of all the
guards in the loop). Hence, all processes have completed their k*"phase by then.

2.3.3 Proof of Progress

After all processes complete their k*"phase a process i that is executing its loop will set n.i to k
and n.i will never be reset to a lower value. Therefore, (V j :: n.j > k) will hold eventually and
continue to hold thereafter. Therefore every process will eventually complete its loop.

Note: These informal, operational proofs should not be taken too seriously (see a formal proof in
Section 4). Such proofs can be employed to prove many incorrect programs as well. The reader may
consider the following variation of the solution where the assignment



sid,nd = si—{jhk
is replaced by
s = sa—{j}

Is the solution correct? Do the proofs still go through? |

2.4 Setting n.i only once, for £ > 1

The variable n.i need be set only once following completion of the k**phase by process i, for k > 1
(but not & = 1). To see this, note that when process i completes its k*"phase all processes have
completed their (k—1)*" phase; if (k—1) > 1—i.e., k > 1—no process other than process i will write
into n.i. Hence process ¢ need write into n.t only once because this value will not be overwritten by
another process. Thus, the protocol for process ¢ upon completion of its k**phase, k > 1, is

s.i := set of all process indices; n.i = k
do ([J
j€si A nj<k — skip
ljesi Anj>k — si = si—{j}
)
od

Note that this optimization does not apply for k& = 1 because processes other than process i write
into n.4 upon completion of their 0*” phase (i.e., during their initializations).

2.5 A Shortcut in Testing

Suppose process i determines following its k**phase, k > 0, that n.j > k, for some process j. Then
clearly process j has completed its (k+1)*" phase. Process j could not have begun its (k+1)* phase
until all processes completed their k**phase. Therefore, process 7 can then assert that all processes
have completed their k**phase. This observation leads to the following protocol for process i upon
completing its k" phase.

kth

e upon completion of the first phase execute
s.i := set of all process indices;
do (K] J
j€si Anj<l—mni:=1

[j€si ANnj=1—si,ni = si—{j}1
[ji€si Anj>1—si := ¢
)

od

e upon completion of the k*phase, k > 1, execute
s.i := set of all process indices; n.i := k;
do ([
j€si A nj<k— skip
[j€si Anj=k—si:= si—{j}
lj€si Anj>k—si:= ¢
)
od

Note: The alert reader should wonder why n.i is not being set to 1 along with the assignment
s.i := ¢, in the first case. o



2.6 Computing Modulo 3

The given solution requires elements of n to assume successively larger values as the phase numbers
increase with the progress of computation. We show that all n.i can be computed in modulo 3
arithmetic.

We note that whenever process i tests n.j after completing its k'"phase, k > 0,

k—1<nj<k+1.

To see the upper bound, since process i has not begun its (k + 1)** phase—and hence, it has not
completed its (k+1)** phase—process j has not begun (nor completed) its (k+2)*" phase; therefore,
n.j < k4 1. Also, when process k started its k'"phase, k > 1, it detected n.j > (k — 1) prior to
it, and since all processes have completed their first phase, n.j does not decrease thereafter. For
k=1, nj > (k—1) =0, because process 7 must have initialized n.j to 0 and no process sets n.j to
a negative value.

As n.j can assume only three possible values—k — 1,k, k + 1—whenever process i tests n.j
following its k"phase, k > 0, we may replace

n.j <k by mn.jmod3=%k—1mod3

Similarly, the other tests involving n.j can be replaced. We introduce variables m.j, where m.j = n.j
mod 3. The tests within each loop can be written using m.js. Now the variables n.js can be
eliminated because they are auxiliary variables (they do not appear in tests or assignments to other
variables).

2.7 The Complete Algorithm

The protocol followed by process i is as follows.

e Initially, set every m.j to 0 (in arbitrary order).
e Upon completion of the first phase execute

s.i := set of all process indices;
do ([
je€sts A mj=0—-ma :=1

li€si Amj=1—simi:= si—{j},1
[j€si AN mj=2—si:=¢

)
od

e Upon completion of the kphase, k > 1, execute

s.i := set of all process indices; m.i := k mod 3;
do ([
j€si A mj=(k—1) mod3 — skip
|j€si A mj=kmod3 — 8.4 = s.i—{j}

Ji€esi ANmj=(k+1)mod3— si = ¢

)
od

3 A Formal Description of the Protocol

Operational description of the protocol, as given so far, appeals to many programmers because it
directly prescribes the code for each process. Unfortunately, such descriptions require “operational”
proofs, i.e., reasoning about unfolding sequences of computations—a truly error prone scheme. In



this section we show how to describe a version of the protocol and prove its correctness, formally.
We employ UNITY [2].

There is no program counter in UNITY; therefore we employ variables to keep track of the phases
begun or completed by processes. Let b.i be the last phase begun by process i and e.i be the last
phase ended by process i. (There is no notion of a process in UNITY. Thus, b.i,e.i are simply
program variables that are manipulated in prescribed ways—e.g., e.i is set to b.i to simulate ending
of a phase by process i.) Initially, all b.i,e.i are assumed to be 0, signifying that each process has
(begun and) ended its 0*" phase.

As before, we have the variables s.i,n.i for each process i. In program P.S below, we encode an
abstract version of the protocol of Section 2.3.1; some of the differences from that protocol are as
follows.

e Variable s.i is assigned (to the set of all processes) when a phase is begun; previously, this
assignment was made upon completion of a phase. The difference is trivial.

e Program PS is more general in the sense that n.i is assigned the number of the last completed
phase—e.i—at any time during computation. Previously, this assignment took place only after
completing a phase and before starting the next phase.

e Program PS is less general in the sense that initialization by a process is now carried out as
an atomic step. This is only for convenience; a later refinement could allow for nonatomic
initialization.

e In program PS each phase terminates because e.i is eventually set to b.i, for every i. This
assumption does not affect the correctness of the protocol.

Program PS {Phase Synchronization}
{The programming notation is from Chapter 2 of [2]}

initially (] ¢ : b.d,ed=0,0)

assign
(] ¢ :: {the code for process i}

{process i initializes and begins its phase 1. Here, P is the set of all processes}
(i = bising = 1,P0 if bi=0)

| {set n.i to the number of the last completed phase, any time}
n.g = el

| {end a phase}
ed = bi

| {begin next phase if si=¢ A bi#0}
bi,si = bi+1,P if si=¢ A bi#0

| {remove an index j from s.i if b4 <mn.j A bi#0}
(1j = si=si—{j} if bi<nj A bi0)

end



4 A Formal Proof of Correctness
Our proof obligations are (see Chapter 3 of [2] for logical notations employed here):

e (Synchronization)
Viyj = bi<ej+1)

o (Progress)
Vi = (Vi = ej>k) — bi>k)

4.1 Proof of Synchronization

We will prove the invariants, I1 and 12, given below. The invariants are proven by showing that
initially they hold and each statement execution preserves their truths. We first prove invariant I1;
then, we prove 12 using I1 in its proof.

I = (Vi = 0<ei<bai)

2 =& (Vi = bi#£0 =
Vj = nj<ej ANbi<ej+1 A (je€si V bi<ey))
)

Predicate I1 is an invariant because it holds initially—all e.i, b.i are 0—and execution of each
statement preserves its truth: For any ¢, setting e.7 to b.7, or increasing b.i by 1 preserves 11, and the
remaining statements do not modify the variables named in I1. To prove the invariance of 12 note
that 12 holds initially because every b.i = 0. Next, consider execution of each statement in turn.

Consider the “initialization” statement for some u. The postcondition, 12, may be written using
two conjuncts for ¢ = u and i # u.

bu#0 = (Vj = nj<ej ANbu<ej+1 A (j€su Vbu<ej))
ANViI:i#u = bi#0 = (Vj = nj<ej Abi<ej+1 A (j€siV bi<eyj)))

Using the axiom of assignment we substitute 1, P,0 for b.u,s.u and every n.j, to obtain the
precondition to be proven

140 = (Vj = 0<ej Al<ej+1 A (j€P V 1<eyj))
ANVi iy = bi#£0 = (Vj = 0<ej Abi<ej+1 A (j€s.i V bi<ej)).

Using I1, we may conclude that 0 < e.j and 1 <e.j + 1. Also, j € P for all j. Hence, the required
precondition follows from I12.

Execution of n.i := e.i, for some i, preserves n.i < e.i, and hence preserves 12. Execution of e.i :=
b.i, for some i, has the effect of—using [1—either increasing e.i or leaving it unchanged; in either
case 12 is preserved. The statement that assigns to b.z and s.i is executed under the precondition
s.i=¢ A bi#0; hence we conclude from I2 that the precondition (V j :: n.j <ej A bi<e.j)
holds prior to execution of this statement. Since the execution of the statement increases b.i by 1,
(Vj = bi<ej+1)holds as a postcondition, and, since s.7 is set to P, (V j :: j € s.i) holds as
a postcondition; thus, 12 holds as a postcondition. The statement that removes j from s.i is carried
out under the precondition b.i < n.j and b.i # 0. Using 12 as a precondition, we conclude

bi#0 = nj<ej = {usingb.i<nj} bi<ej



Hence b.: < e.j holds as a postcondition, thus preserving 12.
The proof of synchronization—that for all 4, j, b.7 < e.j + 1—follows by considering two cases:
b.i=0 and b.7i # 0.

bi=0 = bi<1 = {ej>0fromIl} bi<ej+1
bi#0 = {fromI2} bi<ej+1.

4.2 Proof of Progress

53}
(3

We claim that the following properties hold for program PS. (In each property is a free variable
signifying that the property holds for all 7. In property A5, variable “A” is free, signifying that A5
holds for all A.)

Al. bi>0 ensures b.i>0

A2, (VEk : k>0 = ei>k ensures ei>k A ni>k)
A3, (VEk : k>0 = ei>k A ni>k stable)
Ad. VEk : k>0 = bi>k A si=¢ ensures bi>k)
A5, (Vk: k>0

bi>k AN (Vj = nj>k) ANsi=ANsi#¢

ensures
bi>k AN {Vj = nj>k) N siCA
)

A property of the form p ensures q is proven for a program by showing that (1) for each statement
s in the program, {p A =q} s {p V ¢} holds, and (2) there is a statement ¢ in the program for which
{p N —¢} t {q} holds; the statement ¢ “establishes” the property. We note that Al is established
by the initialization statement for ¢, A2 by the statement n.i := e.i, A4 by the statement that
assigns to b.7 and s.i, and A5 by the statement that removes an element from s.i. We leave the
proof of stability in A3 and the remaining proofs that each property is “suitably preserved” by each
statement, to the reader.

From A1-A5, we derive for every i and k > 0

A6. bi>k AN NVj u nj>k) — bi>k
Proof: We consider two cases: s.i = ¢ and s.i # ¢. Applying disjunction to A6.1, A6.2,
we get A6.

A6.1) si=¢: bi>k AN NVj = nj>k) AN si=¢ — bi>k

bi>k AN Nj = nj>k) A si=¢
—  {A4, using the definition of —}
bi>k
AG2) si#A¢: bi>k A NVj = nj>k) A sit¢ — bi>k

bi>k AN (Nj = nj>ky ANsi#to AN si=A
—  {Ab, using the definition of —}

bi>k AN (Vj = nj>k) NsiCA
= {predicate calculus}

bi>k ANNj = nj>k) Nsi#to A siCA)
Y bi>k AN NVj = nj>k) A si=¢)

Using the induction rule—finite sets, s.i, are well founded under subset ordering—
bi>k N Nj = nj>k) ANsito —
bi>k N (Nj = nj>k) A si=¢

Applying transitivity with A6.1, we get



bi>k A (Vi = nj>k) A si#té — bi>k O

Now we prove the progress property, A7, for every i and k > 0.
A7. (Progress) Vi = ej>k) — bi>k
A71) k=0 :
Vi = ej>0)
= {e.d <b.i from I1}
bi>0
—  {Al, using the definition of —}
bi>0
A7.2) k>0 : Foranyjandk >0,
ej>k — ej>k ANnj>k
, A2 and using the definition of —
e.j >k AN n.j >k stable
, A3
VMj = ej>k)— (Nj = ej>k AN nj>k)
, completion rule on the above two
Rewriting the consequence
Vi = ej=k)A{NMj = nji>k)
= {(Vj e.j > k) = e.i >k, for aspecific i}
ei>k N (Vj n.j > k)
= {from I1, b.i > e.i}
bi>k N Nj = nj>k)

—  {from A6}
bi>k
Thus, Vi = ej>k) — bi>k a
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