
Auxiliary Variables
Notes on UNITY: 15-90

Jayadev Misra∗

Department of Computer Sciences

The University of Texas at Austin

Austin, Texas 78712

(512) 471-9547

misra@cs.utexas.edu

7/10/90

1 Introduction

Auxiliary variables are usually employed to record the history of a computation, and,
thereby, allow reasoning over the entire computation history. They are typically defined
by augmenting the program text; if, for instance, x is a program variable and y is a variable
that counts the number of times x has changed value then y may be defined by:

• initially setting y to 0 and,

• transforming a statement of the form
x := e
to
x := e ‖ y := y + 1 if x 6= e

In this note we show (1) how auxiliary variables can be defined directly without resorting
to program text, and (2) how they can be employed to state program properties that are
not directly expressible in the UNITY-logic.

2 Defining Auxiliary Variables

The auxiliary variable y, as described above, may be defined as follows (m,n are free vari-
ables):

initially y = 0
x = m ∧ y = n unless x 6= m ∧ y = n + 1

We give a few more examples. In the following, m,n, r, S are free variables.
∗This material is based in part upon work supported by the Texas Advanced Research Program under

Grant No. 003658–065 and by the Office of Naval Research Contract N00014-90-J-1640

1



• Let x, y be integer valued program variables. Let the auxiliary variable c count the
number of assignments to x, y that results in x > y.

initially c = 0
(x, y) = (m,n) ∧ c = r unless (x, y) 6= (m,n) ∧ [(x > y ∧ c = r+1) ∨ (x ≤ y ∧ c = r)]

• Let x be a program variable. Let the auxiliary variable s be the sequence of distinct
values assumed by x.

initially s = 〈〈x〉〉 {〈〈x〉〉 is the singleton sequence consisting of the value of x}
x = m ∧ s = S unless x 6= m ∧ s = S;x {; is concatenation}

• Let t be a semaphore. Let the auxiliary variables u, d for (up, down) be the number
of times t has been increased and decreased, respectively.

initially u, d = 0, 0
t = m ∧ u = n unless (t < m ∧ u = n) ∨ (t = m + 1 ∧ u = n + 1)
t = m ∧ d = r unless (t > m ∧ d = r) ∨ (t = m− 1 ∧ d = r + 1)

(The fact that t remains nonnegative—i.e., invariant t ≥ 0—may be stated separately.)

We use the definitions of u, d to prove that t − u + d is constant. (Thus, t − u + d is
always equal to the initial value of t, since u, d are initially 0.)

t = m ∧ u = n ∧ d = r unless (t = m− 1 ∧ u = n ∧ d = r + 1) ∨
(t = m + 1 ∧ u = n + 1 ∧ d = r)
, conjunction of the two unlesses

(t, u, d) = (m,n, r) unless (t, u, d) 6= (m,n, r) ∧ t− u + d = m− n + r
, consequence weakening

t− u + d constant , constant introduction (see [1])

3 Specifications Using Auxiliary Variables

A number of program properties that cannot be directly specified using UNITY-logic may
be specified if we assume the existence of appropriate auxiliary variables. Some examples
follow.

• Predicate p is eventually stable (i.e., eventually p remains true forever; in linear tem-
poral logic this property is written as 32 p):
We postulate the existence of an auxiliary boolean variable b satisfying

true 7→ p ∧ b ,
p ∧ b stable

• Once variable x exceeds 10 it remains positive: (Note that by observing the value of
x in a given state—say x = 5—it is impossible to predict if x will be positive in the
subsequent states.)
We postulate an auxiliary boolean variable b satisfying

x > 10 ⇒ b ,
b ∧ x > 0 stable

2



• Once predicate p holds either it holds forever or q becomes true eventually:
We postulate an auxiliary boolean variable b that becomes true whenever p is falsified.

p unless b ,
b 7→ q

• Either p 7→ q or r 7→ s in a given program:
We postulate an auxiliary boolean variable b where

b constant,
p ∧ b 7→ q ,
r ∧ ¬b 7→ s

• If predicate p holds in the ith step of an execution and predicate r in the kth step
of the execution, k ≥ i, then predicate q holds in the jth execution step, for some j,
i ≤ j ≤ k. Note that if p and r hold simultaneously then q also holds at that step.
We postulate an integer valued auxiliary variable k, satisfying

p ⇒ k ≤ 0 , r ⇒ k ≥ 0 , k = 0 ≡ q,
k < 0 unless k = 0

It is not obvious that this definition captures the intent. Therefore, we will show that
in any valid execution—i.e., in which there is a q “between” every pair of p, r—a value can
be assigned to k at each execution step such that the above properties hold. Conversely,
we show that k cannot be assigned value satisfying the above properties in any invalid
execution.

First, we show how to assign values to k in a valid execution. In the following pi, qi, ri

etc. denote that the corresponding predicate holds after the ith computation step (initially,
0th step has completed). We write ki to denote k’s value after the ith step.

k0 = 0 if q0 ∼ −1 if p0 ∧ ¬q0 ∼ 1 if ¬p0 ∧ ¬q0

and for i > 0,

ki = 0 if qi ∼
−1 if (pi ∧ ¬qi) ∨ (¬pi ∧ ¬qi ∧ ¬ri ∧ ki−1 < 0) ∼
1 if (ri ∧ ¬qi) ∨ (¬pi ∧ ¬qi ∧ ¬ri ∧ ki−1 ≥ 0)

Note: The definition for ki excludes the condition pi ∧ ¬qi ∧ ri, because this is impossible
in a valid execution sequence.

It can be shown, using induction on i, that for all i,

pi ⇒ ki ≤ 0 , ri ⇒ ki ≥ 0, and ki = 0 ≡ qi

The remaining property to prove is: k < 0 unless k = 0, which is equivalent to

kt < 0 ⇒ kt+1 ≤ 0, for all t, t ≥ 0.

The proof uses the following three facts that follow from the defining equations for k. For
all i,

1. k0 < 0 ⇒ p0

3



2. ki−1 ≥ 0 ∧ ki < 0 ⇒ pi

3. ki−1 < 0 ∧ ¬qi ∧ ¬ri ⇒ ki < 0

Given kt < 0, let u be the smallest index such that

〈∀ s : u ≤ s ≤ t :: ks < 0〉

Clearly u exists and u ≤ t, because kt < 0. Now,

if u = 0 then k0 < 0 and hence p0 holds, from (1);
if u > 0 then ku−1 ≥ 0 (because u is the smallest index) and hence, from (2), pu holds.

Thus, in either case, pu holds. Also, since

ki < 0 ⇒ ¬qi

we have 〈∀ s : u ≤ s ≤ t :: ¬qs〉. Now consider the following three possibilities for
(t + 1).

Case 1) qt+1: Then kt+1 = 0
Case 2) rt+1: Since pu, 〈∀ s : u ≤ s ≤ t :: ¬qs〉 and rt+1 hold, we have qt+1 because

the sequence is valid. Hence kt+1 = 0.
Case 3) ¬qt+1 ∧ ¬rt+1: Since kt < 0, from (3), kt+1 < 0.
Thus, in all cases kt+1 ≤ 0.

It is not hard to show that in an invalid sequence k cannot be assigned values satisfying
the given properties.

4 References

1. “Monotonicity, Stability and Constants,” J. Misra, Notes on UNITY: 10-89, Austin,
Texas, December 16, 1989.

4


