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1 Introduction

The question considered in this note is this: Under what condition is a progress property
of program F preserved when F is composed with another program? For safety properties
and progress properties of the form p ensures q, the corresponding question is answered
by the union theorem. For general progress properties, however, there seems to be no easy
answer; plausible rules, such as the following, are all invalid.

p 7→ q in F , p stable in G

p 7→ q in F [] G

p 7→ q in F , p 7→ q in G

p 7→ q in F [] G

One restriction we can put on G is that it should not write into any variable that it shares
with F . It is then true that p 7→ q in F [] G if p 7→ q in F ; this is, in fact, a special case of
the superposition theorem [1]. However, this is a stringent restriction on G. We propose a
rule whose moral is “progress is achieved when everyone pushes in the same direction.” The
proposed rule is obtained by simplifying and generalizing a result due to Ambuj Singh [2].

The inference rule, given below, tells us when p 7→ q in F [] G can be established from
p 7→ q in F . The condition is that both F and G should only “decrease” the values of
their shared variables along a well-founded ordering. Formally, let x be the variables shared
between F and G and “<” is a well-founded ordering relation among the values of x where
p ∧ ¬q holds. We assume that p names no program variables of G other than x (if it does,
all such variables are treated free in interpreting p 7→ q in F ; they should be renamed to
avoid name clashes with G’s variables). In the following, m is free.

p 7→ q in F ,
p ∧ x = m unless (p ∧ x < m) ∨ q in F [] G

p 7→ q in F [] G
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To see the validity of this rule in operational terms, consider any execution of F [] G
starting from a state where p holds. If G changes the value of x infinite number of times in
this execution then, from p∧x = m unless (p∧x < m)∨q, eventually q will hold (because as
long as p holds the value of x decreases each time that G changes it and F does not increase
x; from well-foundedness, x cannot decrease forever and hence, q will be established). If G
changes x only a finite number of times and q has not been established by the time G last
changes x then p holds at that point—again from the given unless property; G no longer
interferes by changing x and hence, from p 7→ q in F , eventually q is established.

2 Proof of the Inference Rule

Consider a predicate p and a program G. The variables named in p are either (1) program
variables of G, (2) bound variables or (3) free variables. Let z be the set of program variables
of G named in p. Then in G, once p holds it continues to hold as long as variables in z do
not change their values. That is (in the following, m is free),

Axiom A :: p ∧ z = m unless z 6= m in G

Note: The above axiom still holds if z is a superset of all program variables of G named
in p. 2

Let F, G share variables x, i.e., each variable in x is a program variable of both F and G.
Let predicate p name only program variables of F , and free or bound variables; in particular,
p does not name any program variable of G other than x.

Lemma 1:
p unless q in F

p ∧ x = m unless q ∨ x 6= m in F [] G

Proof:
p unless q in F , given
x = m unless x 6= m in F , antireflexivity of unless
p ∧ x = m unless q ∨ x 6= m in F , simple conjunction
p ∧ x = m unless x 6= m in G , Axiom A
p ∧ x = m unless q ∨ x 6= m in F [] G , union theorem on the above two 2

Lemma 2:
p ensures q in F

p ∧ x = m ensures q ∨ x 6= m in F [] G

Proof: Similar to that of Lemma 1. 2

Lemma 3:
p 7→ q in F

p ∧ x = m 7→ q ∨ x 6= m in F [] G

Proof: We apply induction on the structure of the proof of p 7→ q in F .

• p ensures q in F : Result follows from Lemma 2.
• p 7→ r in F and r 7→ q in F :

p ∧ x = m 7→ r ∨ x 6= m in F [] G , induction hypothesis
p ∧ x = m 7→ (r ∧ x = m) ∨ x 6= m in F [] G , rewriting the rhs
r ∧ x = m 7→ q ∨ x 6= m in F [] G , induction hypothesis
p ∧ x = m 7→ q ∨ x 6= m in F [] G , cancellation on the above two
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Note: The predicate r, arising in the proof of p 7→ q in F , cannot name any program
variable of G other than x.

• 〈∀ i :: p.i 7→ q〉 in F where p ≡ 〈∃ i :: p.i〉
p.i ∧ x = m 7→ q ∨ x 6= m in F [] G , induction hypothesis
〈∃ i :: p.i ∧ x = m〉 7→ q ∨ x 6= m in F [] G , disjunction
p ∧ x = m 7→ q ∨ x 6= m in F [] G , rewriting lhs 2

Theorem: Let x be the variables shared between F, G. Let p be a predicate that names
no program variable of G other than x. Let “<” be a well-founded ordering relation among
the values of x where p ∧ ¬q holds. Then,

p 7→ q in F ,
p ∧ x = m unless (p ∧ x < m) ∨ q in F [] G

p 7→ q in F [] G

Proof (due to Edgar Knapp):
p 7→ q in F , given
p ∧ x = m 7→ q ∨ x 6= m in F [] G , above and Lemma 3
p ∧ x = m unless (p ∧ x < m) ∨ q in F [] G , given
p ∧ x = m 7→ [(p ∧ x = m) ∧ (q ∨ x 6= m)] ∨ (p ∧ x < m) ∨ q in F [] G

, PSP on the above two
p ∧ x = m 7→ (p ∧ x < m) ∨ q in F [] G , simplifying the rhs of the above
p 7→ q in F [] G , induction on the above 2

The reader should note that the following plausible rules are all invalid.

•
p unless q in F , p 7→ q in F

p ∧ x = m unless (p ∧ x < m) ∨ q in G

p 7→ q in F [] G

•
p ∧ x = m unless (p ∧ x < m) ∨ q in G
p ∧ x = m 7→ (p ∧ x < m) ∨ q in F

p 7→ q in F [] G
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