Preserving Progress Under Program Composition
Notes on UNITY: 17-90

Jayadev Misra*
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712

(512) 471-9547

misra@cs.utexas.edu

7/17/90

1 Introduction

The question considered in this note is this: Under what condition is a progress property
of program F' preserved when F' is composed with another program? For safety properties
and progress properties of the form p ensures q, the corresponding question is answered
by the union theorem. For general progress properties, however, there seems to be no easy
answer; plausible rules, such as the following, are all invalid.

p — qin F | pstable in G

pr— ginF |G

pr—qinF p+— qinG

pr— qginF|G

One restriction we can put on G is that it should not write into any variable that it shares
with F'. Tt is then true that p — ¢ in F' | G if p — ¢ in F; this is, in fact, a special case of
the superposition theorem [1]. However, this is a stringent restriction on G. We propose a
rule whose moral is “progress is achieved when everyone pushes in the same direction.” The
proposed rule is obtained by simplifying and generalizing a result due to Ambuj Singh [2].

The inference rule, given below, tells us when p — ¢ in F' | G can be established from
p — q in F. The condition is that both F' and G should only “decrease” the values of
their shared variables along a well-founded ordering. Formally, let = be the variables shared
between I and G and “<” is a well-founded ordering relation among the values of « where
p A —q holds. We assume that p names no program variables of G other than z (if it does,
all such variables are treated free in interpreting p — ¢ in F’; they should be renamed to
avoid name clashes with G’s variables). In the following, m is free.

p — qin F,
p ANx=m unless (p N z<m)V ¢ginF |G

p— qginF|G

*This material is based in part upon work supported by the Texas Advanced Research Program under
Grant No. 003658-065 and by the Office of Naval Research Contract N00014-90-J-1640.



To see the validity of this rule in operational terms, consider any execution of F' | G
starting from a state where p holds. If G changes the value of z infinite number of times in
this execution then, from pAx = m unless (pAx < m)Vgq, eventually ¢ will hold (because as
long as p holds the value of x decreases each time that G changes it and F' does not increase
x; from well-foundedness, x cannot decrease forever and hence, ¢ will be established). If G
changes z only a finite number of times and ¢ has not been established by the time G last
changes x then p holds at that point—again from the given unless property; G no longer
interferes by changing x and hence, from p — ¢ in F, eventually ¢ is established.

2 Proof of the Inference Rule

Consider a predicate p and a program G. The variables named in p are either (1) program
variables of G, (2) bound variables or (3) free variables. Let z be the set of program variables
of G named in p. Then in G, once p holds it continues to hold as long as variables in z do
not change their values. That is (in the following, m is free),

Axiom A @ p A z=m unless z#m inG

Note: The above axiom still holds if z is a superset of all program variables of G named
in p. O

Let F, G share variables z, i.e., each variable in z is a program variable of both F' and G.
Let predicate p name only program variables of F', and free or bound variables; in particular,
p does not name any program variable of G other than x.

p unless qin F

Lemma 1:
pANzx=m unless ¢V z# minF|G
Proof:
p unless q in F , given
x=m unless v#m inF , antireflexivity of unless
p AN x=m unless ¢q V x#m inF , simple conjunction
p AN x=m unless t#m inG , Axiom A
p ANzx=m unless ¢ V x#m inF |G ,union theorem on the above two O
L 9 p ensures qin F
emma 2:
p AN x=m ensures ¢ V x#minF |G
Proof: Similar to that of Lemma 1. O
Lemma 3: p gk

pANz=m — gqVzr##minF|G
Proof: We apply induction on the structure of the proof of p +— ¢ in F.

e p ensures ¢ in F: Result follows from Lemma 2.
e p—r inFandr — ¢in F:

pANz=mw—rVzez#m inF]|G , induction hypothesis
pAz=m—(r Ax=m)Ver#m nF]|G , rewriting the rhs
rAz=m—gqgVaez#m inF|G , induction hypothesis
pANz=mr—qgVarx#tm inF]|G , cancellation on the above two



Note: The predicate r, arising in the proof of p — ¢ in F, cannot name any program
variable of G other than z.

e (Vi = piw— q) inF wherep = (34 p.3)
pi AN x=m —qVaz#Em inF|G , induction hypothesis
Fi = piANz=m)—qVz#m inF|G , disjunction
pAxT=m —qVaoz#m inF|G , rewriting lhs ]

Theorem: Let = be the variables shared between F,G. Let p be a predicate that names
no program variable of G other than z. Let “<” be a well-founded ordering relation among
the values of x where p A —¢ holds. Then,

p — qin F,
p A xz=m unless (p AN x<m)V ¢qinF |G

pr— qginF |G

Proof (due to Edgar Knapp):

p+— q inF , given
pPAT=mr— gV z#m inF|G , above and Lemma 3
p ANxz=munless(p N x<m)V qg inF|G , given
pAT=m— (p Az=m)A(gVatm)VipAzx<m)Vqg nF|G

, PSP on the above two
pAxT=mr (pANax<m) Vg inF|G , simplifying the rhs of the above
p—q inF|G , induction on the above O

The reader should note that the following plausible rules are all invalid.

punlessqin F', p — qin F
p ANx=m unless (p AN x<m) V ¢in G

pr— ginF|G

unless (p A x<m) V ¢in G
— (pANz<m)VginF
p— qginF|G

3 References

1. K. Mani Chandy and Jayadev Misra, Parallel Program Design: A Foundation (Section
7.3.2), Addison-Wesley, 1988.

2. Ambuj Singh, “Leads-to and Program Union,” Notes on UNITY; 06-89, Austin,
Texas, June 20, 1989.



