
A Correction on “A Family of 2-process Mutual Exclusion Algorithms:
Notes on UNITY: 13-90”

Notes on UNITY: 22-90

Angela Dappert-Farquhar
University of Texas, Austin

12/90

On page 6 of the above note, I1. [1 ≤ m ≤ 3 ≡ u] ∧ [3 ≤ m ≤ 4 ⇒ ¬p]
and I2. [1 ≤ n ≤ 3 ≡ v] ∧ [3 ≤ n ≤ 4 ⇒ p]

are listed as invariants of the program 2-mutex, reproduced below.
Program 2-mutex

initially u, v, m, n = false, false, 0, 0
assign
{process u’s program}
u,m := true, 1 if u.h ∧m = 0
p,m := v, 2 if m = 1
m := 3 if ¬p ∧m = 2
u,m := false, 4 if m = 3
p,m := true, 0 if m = 4

{process v’s program}
v, n := true, 1 if v.h ∧ n = 0
p, n := ¬u, 2 if n = 1
n := 3 if p ∧ n = 2
v, n := false, 4 if n = 3
p, n := false, 0 if n = 4

end.
If m = 4 then I1 implies ¬u ∧ ¬p.

In the possible execution {m,n, u = 4, 1, false} p, n := ¬u, 2 if n = 1 {m, p = 4, true},
the postcondition violates the conjunct [3 ≤ m ≤ 4 ⇒ ¬p] of I1.

Analogously, for n = 4 and statement p,m := v, 2 if m = 1 the conjunct [3 ≤ n ≤ 4 ⇒ p]
of I2 can be violated.

These invariants can be modified as follows
I1. [1 ≤ m ≤ 3 ≡ u] ∧ [m = 3 ⇒ ¬p]
I2. [1 ≤ n ≤ 3 ≡ v] ∧ [n = 3 ⇒ p].

1



The proofs of the safety and progress properties are not affected by this change.

2


