
Using Prefix Computation to Add
Notes on UNITY: 26-90

Jayadev Misra∗

Department of Computer Sciences

The University of Texas at Austin

Austin, Texas 78712

(512) 471-9547

misra@cs.utexas.edu

8/8/91

A circuit for adding two n-bit numbers, proposed in [?], uses prefix-computation to generate the carries.
The role of prefix-computation is not made explicit there; nor does the proposed circuit employ the optimal
prefix-computation scheme of Ladner and Fischer [?]. We address these issues in this note; this note is
self-contained.

Let an−1 . . . a0 and bn−1 . . . b0 be two n-bit numbers that are to be added; here, a0, b0 are the lowest bits.
Let ci denote the carry into the ith bit, 0 ≤ i ≤ n.

c0 = 0 (1)

0 ≤ i < n : ci+1 =
{

0 if ai + bi + ci ≤ 1
1 if ai + bi + ci > 1 (2)

Given the carries the sum of the two numbers can be computed in one parallel step. Therefore, we
consider the problem of computing the carries.

A Formula for the Carries

Define a three-valued variable mi for every i, 0 ≤ i < n, as follows. The values assumed by mi are 0, 1 or U .

mi =
{

ai if ai = bi

U if ai 6= bi
(3)

We will express the carries, ci’s, in terms of the mi’s.

Theorem 1: For each i, 0 ≤ i < n,

ci+1 =
{

mi if mi 6= U
ci if mi = U

∗This material is based in part upon work supported by the Texas Advanced Research Program under Grant No. 003658–065
and by the Office of Naval Research Contract N00014-90-J-1640.

1

Proof:

mi = 0
⇒ {From (3): ai = 0, bi = 0}

ai + bi + ci ≤ 1
⇒ {Using (2)}

ci+1 = 0
⇒ {mi = 0}

ci+1 = mi

Similarly, mi = 1 ⇒ ci+1 = mi

Now,

mi = U
⇒ {ai 6= bi. Hence ai + bi = 1}

ai + bi + ci ≤ 1 ≡ ci = 0
⇒ {Using (2)}

ci+1 = 0 ≡ ci = 0
⇒ {ci, ci+1 take one two possible values}

ci+1 = ci 2

The above theorem suggests defining a binary operator, ∗, on three-valued variables. Let,

x ∗ y =
{

y if y 6= U
x if y = U

Then, ci+1 = ci ∗mi

Observation: * is associative.

Proof: Left to the reader.

Theorem 2:

ci = 0 ∗m0 ∗ . . . ∗mi−1 , 0 ≤ i ≤ n

Proof: By induction on i.

i = 0: Both sides in the above equation evaluate to 0.
i + 1, i ≥ 0: From Theorem 1, ci+1 = ci ∗mi. Using the induction hypothesis

to replace ci, we get the desired result. 2

An Addition Circuit

We propose an addition circuit consisting of three stages that computes (in sequence) (1) the mi’s, (2) the
ci’s, and (3) the sum.

We adopt the following encoding for the three values—0, 1, U—using two booleans (henceforth F stands
for “False” and T for “True”): 0 by FF , 1 by FT and U by TF . Thus, the first boolean bit shows if the
value differs from U and the second boolean encodes the values 0,1 by F, T respectively.

Stage 1, computing the mis from the ai’s and bi’s, can be done in one parallel step. With the proposed
encoding, from (3),

2

the first bit of mi = ai 6≡ bi and,
the second bit of mi = ai ∧ bi

(where 0,1—the values of ai, bi—are encoded by F, T respectively).
In Stage 2, we compute prefixes of the form 0 ∗m0 . . . ∗mi−1 for all i, 0 ≤ i ≤ n. Since * is associative,

all these prefix-computations can be completed, using Ladner-Fischer scheme, in O(log n) parallel steps
employing O(n) processors (circuit-elements); moreover only O(n) scalar operations need be performed.
The application of * can be performed by a switching element that directs the appropriate input to the
output. Specifically, let z = x ∗ y. In the following x́, x̀ denote the first and the second boolean bits of x
(similarly for y, z).

z̀ = x̀ ∧ ỳ , ź = ý ∨ (ỳ ∧ x́)

In Stage 3, the sum is computed from the original inputs and the carries in one parallel step. As a minor
optimization, the ith bit of the sum, si, is given by

si =
{

ci if mi 6= U
¬ci if mi = U

(To see this, note that si = (ai+bi+ci) mod 2, i.e., si = ((ai+bi) mod 2+ci) mod 2. And, mi = U ≡ (ai+bi)
mod 2 = 1.) Using our encoding (note that si is a single boolean value whereas mi, ci are encoded by two
boolean values)

si = m̀i 6≡ ći

3

