Using Prefix Computation to Add
Notes on UNITY: 26-90

Jayadev Misra*
Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712
(512) 471-9547
misra@cs.utexas.edu

A circuit for adding two \(n \)-bit numbers, proposed in [?], uses prefix-computation to generate the carries. The role of prefix-computation is not made explicit there; nor does the proposed circuit employ the optimal prefix-computation scheme of Ladner and Fischer [?]. We address these issues in this note; this note is self-contained.

Let \(a_{n-1} \ldots a_0 \) and \(b_{n-1} \ldots b_0 \) be two \(n \)-bit numbers that are to be added; here, \(a_0, b_0 \) are the lowest bits. Let \(c_i \) denote the carry into the \(i^{th} \) bit, \(0 \leq i \leq n \).

\[
\begin{align*}
 c_0 &= 0 \\
 0 \leq i < n : c_{i+1} &= \begin{cases} 0 & \text{if } a_i + b_i + c_i \leq 1 \\ 1 & \text{if } a_i + b_i + c_i > 1 \end{cases}
\end{align*}
\]

Given the carries the sum of the two numbers can be computed in one parallel step. Therefore, we consider the problem of computing the carries.

A Formula for the Carries

Define a three-valued variable \(m_i \) for every \(i, 0 \leq i < n \), as follows. The values assumed by \(m_i \) are 0, 1 or \(U \).

\[
m_i = \begin{cases} a_i & \text{if } a_i = b_i \\ U & \text{if } a_i \neq b_i \end{cases}
\]

We will express the carries, \(c_i \)'s, in terms of the \(m_i \)'s.

Theorem 1: For each \(i, 0 \leq i < n \),

\[
c_{i+1} = \begin{cases} m_i & \text{if } m_i \neq U \\ c_i & \text{if } m_i = U \end{cases}
\]

*This material is based in part upon work supported by the Texas Advanced Research Program under Grant No. 003658-065 and by the Office of Naval Research Contract N00014-90-J-1640.
Proof:
\[m_i = 0 \]
\[\Rightarrow \{ \text{From (3): } a_i = 0, b_i = 0 \} \]
\[a_i + b_i + c_i \leq 1 \]
\[\Rightarrow \{ \text{Using (2)} \} \]
\[c_{i+1} = 0 \]
\[\Rightarrow \{ m_i = 0 \} \]
\[c_{i+1} = m_i \]

Similarly, \(m_i = 1 \) \(\Rightarrow \) \(c_{i+1} = m_i \)

Now,
\[m_i = U \]
\[\Rightarrow \{ a_i \neq b_i. \text{ Hence } a_i + b_i = 1 \} \]
\[a_i + b_i + c_i \leq 1 \equiv c_i = 0 \]
\[\Rightarrow \{ \text{Using (2)} \} \]
\[c_{i+1} = 0 \equiv c_i = 0 \]
\[\Rightarrow \{ c_i, c_{i+1} \text{ take one two possible values} \} \]
\[c_{i+1} = c_i \]

The above theorem suggests defining a binary operator, \(*\), on three-valued variables. Let,

\[x * y = \begin{cases} y & \text{if } y \neq U \\ x & \text{if } y = U \end{cases} \]

Then, \(c_{i+1} = c_i * m_i \)

Observation: \(*\) is associative.

Proof: Left to the reader.

Theorem 2:
\[c_i = 0 * m_0 * \ldots * m_{i-1}, \ 0 \leq i \leq n \]

Proof: By induction on \(i \).

\(i = 0: \) Both sides in the above equation evaluate to 0.
\(i + 1, i \geq 0: \) From Theorem 1, \(c_{i+1} = c_i * m_i \). Using the induction hypothesis to replace \(c_i \), we get the desired result.

An Addition Circuit

We propose an addition circuit consisting of three stages that computes (in sequence) (1) the \(m_i \)'s, (2) the \(c_i \)'s, and (3) the sum.

We adopt the following encoding for the three values—0, 1, \(U \)—using two booleans (henceforth \(F \) stands for “False” and \(T \) for “True”): 0 by \(FF \), 1 by \(FT \) and \(U \) by \(TF \). Thus, the first boolean bit shows if the value differs from \(U \) and the second boolean encodes the values 0, 1 by \(F, T \) respectively.

Stage 1, computing the \(m_i \)'s from the \(a_i \)'s and \(b_i \)'s, can be done in one parallel step. With the proposed encoding, from (3),
the first bit of $m_i = a_i \not\equiv b_i$ and,
the second bit of $m_i = a_i \land b_i$

(where 0,1—the values of a_i, b_i—are encoded by F, T respectively).

In Stage 2, we compute prefixes of the form $0 \ast m_0 \ldots \ast m_{i-1}$ for all i, $0 \leq i \leq n$. Since \ast is associative, all these prefix-computations can be completed, using Ladner-Fischer scheme, in $O(\log n)$ parallel steps employing $O(n)$ processors (circuit-elements); moreover only $O(n)$ scalar operations need be performed. The application of \ast can be performed by a switching element that directs the appropriate input to the output. Specifically, let $z = x \ast y$. In the following x'. x denote the first and the second boolean bits of x (similarly for y, z).

\[
\begin{align*}
'z &= x \land 'y \\
'z &= y \lor (\neg y \land 'x)
\end{align*}
\]

In Stage 3, the sum is computed from the original inputs and the carries in one parallel step. As a minor optimization, the i^{th} bit of the sum, s_i, is given by

\[
s_i = \begin{cases}
 c_i & \text{if } m_i \neq U \\
 \neg c_i & \text{if } m_i = U
\end{cases}
\]

(To see this, note that $s_i = (a_i + b_i + c_i) \mod 2$, i.e., $s_i = ((a_i + b_i) \mod 2 + c_i) \mod 2$. And, $m_i = U \equiv (a_i + b_i) \mod 2 = 1$.) Using our encoding (note that s_i is a single boolean value whereas m_i, c_i are encoded by two boolean values)

\[
s_i = \neg m_i \not\equiv c_i
\]