Using Prefix Computation to Add
Notes on UNITY: 26-90

Jayadev Misra*
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712

(512) 471-9547

misra@cs.utexas.edu

8/8/91

A circuit for adding two n-bit numbers, proposed in [?], uses prefix-computation to generate the carries.
The role of prefix-computation is not made explicit there; nor does the proposed circuit employ the optimal
prefix-computation scheme of Ladner and Fischer [?]. We address these issues in this note; this note is
self-contained.

Let ap_1...a0 and b,,_1 ... by be two n-bit numbers that are to be added; here, ag, by are the lowest bits.
Let ¢; denote the carry into the it bit, 0 < i < n.

00:0 (1)
0 if a;+b;+¢ <1

0<i<n : Ci+1:{1 if a;+bi+e>1 ?

Given the carries the sum of the two numbers can be computed in one parallel step. Therefore, we
consider the problem of computing the carries.

A Formula for the Carries

Define a three-valued variable m; for every i, 0 < i < n, as follows. The values assumed by m; are 0,1 or U.

o a; if CL,L':bz'

We will express the carries, ¢;’s, in terms of the m;’s.

Theorem 1: For each i, 0 <i < mn,

) o m; if ml;«éU
1T o i my=U

*This material is based in part upon work supported by the Texas Advanced Research Program under Grant No. 003658-065
and by the Office of Naval Research Contract N00014-90-J-1640.



Proof:

= {From (3): a; =0, b; =0}
a;+b+¢ <1
= {Using (2)}

cit1 =0
Cit1 = My

Similarly, m; =1 = c¢j41=my
Now,

m; = U
= {a; #b;. Hence a; + b; = 1}
a;+b,+¢ <1 =¢=0
= {Using (2)}

Ci+1 = 0 =¢=0
= {¢;, ¢;y1 take one two possible values}
Cit1 = Cj O

The above theorem suggests defining a binary operator, %, on three-valued variables. Let,

_Jy it y#FU
Ty = { z if y=U
Then, ¢;4+1 = ¢; xm;
Observation: * is associative.

Proof: Left to the reader.

Theorem 2:

ci=0xmg*...xm;_1 ,0<i<n
Proof: By induction on i.
1=0: Both sides in the above equation evaluate to O.
1+ 1,4 > 0: From Theorem 1, ¢;+1 = ¢; * m;. Using the induction hypothesis
to replace c¢;, we get the desired result. O

An Addition Circuit

We propose an addition circuit consisting of three stages that computes (in sequence) (1) the m;’s, (2) the
¢i’s, and (3) the sum.

We adopt the following encoding for the three values—0, 1, U—using two booleans (henceforth F' stands
for “False” and T for “True”): 0 by FF, 1 by FT and U by TF. Thus, the first boolean bit shows if the
value differs from U and the second boolean encodes the values 0,1 by F,T respectively.

Stage 1, computing the m;s from the a;’s and b;’s, can be done in one parallel step. With the proposed
encoding, from (3),



the first bit of m; = a; # b; and,
the second bit of m; = a; A b;

(where 0,1—the values of a;, b;—are encoded by F,T respectively).

In Stage 2, we compute prefixes of the form 0 * mg...* m;_q for all i, 0 < ¢ < n. Since * is associative,
all these prefix-computations can be completed, using Ladner-Fischer scheme, in O(log n) parallel steps
employing O(n) processors (circuit-elements); moreover only O(n) scalar operations need be performed.
The application of * can be performed by a switching element that directs the appropriate input to the
output. Specifically, let z = = * y. In the following &’ "z denote the first and the second boolean bits of =
(similarly for y, z).

=AYy , Z=yV(yAz)

In Stage 3, the sum is computed from the original inputs and the carries in one parallel step. As a minor
optimization, the i*" bit of the sum, s;, is given by

5 — C; if ml;éU
v —C; if mle

(To see this, note that s; = (a;+b;+¢;) mod 2, i.e., s; = ((a;+b;) mod 2+4¢;) mod 2. And, m; = U = (a;+b;)

mod 2 = 1.) Using our encoding (note that s; is a single boolean value whereas m;, ¢; are encoded by two
boolean values)

Si ="m; ¢



