Using Prefix Computation to Add Notes on UNITY: 26-90

Jayadev Misra*
Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712
(512) 471-9547
misra@cs.utexas.edu

8/8/91

A circuit for adding two *n*-bit numbers, proposed in [?], uses prefix-computation to generate the carries. The role of prefix-computation is not made explicit there; nor does the proposed circuit employ the optimal prefix-computation scheme of Ladner and Fischer [?]. We address these issues in this note; this note is self-contained.

Let $a_{n-1} \dots a_0$ and $b_{n-1} \dots b_0$ be two *n*-bit numbers that are to be added; here, a_0, b_0 are the lowest bits. Let c_i denote the carry into the i^{th} bit, $0 \le i \le n$.

$$c_0 = 0 (1)$$

$$0 \le i < n : c_{i+1} = \begin{cases} 0 & \text{if } a_i + b_i + c_i \le 1\\ 1 & \text{if } a_i + b_i + c_i > 1 \end{cases}$$
 (2)

Given the carries the sum of the two numbers can be computed in one parallel step. Therefore, we consider the problem of computing the carries.

A Formula for the Carries

Define a three-valued variable m_i for every $i, 0 \le i < n$, as follows. The values assumed by m_i are 0, 1 or U.

$$m_i = \begin{cases} a_i & \text{if} \quad a_i = b_i \\ U & \text{if} \quad a_i \neq b_i \end{cases}$$
 (3)

We will express the carries, c_i 's, in terms of the m_i 's.

Theorem 1: For each $i, 0 \le i < n$,

$$c_{i+1} = \begin{cases} m_i & \text{if} \quad m_i \neq U \\ c_i & \text{if} \quad m_i = U \end{cases}$$

 $^{^*}$ This material is based in part upon work supported by the Texas Advanced Research Program under Grant No. 003658–065 and by the Office of Naval Research Contract N00014-90-J-1640.

Proof:

$$m_{i} = 0$$

$$\Rightarrow \{\text{From (3):} \quad a_{i} = 0, b_{i} = 0\}$$

$$a_{i} + b_{i} + c_{i} \leq 1$$

$$\Rightarrow \{\text{Using (2)}\}$$

$$c_{i+1} = 0$$

$$\Rightarrow \{m_{i} = 0\}$$

$$c_{i+1} = m_{i}$$

Similarly, $m_i = 1 \implies c_{i+1} = m_i$

Now,

$$m_{i} = U$$

$$\Rightarrow \{a_{i} \neq b_{i}. \text{ Hence } a_{i} + b_{i} = 1\}$$

$$a_{i} + b_{i} + c_{i} \leq 1 \equiv c_{i} = 0$$

$$\Rightarrow \{\text{Using } (2)\}$$

$$c_{i+1} = 0 \equiv c_{i} = 0$$

$$\Rightarrow \{c_{i}, c_{i+1} \text{ take one two possible values}\}$$

The above theorem suggests defining a binary operator, *, on three-valued variables. Let,

$$x * y = \left\{ \begin{array}{ll} y & \text{if} & y \neq U \\ x & \text{if} & y = U \end{array} \right.$$

Then, $c_{i+1} = c_i * m_i$

Observation: * is associative.

Proof: Left to the reader.

Theorem 2:

$$c_i = 0 * m_0 * \dots * m_{i-1}$$
 $, 0 \le i \le n$

Proof: By induction on i.

i=0: Both sides in the above equation evaluate to 0. $i+1, i \geq 0$: From Theorem 1, $c_{i+1} = c_i * m_i$. Using the induction hypothesis to replace c_i , we get the desired result.

An Addition Circuit

We propose an addition circuit consisting of three stages that computes (in sequence) (1) the m_i 's, (2) the c_i 's, and (3) the sum.

We adopt the following encoding for the three values—0, 1, U—using two booleans (henceforth F stands for "False" and T for "True"): 0 by FF, 1 by FT and U by TF. Thus, the first boolean bit shows if the value differs from U and the second boolean encodes the values 0,1 by F,T respectively.

Stage 1, computing the m_i s from the a_i 's and b_i 's, can be done in one parallel step. With the proposed encoding, from (3),

the first bit of $m_i = a_i \not\equiv b_i$ and, the second bit of $m_i = a_i \wedge b_i$

(where 0,1—the values of a_i , b_i —are encoded by F,T respectively).

In Stage 2, we compute prefixes of the form $0 * m_0 \dots * m_{i-1}$ for all $i, 0 \le i \le n$. Since * is associative, all these prefix-computations can be completed, using Ladner-Fischer scheme, in $O(\log n)$ parallel steps employing O(n) processors (circuit-elements); moreover only O(n) scalar operations need be performed. The application of * can be performed by a switching element that directs the appropriate input to the output. Specifically, let z = x * y. In the following x, x denote the first and the second boolean bits of x (similarly for y, z).

$$\dot{z} = \dot{x} \wedge \dot{y}$$
 , $\dot{z} = \dot{y} \vee (\dot{y} \wedge \dot{x})$

In Stage 3, the sum is computed from the original inputs and the carries in one parallel step. As a minor optimization, the i^{th} bit of the sum, s_i , is given by

$$s_i = \begin{cases} c_i & \text{if} \quad m_i \neq U \\ \neg c_i & \text{if} \quad m_i = U \end{cases}$$

(To see this, note that $s_i = (a_i + b_i + c_i) \mod 2$, i.e., $s_i = ((a_i + b_i) \mod 2 + c_i) \mod 2$. And, $m_i = U \equiv (a_i + b_i) \mod 2 = 1$.) Using our encoding (note that s_i is a single boolean value whereas m_i, c_i are encoded by two boolean values)

$$s_i = m_i \not\equiv c_i$$