A Program-Composition Theorem Involving Fixed-Point

Notes on UNITY: 28–91
(This note subsumes UNITY–03)

Jayadev Misra∗

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712
(512) 471-9547
misra@cs.utexas.edu

12/19/91

Theorem:

\[p \circ q \text{ in } G \]

\[p \circ (q \lor \neg F.FP) \text{ in } F \parallel G \]

where \(\circ \) is any UNITY operator (unless, ensures or leads-to) and \(F.FP \) is the fixed-point predicate of \(F \).

The theorem is proven separately for each operator in the following lemmas.

Lemma 1:

\[p \text{ unless } q \text{ in } G \]

\[p \text{ unless } (q \lor \neg F.FP) \text{ in } F \parallel G \]

Proof:

\[p \land F.FP \text{ stable in } F \]

, stability at fixed point

\[p \land \neg F.FP \text{ unless } \neg F.FP \text{ in } F \]

, implication

\[p \text{ unless } F.FP \text{ in } F \]

, simple disjunction

\[p \text{ unless } q \text{ in } G \]

, given

\[p \text{ unless } q \lor \neg F.FP \text{ in } F \parallel G \]

, union theorem

Lemma 2:

\[p \text{ ensures } q \text{ in } G \]

\[p \text{ ensures } (q \lor \neg F.FP) \text{ in } F \parallel G \]

Proof:

\[p \text{ unless } \neg F.FP \text{ in } F \]

, as in the above proof

\[p \text{ ensures } q \text{ in } G \]

, given

\[p \text{ ensures } q \lor \neg F.FP \text{ in } F \parallel G \]

, weakening rhs and using the union theorem

∗This material is based in part upon work supported by the Texas Advanced Research Program under Grant No. 003658–065, by the Office of Naval Research Contract N00014-90-J-1640 and by the National Science Foundation Award CCR–9111912.
Lemma 3: \[p \rightarrow q \text{ in } G \]
\[p \rightarrow (q \lor \neg F.FP) \text{ in } F \parallel G \]

Proof: The proof is by structural induction on \(p \rightarrow q \text{ in } G \).

- \(p \text{ ensures } q \text{ in } G \): follows from Lemma 2
- \(p \rightarrow r \text{ in } G, r \rightarrow q \text{ in } G \):
 \[p \rightarrow r \lor \neg F.FP \text{ in } F \parallel G \text{, induction hypothesis} \]
 \[r \rightarrow q \lor \neg F.FP \text{ in } F \parallel G \text{, induction hypothesis} \]
 \[p \rightarrow q \lor \neg F.FP \text{ in } F \parallel G \text{, cancellation} \]
- \(p.i \rightarrow q \text{ in } G \) where \(p = (\exists i :: p.i) \):
 \[p.i \rightarrow q \lor \neg F.FP \text{ in } F \parallel G \text{, induction hypothesis} \]
 \[(\exists i :: p.i) \rightarrow q \lor \neg F.FP \text{ in } F \parallel G \text{, disjunction} \]

\[\square \]

Corollaries
1. \[p \circ \neg F.FP \text{ in } G \]
 \[p \circ F.FP \text{ in } F \parallel G \]

2. \[p \circ q \text{ in } G \]
 \[r \Rightarrow F.FP \]
 \[p \circ q \lor \neg r \text{ in } F \parallel G \]

Proof:
 \[p \circ q \lor \neg F.FP \text{ in } F \parallel G \text{, from the theorem} \]
 \[p \circ q \lor \neg r \text{ in } F \parallel G \text{, weakening the rhs: } \neg F.FP \Rightarrow \neg r \]

3. \[p \circ q \text{ in } G \]
 \[\neg q \Rightarrow F.FP \]
 \[p \circ q \text{ in } F \parallel G \]

Proof: Replace \(r \) by \(\neg q \) in the above corollary.

4. \{used in UNITY–19, with \(\Rightarrow \) in place of \(\circ \)}
 \[p \circ q \text{ in } G \]
 \[r \Rightarrow F.FP \]
 \[r \text{ unless } b \text{ in } G \]
 \[(p \land r) \circ (q \land r) \lor b \text{ in } F \parallel G \]

Proof:
 \[r \land F.FP \text{ stable in } F \text{, stability at fixed point} \]
 \[r \text{ stable in } F \text{, } r \Rightarrow F.FP \]
 \[(4.1) \text{ r unless } b \text{ in } F \parallel G \text{, union theorem: } r \text{ unless } b \text{ in } G \]
 \[p \circ q \text{ in } G \text{, given} \]
 \[p \circ q \lor \neg r \text{ in } F \parallel G \text{, Corollary 2 with } r \Rightarrow F.FP \]
 \[p \land r \circ (q \land r) \lor b \text{ in } F \parallel G \text{, conjoin (4.1) to the above.} \]

For \textit{unless} and \textit{ensures}, apply conjunction rule
and for \(\Rightarrow \), PSP

2
5. {used in UNITY-03; replace b by $false$ in Corollary (4)}

\[
p \circ q \quad \text{in } G
\]
\[
r \Rightarrow F.FP
\]
\[
r \text{ stable in } G
\]

\[
(p \land r) \circ (q \land r) \quad \text{in } F \parallel G
\]