How to reason with Strong-fairness and No-fairness
Notes on UNITY: 31-92

Jayadev Misra*
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712

(512) 471-9547

misra@cs.utexas.edu

7/2/92

1 The Problem

Some feel that the UNITY-logic is deficient because it embeds a fixed notion of fairness, namely that each
statement be executed infinitely often in any execution. Other notions of fairness, such as every statement
that is enabled infinitely often is executed infinitely often (known as “strong fairness”), or, as long as there
is an enabled statement some (enabled) statement is executed (known as “minimal progress condition,” or
“no-fairness” in this note) might be more appropriate for certain problems. In fact, [3] and [4] allow different
forms of fairness to be specified for different statements of a program.

I believe that the weakest notion of fairness that is adequate to establish “absence of individual starvation”
is the only useful type of fairness. Strong-fairness can be added as an axiom if desired. The advantage of
embedding a particularly weak form of fairness into the logic is that the appropriate logical operators and
the corresponding inference rules can be postulated once for all, and these can be exploited to reduce proof
lengths. As an example, we prove a program from [4] that assumes strong-fairness for some statements,
using UNITY-logic. Later, we show that the proof is still valid if the weak-fairness of UNITY is replaced by
no-fairness (and the same strong-fairness assumption is retained).

Program (reproduced from [4], p. 3)

var integer z,y =0 ;
semaphore sem =1
cobegin loop «; : (P(sem)) ;
B1 o {x = x+1);
n ot (V(sem))
endloop

loop
ag @ (P(sem))
fa i (y == y+1)
72 = (V(sem))
coend endloop

*This material is based in part upon work supported by the Texas Advanced Research Program under Grant No. 003658-219,
by the Office of Naval Research Contract N00014-90-J-1640 and by the National Science Foundation Award CCR-9111912.

It is required to show that assuming strong-fairness for the action at a;—i.e., if sem > 0 holds infinitely
often then the action at a; executes infinitely often—=x grows arbitrarily large.

Notes

1. Lamport assumes strong-fairness for actions at «; and ag. Strong-fairness of the latter action is
unnecessary for this particular proof.

2. Initial values of x,y are irrelevant for the proof.

3. Weak-fairness for the other statements, 1 believe, is assumed by Lamport in constructing his proof.
This is unnecessary; we return to this issue in Section 4.

2 The Mathematical Model

I will model this program—this program is a mathematical object, no doubt, but it is poorly suited for
rigorous analysis—by a UNITY program. In the following, pcy, pco denote the program counters of process
1 and process 2. I have replaced sem by s (since shorter identifiers are preferable for formal manipulations
by hand).

var pci,pes (o, B,7) ;
s$,x,y : integer
initially s,z,y,pc1,pco =1,0,0, 0,
assign
{code for process 1}
s,pc; == s—1,0 if s>0Apc =«
| z,pc1 == z+ 1,7 if pcy =0
| s,pc1 == s+ 1, if pey =
| {code for process 2}
s,pce = s—1,0 if s>0Ape=a
| y,pe2 == y+1,v if pea = [
| s,pc2 == s+ 1« if peg =y
end

The strong-fairness constraint for the first action in the first process is modelled by the axiom

true — s>0 A pcp =«

(SF)

true — pc; =0

Note that true — p is one way of representing that p holds infinitely often.

3 The Proof

We will establish

(P) VMn = z=n+— z=n+1)
Note: A better representation of “x grows arbitrarily large” is
Vn = true — x>n)

This property follows from (P) by applying the induction rule of — .

Proof Outline

1. true — s>0 A pc; =« , see below
true — pc; =0 , using SF
r=nunlessr=n+1 , code inspection
z=nr— (pa=F ANx=n)V z=n+1 , PSP on the above two
pa=0 ANzxz=n— z=n+1 , code inspection for ensures
r=n+— r=n+1 , cancellation on the above two

Proof of (1): true — s>0 A pc; =«

By code inspection prove the following invariant.

Now,

0<s<1 A (pa=aVpoe=a) As=1 = (paa=a A pcz=a)]

s=0
{from the invariant}
per #a V opey #
{pcl € {Oé,ﬂ7’)/} , PC2 € {O[,ﬂ,’}/} }
per =0 V par =7V pea=0V pea =7
{pc1 =B — pcy =+, using code inspection for ensures. Similarly, for pca. Apply cancellation}
pc1 =7 V pca =7
{pc1 =y = s=0, from the invariant. Similarly, for pcs.}
(per =79 AN s=0) V (pca=7 A s=0)
{pc1 =7 AN s=0 — s>0, using code inspection for ensures. Similarly, for pco. Apply
cancellation }
s>0

The given invariant

s=0Vs=1
s>0V s>0
s>0

Applying the substitution axiom,

true — s>0 O

Properties requiring code inspection The following properties have to be proven by code inspection.

2.

3

z=nunlessx=n-+1

.pc1 =08 N x=nensurest=n-+1

4. invariant 0<s<1 A (paa=a V pca=a) A [s=1 = (pc1 =a A pca =)

)
6

. pc1 = B ensures pc; =y

.pcg1 =7 N s=0ensures s >0

Properties (3,5) can be replaced by

(7) pcr =03 AN x=mnensurespci =v N zt=n-+1

Note that (3) follows from (7) by weakening the latter’s rhs to 2 = n + 1. Property (5) does not follow from
(7); we, however, need only

pcr =03 — pcp =7

in the proof. This follows from (7) by

pc1 = 0B A x =mn ensures pcy =y , weakening the rhs of (7)
per=FANxz=n — pcg=r , definition of +—
per =B = pcr = , disjunction over all n 0O

Compositional Proof The proof can be shortened further by employing the union theorem, in particular
to prove the propeties (2,6,7). Since pcy, x are local to process 1, it suffices to prove (2,7) in process 1 only.
For property 6, from the invariant (4) we have,

s =0 unless s > 0 in process 2

Then,
pc1 = A x =0 unless s >0 in process 2 , locality of pc;.

Therefore, it suffices—using the union theorem—to prove property (6) in process 1 alone. Property (4), the
invariant, does require a proof over both processes; it has to follow from the initial conditions and be shown
stable over both processes.

4 No-fairness

The following treatment is inspired by [2]. The progress property, (P), holds even when no fairness is assumed
for any statement of the program besides the strong fairness property, (SF). Fortunately, exactly the same
proof applies; only, the ensures properties have different definitions and they have to be reverified. It is
extremely lucky that all inference rules of UNITY—except the union theorem—continue to hold for the new
ensures. Hence, the proof in Section 3 continues to hold as long as the ensures properties are not proven
compositionally. (As a matter of fact, there is a weaker union theorem for the new ensures that is adequate
for this particular problem.)

For a loop of the form
dofi : 0<i<N : g — A
where g; is the guard of command A;, define

pensures’ ¢ = p AN g =i = g) AN NMi o= {p AN g AN gt A {¢})

Thus, p ensures’ ¢ says that (1) some statement is enabled whenever p A —¢ holds, and (2) execution of
any enabled statement in a state satisfying p A —q establishes q. It is easy to show that the properties of
ensures given in Sec. 3.6.2 of [1] hold for ensures’, as well. (Unless will be defined as before.) Hence, other
derived rules, such as PSP, continue to hold with ensures’.

We have the following weaker union theorem with ensures’.

pensures ¢ in F, pensures q nF |G
p ensures ¢ in F |G

Note that p ensures’ ¢ in F and p unless q in G does not establish p ensures’ ¢ in F' | G. In particular, G
could contain the single statement

true +— skip

which could be executed forever.

Also, the converse of this rule does not hold; p ensures’ ¢ may hold in F' | G though it holds in neither
F nor G. To see this, consider

F @ z2=0— 2 = 2 {if = # 0 this statement execution is skip}
G @ z2=1+— 2 = 2
0 <z ensures >1holds in F' | G , though in neither F nor G.

Finally, a disjunction rule, similar to the disjunction rule for ~—, holds for ensures’ but not ensures.

References

[1] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation. Addison Wesley, 1988.

[2] Charanjit S. Jutla and Josyula R. Rao. On the Design of Proof Rules for Fair Parallel Programs. Formal
Aspects of Computing (submitted).

[3] Simon S. Lam and A. Udaya Shankar. Refinement and Projection of Relational Specifications. Proc.
REX Workshop on Stepwise Refinement of Distributed Systems, Plasmolen-Mook, The Netherlands, May
1989, LNCS series, Springer-Verlag.

[4] Leslie Lamport. A Temporal Logic of Actions. DEC, Systems Research Center, Palo Alto, CA, April
1990.

