
Proof of a Real-Time Mutual-Exclusion Algorithm
Notes on UNITY: 32–92

John Allen Carruth
Jayadev Misra∗

Department of Computer Sciences

The University of Texas at Austin

Austin, Texas 78712

(512) 471-9547

misra@cs.utexas.edu

9/10/92

Abstract

Michael Fischer[2] has proposed a mutual exclusion algorithm that ingeniously exploits real time. We
prove this algorithm using the time-honored technique of establishing an appropriate invariant.

1 Introduction

Michael Fischer[2] has proposed a mutual exclusion algorithm in which real time is used to speed up certain
actions and slow down certain other actions. We prove this algorithm using only the fact that time never
runs backwards. Other important facts about time—that eventually time increases beyond any bound—are
unnecessary for this proof.

The structure of the proof follows the usual pattern of suggesting an invariant, verifying that the suggested
invariant is indeed an invariant and showing that the invariant implies mutual exclusion. The invariant is,
as usual, a state predicate. We introduce some auxiliary variables that simplify reasoning about time: For
a state-predicate p, let p denote the last value of time at which p became true. We call p the punch of p
(the time at which p last punched the clock). We specify the timing constraints of the algorithm succinctly
using such variables.

2 Informal Description of the Algorithm

There are N processes, numbered 1 through N , and a global variable x that assumes an integer value between
0 and N . Figure 1 shows the state transitions of process i, 1 ≤ i ≤ N .

The initial state of the process is e. The process transits from e to a to wait for entry to its critical
section. The edges of the other transitions are labeled with either an assignment—x := i or x := 0—or a
test—x = 0? or x = i?. An assignment on an edge denotes that the state transition is accompanied by an
assignment of the corresponding value to x. A test on an edge denotes that the transition takes place only
if the test succeeds.

Process state is d when it is in the critical section. Assume that all tests and assignments are atomic.
Initially, all processes are in states e and x = 0.

∗This material is based in part upon work supported by the Texas Advanced Research Program under Grant No. 003658–219,
by the Office of Naval Research Contract N00014-90-J-1640 and by the National Science Foundation Award CCR–9111912.

1



e

cb

• d

x := 0

x = i?x := ix = 0?
a

•

•••

Figure 1: The state transitions of a process i, 1 ≤ i ≤ N .

There is no requirement, as yet, that a process transit out of its current state. Thus, a process may stay
forever in e (i.e., never attempting to enter its critical section) or in d, thereby preventing all other processes
from entering their critical sections forever. It is then easy to construct a scenario where two processes are
in their critical sections simultaneously. Timing constraints, given below, guarantee that this possibility is
avoided.

(T1) Transition from b to c is completed within a unit of time. Observe that this transition only requires
assigning a value to x, and, therefore, the transition is entirely within the control of a process.

(T2) Transition from c to d takes more than one unit of time. This requirement may be implemented by
process i waiting for more than a unit of time before testing, x = i?. Observe that this transition may
never complete.

We will show that mutual exclusion is now guaranteed, i.e., two different processes are never in their d-states
simultaneously.

3 Formal Description of the Algorithm

Let si denote the state of process i; si takes values from {a, b, c, d, e}. The initial state of the system is
initially (∀ i :: si = e) ∧ x = 0
The state transitions of process i are given by

{αi} si := a if si = e
[] {βi} si := b if si = a ∧ x = 0
[] {γi} si, x := c, i if si = b
[] {δi} si := d if si = c ∧ x = i
[] {εi} si, x := e, 0 if si = d

There is no fairness requirement on the executions of these statements. Executing a statement in a state
where its guard does not hold—such as executing βi when x 6= 0—causes no state change; any execution of
a statement when its guard is true is called an effective execution.

Notation: We will use the following abbreviations

ai ≡ si = a bi ≡ si = b , . . . , ei ≡ si = e

Observe that these predicates are mutually exclusive, i.e.,

ai ∧ bi ≡ false, etc.,

and ai ∨ bi ∨ ci ∨ di ∨ ei ≡ true 2

2



Formalization of Time

In order to state the timing constraints, we introduce a variable now[1]. Informally, the value of now at any
point during the computation is the current time. The value of now is changed by some mechanism outside
the given program; the mutual exclusion program can read the current time and assign it to a variable t by
executing

t := now

The mechanism (or process) that changes now could operate synchronously or asynchronously with the
actions of the given program. Thus, the value of now before and after the execution of

t := now

may be different (denoting that execution of this statement consumes some time). The value assigned to t
in this case is the value of now just before the execution of this statement is started. This interpretation
supports the axiom of assignment: Predicate p(t) holds after this assignment if p(now) holds before.

For this paper, we require only that (1) now assumes non-negative real values and (2) now is monotone
nondecreasing. For a formal basis for the introduction of time, including the requirement about the eventual
increase of now, see [1] and [3].

It is convenient to introduce the following auxiliary variables for study of real time systems. For a state
predicate p, let p be the value of now when p last became true (more precisely, p is the value of now just
prior to the execution of the action that last truthified p); initially p equals now if p holds, else p < 0. This
definition of p can be expressed directly as a property of the program (see Misra[3]), or p can be defined
by augmenting a program text, as shown below. We introduce bi, ci by augmenting βi, γi.

{βi} si, bi := b,now if si = a ∧ x = 0
{γi} si, x, ci := c, i,now if si = b

Initially, ei = now and ai, bi, ci, di are negative. From the fact that now is non-negative and monotone
nondecreasing, we can derive, for any p,
(Observation 1) p ≤ now .

Remark: The auxiliary variables p can be used to state the most common kinds of real-time constraints:

Once p becomes true it remains true for at least ∆ units,

can be written as

¬p ∧ p ≥ 0 ⇒ now > p + ∆

and, p is falsified within τ units of being true, is expressed by

p ⇒ now ≤ p + τ 2

Timing Constraints

We can now state (T1,T2) formally. For all i, 1 ≤ i ≤ N ,

(T1) (ci ∨ di) ⇒ ci ≤ 1 + bi

(T2) di ⇒ 1 + ci < di

The antecedent of (T1), ci ∨ di, guarantees that in the current state both bi and ci are defined; similar
remarks apply for the antecedent of (T2).

3



4 Proof of Mutual Exclusion

We establish the following two predicates as invariants. In the following, j, k satisfy 1 ≤ j ≤ N and
1 ≤ k ≤ N .

(I1) (∀ j, k :: x = k ⇒ bj ≤ ck)
(I2) (∀ k :: dk ⇒ x = k)

Mutual exclusion is immediate from I2:

di ∧ dj ⇒ x = i ∧ x = j ⇒ i = j

Next, we prove that for the program of Section 3 augmented with the timing constraints, the predicates
(I1,I2) are invariants.

Note: To be completely formal, we should also show that (I1,I2) cannot be falsified by the process that
changes now. Since now does not appear in either predicate, this demonstration is trivial. 2

Proof of the invariance of (I1)

We rewrite (I1) as (∀ j, k :: x 6= k ∨ bj ≤ ck) to simplify logical manipulations. Initially, x = 0. Therefore,
initially x 6= k, for any k, 1 ≤ k ≤ N , and, hence, (I1) holds initially. Next, consider the actions that can
falsify the terms in (I1), for arbitrary j, k.

• x 6= k can only be falsified by setting x to k, i.e., by executing γk. Effective execution of γk assigns

ck := now

This action establishes bj ≤ ck as a postcondition, because (using the axiom of assignment to replace
ck by now) bj ≤ now is a precondition, from Observation 1. Therefore, γk preserves (I1).

• the term bj ≤ ck can be affected only by the actions βj (that may change bj) and γk (that may change
ck). We have shown above that γk preserves (I1). We show that βj also preserves (I1). A precondition
for the effective execution of βj is x = 0, and βj preserves x = 0. Therefore, x = 0, i.e., x 6= k is a
postcondition of an effective execution of βj .

Proof of the invariance of (I2)

Initially 〈∀ k :: ek〉. Therefore, (I2) holds initially. Next, consider the actions that can falsify ¬dk ∨ x = k,
for arbitrary k.

• ¬dk can be falsified only by setting sk to d, i.e., by effectively executing δk. A precondition for the
effective execution of δk is x = k. The action δk does not assign to x, and, hence, preserves x = k.
Therefore, ¬dk ∨ x = k holds as a postcondition of δk.

The predicate x = k can be falsified by (1) setting x to 0, i.e., executing εi, for some i, or (2) setting
x to i, i 6= k, i.e., executing γi, i 6= k. We consider these two possibilities, next.

• Executing εi, for some i: Action εi has a precondition di. From (I2), for k 6= i, ¬dk holds as a
precondition; also, ¬dk is preserved by εi. Furthermore, ¬di is a postcondition of εi. Therefore, ¬dk,
and hence, ¬dk ∨ x = k holds as a postcondition of εi, for any i.

• Executing γi, i 6= k: We show that ¬dk is a precondition for the execution of γi. Since the effective
execution of γi preserves ¬dk, we have then ¬dk ∨ x = k as a postcondition.

We prove that ¬dk is a precondition by assuming dk as a precondition and deriving a contradiction.

4



dk , assumption
x = k , from (I2) and above

(1) bi ≤ ck , from above and (I1), instantiating j by i

(2) 1 + ck < dk , from (T2) and that dk holds

Following the execution of γi, timing constraint (T1) holds, i.e.,

(T1) (ci ∨ di) ⇒ ci ≤ 1 + bi.

The effective execution of γi sets ci to true and ci to now. Applying the axiom of assignment (to replace ci

by true and ci by now)

(3) now ≤ 1 + bi

holds prior to the effective execution of γi. We derive a contradiction from (1,2,3) and (Observation 1).

1 + bi {1} ≤ 1 + ck {2} < dk {Observation 1} ≤ now {3} ≤ 1 + bi

Acknowledgement: We are grateful to Jacob Kornerup for suggestions about the structure of the proof.

References

[1] Martin Abadi and L. Lamport. An old fashioned recipe for real time. Technical report, DEC Systems
Research Center, 1991.

[2] Michael J. Fischer, June 1985. (personal communication with Leslie Lamport).

[3] J. Misra. Safety properties. (manuscript), The University of Texas at Austin, 1992.

5


