Another Theorem on Strengthening the Guard
Jayadev Misra
2/27/04

It is well known that all safety properties of a program are preserved if the guard of any of its statements is strengthened. This note develops a result about progress properties. Also, see Notes on UNITY, 19, “More on Strengthening the Guard”.

Let F be a program which includes a statement t with guard q. Let G be a program obtained by strengthening the guard of t.

Theorem \[
\frac{p \implies r \text{ in } F}{p \implies q \lor r \text{ in } G}
\]

Proof: By structural induction on the proof of $p \implies r$ in F.

- $p \text{ en } r$ in F: Then, $p \land \neg r \text{ co } p \lor r$ in F, which also holds in G, because all safety properties are preserved by strengthening the guard. Next, from the definition of en , there exists some action s in F so that
 \[
 \{p \land \neg r\} s \{r\}
 \]
 If $s \neq t$ then this assertion holds in G. If $s = t$ then
 \[
 \{p \land \neg r\} t \{r\}
 \]

 Thus, execution of t in F in any state satisfying $p \land \neg r$ causes a state change, i.e., t executes effectively. Since the guard of t is q,

 \[
p \land \neg r \implies q, \text{ or} \\
p \implies q \lor r
 \]

 Therefore, $p \implies q \lor r$ in G.

- $p \equiv p' \lor p''$, where $p' \implies r$ and $p'' \implies r$ in F: Using induction,

 \[
p' \implies q \lor r \text{ in } G \\
p'' \implies q \lor r \text{ in } G. \text{ Using disjunction,} \\
p \implies q \lor r \text{ in } G
 \]

- $p \implies p' \implies r$ in F: Using induction,

 \[
p \implies q \lor p' \text{ in } G \\
p' \implies q \lor r \text{ in } G. \text{ Using cancellation,} \\
p \implies q \lor r \text{ in } G
 \]

Corollary Let q be the guard of a statement in F which is strengthened to obtain program G. Then,

\[
p' \implies q \text{ in } F \\
p \implies q \text{ in } G
\]