Union Theorem over Progress Properties: Lifting Rule

Javadev Misra

December 18, 2015

1 Lifting Rule

A rule that allows deriving a progress property in a union of components, given that the property holds in one of the components, is given in Misra [?] A simpler rule is given here from which the previous rule can be derived.

Below, f and g are components, and x a tuple of some accessible variables of f that includes all variables that f shares with g. That is, g does not affect f if it preserves the value of x. In the rule below, X is a free variable, therefore universally quantified.

$$\mathbf{L} \quad \frac{p \mapsto q \text{ in } f}{r \land x = X \text{ co } x = X \lor \neg r \text{ in } g}{p \mapsto q \lor \neg r \text{ in } f \ [] \ g}$$

Note: Predicates p and q are over the accessible variables of f since $p \mapsto q$ is a property of f; any local variable of g named in p or q is a constant. Similarly, r is over the accessible variables of g.

Proof of (L) is by induction on the structure of $p \mapsto q$ in f.

1.1 Assume p en q in f

We show that p **en** $q \vee \neg r$ in $f \parallel g$, and, hence, $p \mapsto q \vee \neg r$ in $f \parallel g$.

From p en q in f, we deduce (1,2) below. Now, every action of g preserves values of all local variables of f. Further, since x includes all shared variables of f, any action of g that does not modify x preserves the values of all accessible variables of f. In particular, any such action preserves p, as given in (3) below.

$$p \land \neg q \text{ co } p \lor q \text{ in } f$$
 (1)

transient
$$p \land \neg q$$
 in f (2)

$$p \wedge x = X \text{ co } p \vee x \neq X \text{ in } g$$
 (3)

To show p **en** $q \vee \neg r$ in f [] g, we need to show

```
p \wedge \neg q \wedge r co p \vee q \vee \neg r in f [] g, and transient p \wedge \neg q \wedge r in f [] g.
```

• $p \land \neg q \land r$ co $p \lor q \lor \neg r$ in f [] g:

```
\begin{array}{lll} p \wedge x = X \ \mathbf{co} \ p \vee x \neq X \ \mathrm{in} \ g & \text{, from (3)} \\ r \wedge x = X \ \mathbf{co} \ x = X \vee \neg r \ \mathrm{in} \ g & \text{, from antecedent} \\ p \wedge r \wedge x = X \ \mathbf{co} \ p \vee \neg r \ \mathrm{in} \ g & \text{, conjunction of the above, weaken rhs} \\ p \wedge r \ \mathbf{co} \ p \vee \neg r \ \mathrm{in} \ g & \text{, disjunction over all } X \\ p \wedge \neg q \wedge r \ \mathbf{co} \ p \vee q \vee \neg r \ \mathrm{in} \ f & \text{, strengthen lhs and weaken rhs of (1)} \\ p \wedge \neg q \wedge r \ \mathbf{co} \ p \vee q \vee \neg r \ \mathrm{in} \ f \ [] \ g & \text{, union rule} \end{array}
```

• transient $p \wedge \neg q \wedge r$ in f [] g:

```
 \begin{array}{lll} \textbf{transient} \ p \wedge \neg q \ \text{in} \ f & \text{, from (2)} \\ \textbf{transient} \ p \wedge \neg q \wedge r \ \text{in} \ f & \text{, strengthening} \\ \textbf{transient} \ p \wedge \neg q \wedge r \ \text{in} \ f \ [] \ g & \text{, concurrency} \\ \end{array}
```

1.2 Inductive proofs

We show that if $p\mapsto q$ in f has been proved by transitivity or the disjunction rule, the result holds.

1. Suppose in $f, p \mapsto q$ has been proved by $p \mapsto s$ and $s \mapsto q$:

```
\begin{array}{ll} p \mapsto s \vee \neg r \text{ in } f \ [] \ g \\ s \mapsto q \vee \neg r \text{ in } f \ [] \ g \\ p \mapsto q \vee \neg r \text{ in } f \ [] \ g \end{array} \qquad \text{, inductively, from } p \mapsto s \text{ in } f
```

2. Suppose in $f, p \mapsto q$ has been proved by $p_i \mapsto q$ for all i in I, and $p = (\forall i : i \in I : p_i)$. For any i in I:

```
\begin{array}{ll} p_i \mapsto q \vee \neg r \text{ in } f \ [] \ g &, \text{ inductively, from } p_i \mapsto q \text{ in } f \\ (\vee i : i \in I : p_i) \mapsto q \vee \neg r \text{ in } f \ [] \ g &, \text{ disjunction rule} \\ p \mapsto q \vee \neg r \text{ in } f \ [] \ g &, p = (\vee i : i \in I : p_i) \end{array}
```

2 Special Cases

1.
$$\frac{p \wedge r \mapsto q \text{ in } f}{r \wedge x = X \text{ co } x = X \vee \neg r \text{ in } g}$$
$$p \mapsto q \vee \neg r \text{ in } f \text{ } [] \text{ } g$$

Proof: Replace p by $p \wedge r$ in L to get the hypotheses of this rule, and the conclusion: $p \wedge r \mapsto q \vee \neg r$ in $f \ [] \ g$. Now, $p \wedge \neg r \mapsto \neg r$ in $f \ [] \ g$, by the implication rule. Taking the disjunction of the two *leads-to* properties, $p \mapsto q \vee \neg r$ in $f \ [] \ g$, the required conclusion of the given rule.

$$2. \qquad \frac{p \mapsto q \text{ in } f}{p \wedge x = M \mapsto q \vee x \neq M \text{ in } f \ [] \ g}$$

Proof: Let r be x=M. Then $x=M \wedge x=X$ **co** $x=X \vee x \neq M$ in g, because (1) for $X\neq M$, the lhs is false, and (2) for X=M, the rhs is true, so the property holds vacuously in both cases. The result follows from (L).

3. If f has no shared variable,

$$\frac{p\mapsto q \text{ in } f}{p\mapsto q \text{ in } f \text{ [] } g}$$

Proof: From (2) above.

3 Notes

1. $r \wedge x = m$ co $x = m \vee \neg r$ in g is $r \wedge x = m$ co $r \Rightarrow x = m$ in g. The converse,

 $r \wedge x = m$ **co** $x = m \Rightarrow r$ in g, is unsound. Because g may change x while keeping r true. Then because of changed x, f may not establish q and r may remain true.

2. A seeming generalization of (L), below, is invalid.

$$\frac{p \mapsto q \text{ in } f}{r \land x = X \text{ co } x = X \lor s \text{ in } g}$$
$$\frac{p \land r \mapsto q \lor s \text{ in } f \text{ } [] \text{ } g}$$

To see that this rule is invalid, consider a state where $p \wedge r$ holds. Let X be the value of x in that state. Let g take a step in this state that establishes $\neg r$ but preserves the value of x. And, a next step by g that establishes $\neg s$ and changes the value of x. Suppose all future steps preserve $\neg r$ and $\neg s$. No guarantee can be given that g will be established.