A UNIFIED APPROACH TO THE SPECIFICATION‘AND
i VERIFICATION OF ABSTRACT DATA TYPES

Lawrence Flon

Computer Science Department
University of Southern California
Los Angeles, California 90007

Abstract

We present what we feel to be a unification of
two major although previously unrelated specifica-
tion techniques for abstract data types — the alge-
braic and abstract model approaches. Included is
a disciplined specification methodology and its re-
sultant proof obligation for an implementation,
Several important issues are discussed, including
equality, bounded objects and procedural imple-
mentation. We conclude with some philosophy on
design methodology and specification methodology.

1, Introduction

The use of data abstraction in pProgramming is
well recognized as a valuable methodological tool.
The class mechanism of Simula 67 [1] prompted
the realization on the part of software designers
that the procedure, an abstraction of control struc-
ture, is by itself insufficient as a modularization
mechanism. The incorporation, during design, of
abstractions for data structures leads to intuitive
and elegant modular decompositions. Many new
programming languages have defined features for
implementing data abstractions [9], and the re-
quirements for a common higher order language
for the Department of Defense give major empha-
sis to the idea [10].

The problem of formally specifying and verify-
ing data abstractions has been the subject of much
research. In [6], Hoare introduced the idea that
specifications for data abstractions should reflect
only those properties relevant to programs using
the abstraction. It is the responsibility of theim-
plementor to guarantee that his chosen represen-
tation and algorithms correctly model the abstract
specifications. The form in which abstract speci-
fications should be expressed has been the subject
of some debate. Hoare originally proposedthe use
of input/output assertions that define the effect of
an operation in terms of its changes to some ab-
stract representation of the object in question.
For example, a stack may be thought of as a se-
quence of values with access restricted to one end.
The push and pop operations on stacks are then
expressed in terms of their effect on the sequence,
The fact that the implementor may choose linked
lists or arrays as the concrete representation
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simply means that he has taken on the responsibil -
ity of demonstrating how these structures can be
mapped onto a sequence. Later changes to the
concrete representation, as long as the new map-
ping is consistent, will not affect the programs
that use stacks, which only depend upon the prop-
erties of mathematical sequences for their cor-
rect operation.

An entirely different approach to specifying da-
ta abstractions is to exhibit algebraic axioms that
describe the effect of an operation in terms of
changes to the future behavior of other operations,
This approach is called re resentation independent
since it does not rely upon an explicit abstract rep-
resentation,

It is generally agreed that the alge
proach yields specifications more appa
verifying the correct operation of uge
than those yielded by Hoare's appr
been called the abstract model a
other hand i ]
‘against op-
éasierthan
that of verifying it against algebraic 8pécifications,
What is desirable then is a methodology for easily
verifying an implementation against algebraic-like
specifications.

There are two basic problems in verifying a
program against algebraic specifications. One is
the fact that the algebraic model deals with values
rather than objects, and values are immutable.
That is, an operation can only transform one value
into another - it cAnnot change the state of a par-
ticular value. Thus operations cannot have side
effects although in a typical procedural implemen-
tation the push and pop operations will not result
in new stacks but rather will alter an already ex-
ixting one.

Another serious problem is what we call the
Mmutual reference problem. The fact that each op~
eration name may appear in several axioms means
that, in the verification methodology described by
Guttag [3], each procedure body must be analyzed
several times, each time for a different character-
istic. In addition to the basic overhead due to mul-
tiple analyses, this means that an operation cannot
be verified on its own, hence should one of the pro-
cedures be changed in the future, all of the axioms
referring to the corresponding operation will have
to be re-verified. We note that a recent paper by
Guttag and Staunstrup [5] addresses this problem.
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The purpose of this paper is two-fold. In sec-
tion 2 we provide a disciplined methodology for
constructing algebraic specifications. We dis-
cuss equality for abstract objects and address the
problem of describing objects of bounded size.
We introduce a form of specification that allows
side effects on abstract objects while retaining
the algebraic flavor. We also discuss the need for
proving general properties of the specifications
themselves,

In section 3 we describe an approach to the ver-
ification of implementations for specifications con-
structed along the lines of section 2. The approach
has the advantage of solving the mutual reference
problem, thus allowing the independent verifica-
tion of each operation. Section 4 contains our
conclusions and a discussion of some potential
methodological implications of our approach.

2. Constructive Specification

Many of the ideas in our specification method-
ology are based upon the wonk of Guttag and
Horning [4]. We place special emphasis on the
notion of constructor functions — that subset of op-
erations that can be used to build all instances of
a data type. We suggest a way of defining equal-
ity among abstract objects, and we address the
problem of defining objects that are bounded in
size. We also introduce a specification technique
intended to solve the mutability problem. Finally,
we suggest that induction and substitution, along
with the definition of equality, are the basic infer-
ence rules by which theorems may be deduced
from the algebraic axioms.

2.1 Formulating Specifications

The constructor functions for a data type are
any subset of operations sufficient for building all
values of that type. For instance, constructor
functions for a deque (double-ended queue) would
be init, which creates an instance of an empty
deque, addh, which adds an element to the head of
a deque, and addt, which adds an element to the
tail, Note that all instances of a deque can be
constructed out of only init and addh, hence addt
need not be taken as a constructor., However, we
shall not address the problems of minimality or
uniqueness of the set of constructor functions.

Having decided upon the constructors, we can
thus define a deque to be:

1. init.
2, addh(q, e), where q is a deque and e is some
element,

3. addt(q, e), where q is a deque and e is some
element.,

Furthermore every deque can be so construc-
ted. Hence the value of a deque can be repre-
sented by an applicative sequence of the above
functions,

It is important to note that addh and addt need
not be further specified. Meanings of other oper-
ations will be specified in terms of the construc-
tors, Let remh, remt, headh, and headt respec-
tively denote the operations of removing the head

of a deque, removing the tail, returning the value

of the head, and returning the value of the tail. Also
let empty indicate whether a deque is simply init or
not. For each nonconstructor function , we specify
its effect on a deque q when q is init, when q is
addh(§, e) for some §, e, and when q is addt(§, e) for
some §, e, This leads to the following set of axioms:

Operations:
init: - deque
addh: deque x elem - deque
addt: deque x elem - deque
remh: deque- deque
remt: deque —» deque
headh: deque~ elem
headt: deque~- elem
empty: deque- boolean

Constructor Functions: init, addh, addt

Axioms:

1. remh(init) = error

2. remh(addh(q,e)) = g

3. remh(addt(q, e)) = if empty(q) then init
else addt(remh(qg), e)

4. remt(init) = error

5. remt(addh(q, e)) = if empty(q) then init
else addh(remt(qg), e)

6. remt(addt(q,e)) = q

7. headh(init) = error

8. headh(addh(q,e)) = e

9. headh(addt(q, e)) = if empty(q) then e
else headh(q)

10. headt(init) = error

11, headt(addh(q, e)) = if empty(q) then e
else headt(q

12. headt(addt(q,e)) = e

13, empty(init) = true

14, empty(addh(q, e)) = false

15. empty(addt(q, e)) = false

2.2 Equality

The above technique yields an "intuitively com-
plete' specification, We have found that deciding
which functions are constructors is a simple matter
in practice. Note that two deques may be construc-
ted by different sequences of constructor functions.
In particular,

addh(init, e) = addt(init, e)

and this cannot be proved from the axioms as stated.
Hence an equality operator for deques needs to be
defined. Clearly two deques q,, q, are equal if
every sequence of functions yields the same result
when applied to q, as q,. Such a definition of equal-
ity should be defined inductively using only noncon-
structor functions. For deques q,, q,, equalitycan
be defined as follows:

q,= q; = (empty(q,) A empty(q,)) v
(headh(q 1) =headh(g,) A remh(q,) = remh(q,))

We conjecture that such a definition need include
only nonconstructor functions, since the equality of
deques should be independent of any data not current-
ly contained in them.

2.3 Bounded Objects

We next consider the problem of defining data
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objects that are bounded in size, It is often more
difficult to define bounded objects than their un-
bounded counterparts, Consider, for instance, the
definition of a bounded deque, whose length is al-
lowed to be at most n. Addition of items to a full
deque should lead to an error condition.

We handle this problem by introducing the no-
tion of attributes of an abstract object. Operations
onobjects are permitted only when attribute values
for the object satisfy certain constraints. For a
deque q, we introduce the attribute function
length(q), which returns the current size of q.

It is an important observation that one needs to
specify the changes in attribute values only for
constructor functions. Due tothe form of algebra-
ic specifications it is possible to deduce the effect
on attribute values of nonconstructor functions.

Operation Effect on Attributes

init lerigth is set to 0

addh(q, e) Permitted only if lengthig<n
length(addh(q, e)) = length(q)+1
addt(q, e) Permitted only if length (q)< n

length(addt(q, e)) = length(q)+1

2.4 Procedural Semantics

A basic departure of algebraic specifications
from typical implementation languages is not re-
flecting the procedural rather than applicative na-
ture of the language semantics. We propose a
simple solution to this problem. Note first that we
can recast an axiom of the form

f(g(x)) = h(x)
in terms of pre- and post-conditions thusly:

Yy = 8(x) {z:=1£(y)} z=h(x)

The latter axiom captures precisely the same in-
tent as the algebraic one, but is more suited to
procedural implementations. Note further that if
we like, we can define a slightly altered f, say f’,
which does an in-place update:

y = g(x) {f'(y)} y = h(x)

In proposing what some will call a "bastardized"
form of algebriac specification we are in fact as-
serting that the algebraic specification technique
can be viewed as a simplification of the abstract
model approach which applies whenever it is truly
the case that immutable objects are required. In
the general case however, we can viewan algebraic
axiom as a statement of the input/output behavior
of a function operating upon an algebraic word rep-
resentation rather than the set and sequence rep-
resentations more common to the abstract model
approach, Thus we leave it to the specifier to
choose his (specification) weapons, so to speak,
but as we shall see in section 3, the verification
methodology can be a uniform one.

The previously stated algebraic axioms for
deques are recast as follows, the only change to
the semantics being the restriction of deques of
bounded size (n), Note that the error conditions
need not be explicitly stated, since they corres-
pond to states which do not satisfy the appropriate
pPre-condition,
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Attributes:

length: deque - integer

Constructors:
=9onsrructors

true {q:=init}length(q)=0
length(q’)<n {q:= addh(q’,e)} length(q) =length(q’ )+1
length(q’)<n {q:= addt(q’,e)} length(q) = length(q’)+1

Nonconstructors:

q’=addh(§, e) {q:=remh(q’)}q=§

q'=addt(§, e) {q:= remh(q’)}if empty(§) then empty(q)
else q =addt(remh(§), e)

q'=addh(§,e) {q:= remt(q’)}if empty(§) then empty(q)
else q =addh(remt(§), e)

q’'=addt(, e) {q:=remt(q’)} q=§
q’=addh(§, e) {y :=headh(q’ M y=e

q’=addt(§,e) {y:= head(q’)}if empty(§) then y=e
else y =hea

q’=addh(q,e) {y:= headt(q’)} if empty(§) then y=e
else y = headt(§)

q'=addt(§, e) {y:= headt(q’)}y=e
q’=1init {y := empty(q’)} y = true
q’=addh(g, e) {y :=empty(q’)} y = false
q’=addt(§, e) {y:=empty(q’)} y = false

The predicate if B then P else Q used above is
simply a notational simplification of

(B =P)A (=B =2Q).

2.5 Abstract Invariants

A predicate I(A) on an abstract object A is an
invariant if and only if every instance of the ab-
stract object satisfies it. According to our me-
thodology, every instance of the abstract object
can be created through application of constructor
functions only. Hence to show that I(A) is an ab-
stract invariant, it is sufficient to show that I(A)
holds following creation of a new object, and, if it
holds prior to application of a constructor function
along with the pre-condition for that function, then
it holds after application. Note that this follows
the notion of generator induction [7], although the
proof obligation hgs been lessened since only con-
structor functionssneed be considered. Once I(A)
has been proven te be an invariant, it can be used
in program proofs as a theorem. Consider the
proof of the invariant

I(q) =0 slength(q) sn

1. true {q:=init} length(q) = 0
I(q) follows trivially from the post-condition.

2. Given
length(q’) <n {q:=addh(q’,e)} 1ength(q)=1en§th(q')
Show +

0 slength(q’) snAlength(q’)<n {q:= addh(q’,e)}
0 slength(q) sn
This follows trivially also.

3. The proof for addt is similar to (2).
2.6 Specification Analysis

Although one can never be certain of the appro-




priateness of a given specification, it is oftenuse-
ful to prove properties of that specification before
attempting an implementation [Zﬁ. In proving the-
orems about algebraic axioms, the simplest rule
of inference is that of substitution of the right hand
side for the left hand side of an axiom in a proof
and vice versa. Another, more important rule is
that of induction. This is particularly emphasized
by the explicit existence of constructor functions.
In order to prove that a predicate P(x) holds for
every object x, we need to show that P(init}) holds,
and assuming P(x) holds, that P(f(x)) holds for
every constructor function f, In fact the proof of
the abstract invariant is an application of this rule.
Following we illustrate the use of induction toprove
a theorem about the bounded deque example.

Theorem:

—[empty(q) v empty(remt(q))] =
remh(remt(q)) = remt(remh(q))

¢
Proof: ¥
Induction on q: *

1. Suppose empty(q). Then the theorem is trivi-
ally true.

2. Supposeq=addh(§,e). If§=init then empty(remt(q))
reduces to true.
If g#init then
remh(remt(q))=
remh(remt(addh(§,e)))=
remh(if empty(§) theninit else addh(remt(§),e)=
remh(addh(remt(§), e))=
remt(§).
Also remt(remh(q))=
remt(remh(addh(§, e)))=
remt(§).

3. A similar proof applies when q=addt(§, e).

3, Verification of an Implementation

Re-cagting algebraic specifications in terms of
pre- and post-conditions allows us to unify the ver-
ification methodology with that of the abstract mo-
del approach. The ensuing presentation follows
closely the Alphard methodology [8].

The re-cast specifications are to be taken as
abstract specifications. We assume we are also

given concrete specifications that describe the cho-
sen implementation in detail. Thus given

pre, {op,} post,

and
pre, {op.} post,

it is sufficient to show pre, follows from pre, and
post, follows from post,. That is, any concrete
representation of an abstract object satisfyingpre,
is mapped by the concrete operation op, to some
concrete representation of some abstract object
that satisfies post,. However in order to establish
the correspondence between concrete and abstract
objects we must introduce a mapping function from
the former to the latter. The idea is due to Hoare
[6]. We use the notation of [3]. The function ¢
maps a concrete representation c to an abstract
value a. Since a may have many different repre-
sentations, ¢ will likely not have an inverse.
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We shall start by presenting a possible imple-
mentation for the bounded deque, and then describe
the necessary steps in carrying out its verification.

Representation

var m:array [0..n] of elem;
h,t: 0..n;
invariant 0 sh,t=n

Concrete Specifications

true {q:=init}h=0At=0

t'®@h'<n {q:=addh(q’,e)} m=(m’, h,e) Ah=h’© 1 At=t
t'©@h'cn {q :=addt(q’,e) Ym=(m/,t,e) At=t'® 1 Ah=]h’
t’©h'>0 {q := remh(q’)} h=h’® 1 At=t'Am=m’
t'©h'>0 {q:=remt{q’)} t=© 1 A h=h’ Am=m’
t’Oh'>0 {y := headh(q’)} y=m’[h’]

t’©h'>0 {y :=headt(q’)} y=m’[t'© 1]

t'=h' {y:= empty(q’)}y =true

t'#h’ {y := empty(q’)} y = false

Note that we have not actually given algorithms
for the concrete operations., We shall assume, as
in the Alphard methodology, that the concrete pre-
and post-conditions have been separately verified,
and that the only remaining task is to verify the ab-
stract properties. In the concrete specifications
we have used the notation ® to mean addition mod-
ulo n+l, and © to mean subtraction modulo n+l.
The expression {(m, i, x) means the array m with
the ith element replaced by x. The intent of the
counter h is to mark the position of the head ele-
ment (if there is one). The counter t marks the
position of the next free slot after the tail element.
The size of the deque at any time is given by tQh.

We next define a mapping function ¢. In fact,we
will define two mapping functions ¢, and ¢,. This
reflects the fact that a concrete representation can
be created by continuously applying either addh or
addt. It should be the case that mapping functions
use only constructors. Enough mapping functions
must be defined so that each possible concrete rep-
resentation is in the domain of some mapping func-
tion. Having defined several mappings it is then
necessary to show that all mapping functions are
consistent —~i,e., all of thern map a given concrete
representation to the identical abstract value. For
a deque, we define two mapping functions ¢,, ¢, as
follows:

¢n(m,h,t)=if h=t then init else addh(g,(m,bs1,t),m[h])
¢, (m,h,t)=if h=t then init else addt(g,(m,h,t81)m[t61])

We next define attributes over concrete repre-
sentations., If f, is an attribute of abstract objects,
then f  is the corresponding attribute of concrete
representations provided

f,(c) = f,(g(c))

where ¢ denotes any legal concrete representation,
Note that the mapping ¢ may be either mapping
function since presumably ¢,(c) =¢,(c) for all c (see
(1) below).

We now give precise rules for the verification of
an implementation. Let ¢ denote some mapping
function,c denote any representation and a any ab-
stract object.

1. Show that alternate mapping functions are equi-
valent, This is usually proven by using the defini-



tion of equality of abstract objects.

2. Show that the attribute mapping is consistent,
That is,

folc) = £,(g(c))

3. Prove that the abstract invariant is maintained
by the implementation

L(c) = I(g(c))

I, denotes the conc rete-invariant, I, the abstract
invariant.

4. Proof of initialization. Given the concrete spe-
cification
true {c:=init } pinit,(c)
and the abstract specification
true {a:=init,} pinit,(a).
Show that .
pinit (c)Al (c)Aa=¢g(c) =a= init, A pinit, (a).

5. Proof of nonconstructor functions. Given the

concrete specification,
pre(c’) {c := op,(c’)} post,(c)
and the abstract specification
pre,(a’) {a:=op,(a’)} post,(a)
prove the following:
(i) I (c)Apre,plc)) = pre.(c).

That is, the abstract pre-condition must imply the
concrete pre-condition whenever the concrete ob-
ject is in a valid state (concrete invariant holds).

(ii) L(c")A pPre (g(c’)ALic)A post,(c) = post,(g(c)).

Show that the concrete post-condition implies the
abstract post-condition provided the abstract pre-
condition holds initially,

6. Proof of constructor functions., For construc-
tor functions the pre- and post-conditions make
statements about attribute values. We need to
show that the effect of a constructor function g in
concrete space is to convert ¢’ to ¢ such that ¢l{c)=
g{¢(c’)). Thus we need to prove:

(i) I(c)aa= g¢(c)Apre,(a) = pre (c)
(i) I(c")Ad=g(c')Apre,(a’)A I,(c) Apost,(c)A
a=¢(c) = post,(a)Aa=g(a’).

We work out the details of the proof for the
bounded deque whose specifications have previous-
ly been given. We will use the mapping functions
¢, and ¢, defined previously.

3.1 Equivalence of Alternate Mappings

We would like to prove that
¢n(m, h, t) = g.(m, h,t).
Apply induction on tSh,

(i) t®h=0. Then h=t and ¢,(m, h, t)=init=
¢.(m, h, t).

(ii) t®h>0. We need to show that ¢u(m, b, t)=
¢¢(m, h, t) or addh(g,(m, he 1, t), m[h]) =
addt(¢,(m, h,t€1), m[te1]),
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By induction, Pp{m, h,t0 1) = ¢.(m,h,tO1). Hence
we need to show that

addh(g,(m,h® 1 ,t),m[h])=addt(g,(m,h,t© 1),m[t© 1])

Using the definition of equality, we need to show
that the headh and remh of both sides are equal. We
give the proof only for headh.

headh(addh(g,(m, h®1 ,t), m[h]))=m[h] from the
axiom.
headh(addt(g,(m, h,t©1), m[te 1])=
if empty(g,(m, h,t 6 1)) then m[t0 1]
else headh(g,(m, h,t©1)) from the axiom

s—

=if h=t81 then m[h] else headh(g,(m, h, t& 1))

from the def, of N

ifh=t®1l then mfh] else headh(if h=t© 1
then init else addh(g,(m, h@1,t©1), m[h])

if h=t@1 then m[h] ‘

T else headh{addh(g,(m, he 1,t01, m[h]))

= m[h].

i

A similar proof can be given to show that
remh(addh(g,(m, h® 1,t), m[h]))
= remh(addt(g,(m, h, t© 1), m[t81])).

3.2 Attribute Mappings are Consistent

We define an attribute size on concrete repre-
sentations corresponding to the attribute length on
abstract objects. Let

size(m,h,t) = t®h,

Then we must xhow

size(m, h, t) = length(g(m, h, t) ]
We prove this by induction on t 8 h.

(i) t©@h=0. Then size(m,h,t)=0 and
length(g(m, h, t)) = length(init) = 0.

(ii) t®h> 0. Then size(m, h, t) =
length(g(m, h, t)) =length(addh{g(m, h@ 1
l+length(g(m, h® 1, t)
=1l+size(m, h@ 1, t)
=l+tohel)=teh,

3.3 Proof of Abstract Invariant
I.:0 sh,tsn

I,: 0 slength(q) =n.
We have to show *
L(m, b, t) = L(g(m, b, t))

or, .
O0sh,tsn=0s length(g(m, h,t))s n
or,
O=h,tsn=0z=size(m,h,t)sn
or,

O0sh,tsn=20sthsn.
This follows trivially from the definition of ©,

3.4 Proof of Initialization

Given the concrete specification
true {q:=init] h=0At=0
and the abstract specification
true {q:=init} length(q)=0,
we have to show that

s,
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h=0At=0A0sh,t=nAq=¢g(m,h,t) =
q =init Alength(q)=0.
From
q=¢(m,h, t)Ah=0At=0
it feoilovgs that q=init. Further, length(q)=size(rn,h,t)
=t =0.

3.5 Proof of Nonconstructor Functions

Proof of remh:

Abstract specification:

q'=2ddh(§, ) {q :=remh(q’)} q=§
q'=addt(§, ) {q := remh(q’) } if empty(q)
then empty(q) else q =ac Tt(remh(q))
Concrete specification:
tYOh'>0 {q:= remh(q’)}h=h'®@ 1 At=tAm=m".

We need to prove the folléwing. " (a), (b) are from
(5) of section 3 for the first specification above,
(c) and (d) are for the sectnd specification above.

(2) 0 =h,t s nAq=¢(m,h,t) Aq=addh(§,e) =t Oh> 0
(b) 0 =h', s nAq'=g(m’, W, ') A q’=addh(§, e)
AO#h,tsnAh=h'® 1A t=t/ Am=m’Aq=¢(m,h,t) »
a=q
(c) 02 h,t snAq=¢(m,h,t)A g=addt(§,e)=t©h> 0
(d) 0 s h',t's nAq'=g(m’,b,t’) A q'=addt(§,e)
AQ gh,t s nAh=h'® 1 At=t'A m=m’Aq=¢(m,h,t)
=if empty(q) then empty(q)
Y else g=addt(remh(§),e).

Proofs of (a), (c) are similar; they follow directly
from the abstract invariant

o 0slength(q)s n
and the fact that
length(q’) = 1 +length(q)

from the specification of addt., The proof of (b) is
a simpler case of the, proof of (d). (d) can be bro-
ken up into two cases corresponding to the alter-
natives in the consequent,

(d1) 0 s ¥, s nAqQ'=¢(m’,h’,t") Aq'=addt(d,e)
A0 2 h,t s nAh=h'® 1 A t=t'A m=m’A q=¢(m,h,t)
A empty(§) = empty(q)

(d2) 0= b, t'snA q’=¢(m’,h’,t/ ) A q’=addt(§,e)
AOshtsnAh=h/'® 1 At=t/ Am=m'p q=¢(m,h,t)
A—-empty(§) = g=addt(remh(§),e).

Note that (d2) involves remh(§) in the consequent
since the original specification of remh was re-
cursive, This creates a problem since we are re-
quired to substitute some other definition of
remh(§) to carry out the proof. We solve the prob-
lem by using induction on length(§). Thus the re-
cursive definition remh is shown to be consistent
by proving that

1. the concrete specifications implement the ab-
stract definition when length(§) is 0.

2, assuming that the concrete specifications im-
plement the abstract definition correctly for all g
length(§) < k, then they do so when

) 7 kn
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We prove (2) as applied to (d2) in detail. Let 4=
¢(th, B, £). Then the induction hypothesis permits
us to replace remh(§) in the consequent by
o(th,h01,t). The proposition then simplifies to
the following (omitting the invariants):

4= ¢(t,h,8) A g’=addt(§,e)=g(m’, b, t') A
q=¢(m’,h'® 1,t’) = q=addt(g(th,he1,]), e) .
Note that m’= (), {, e}, h'=f, ¥=t®1. Hence we
have to prove the following proposition:

a=¢((h,E e), o 1,f01) = g=addt(d(in, ha 1, ), ¢)

or

¢({th, £, ey, b 1,t0 1) = addt(g(th,he 1,1),¢).
This is easily proven using the mapping function
¢, for ¢. Note that our replacement of remh by its
concrete specification, using the inductive hypo-
thesis, resulted in a proposition that has only con-
structor functions and g¢.

The proof of remt is similar.

Proof of headh:
Abstract specification:
q =addh(§) {y:= headh(q)} y=e

q=addt(§,e) {y := headh(q)} if empty(§) theny=e
else y= headh(a)

Concrete specification:
t9h'>0 {y:=headh(q)}ay=m’[n'].

It should be noted that the definition of headh ig re-
cursive, hence a problem similar to that arising
in the verification of remh results. We again use
induction on length(§). Application of the inductive
hypothesis permits us to replace headh(§) by m[f],
where § = ¢(h, f,f). The proof is then similar to
that of remh and is omitted. The proof of headt is
also similar. The proof of empty is trivial,

3. 6 Proof of Constructor Functions

Proof of addt:

Abstract specification:

length(q’) < n {q:=addt(q’, &)} length(q) = length(q’)+1
Concrete specification:

t'©b'< n {q:=addt(q’, e)} m=(m/, t, eYAt=t'®1 Ah=h’
From (6) of section 3 we need to prove

(a) 0 s h,t s nAg=¢(m,h,t)A length(q)< n=t©h<n

(b) 0 = b, = nAq'=¢(m’,1,t') Alength(q' )< n
AOshtsnam=(m/t,e)At=t'®1 A h=h’
Agq=¢(m,h,t)=length(q)=le ngth(q’)+1 A q=addt(q’,e)

tOh = length(q) < n is clear.
Proof of (b):
First,we have
length(q)=t©®h=t'®1©h=1length(q’)®1
=length(q’)+1 since length(q’)< n.,

To show g =addt(q’, e), we expand q = ¢(m, h, t) in
the antecedent:

(i) h=t:'®1l=h'>t'6©h'=n a contradiction.



(ii) h#t: Then q = addt(¢(m, h, t 8 1), ml[t©1]) and
¢
q'=¢(m’,h/,t') A m=(m’,t/,e} A h=h’A t=t® 1.

Hence q = addt(q’, e).

The proof for addh is similar. However, ¢,
should be used in the antecedent when proving (a)
and (b).

4. Conclusions and Methodological Implications

Our approach to the specification and imple-
mentation of data types leads to a particular design
strategy in which three separate tasks can be iden-
tified. These are:

1. abstract data type specification and analysis
2. concrete data type specification and analysis

3. concrete data type implementation and verifica-
tion.

The design process for a single data abstraction
starts with an initial attempt at specification. At
this point the constructor, attribute, and noncon-
structor functions are identified and axioms are
written. Equality of abstract objects is then de-
fined. An abstract invariant is proposed and
should be verified against the axioms. Any re-
sulting detected omissions should be corrected.
Optimally, other useful theorems should be pos-
tulated and proved,

Having achieved a satisfactory specification, an
attempt at implementation can now be made. A
suitable concrete representation is chosen and a
mapping, ¢, or set of mappings ¢, 4., ..., ¢, are
defined, All mappings must produce the same ab-
stract object for the same concrete object.

Now it is time for concrete specifications to be
formulated. In this pPaper, we have proposed that
these specifications are constructed Y'creatively,"
in that an understanding of the abstract specifica-
tions is an a priori requirement. Once they have
been formulated, they must be shown to correctly
model the axioms via the mapping function(s) g.

The possibility exists that the concrete specifi-
cations are derivable from the abstract axioms
and the representation information. For example,
in the case of a stack, one axiom would be

s =push(8, e) {pop(s)} s=8.
Given the representation (array A, counter p), and
the mapping
¢(A,p)=if p=0 then init else push(g(A,p-1),A[p])
we can derive

(1) 8=¢(A,p) A ¢(A,p)=push(8,e) {pop(s)} ¢(A,p)=8
which leads to

(2) 8=(A,p) Ap#0 A 8=¢(A,p-1) A e=A[p]
{pop(s)} A=A Ap=p'-1,

Although this approach seems promising, it only
succeeds in this case because of the fact that )
has a functional inverse - 1. e, » every abstract
stack has exactly one concrete representation,
Were this not the case, the mapping of (1) to (2)
would not be unique, and could only be accomp-
lished by what is probably the same amount of
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creativity involved in simply gues sing at concrete
specifications. Whether or not this derivational
approach can nevertheless be used practically is
an open question,

We have assumed that the concrete specifica-
tions are formulated separately from the algebraic
axioms, and thus must be shown to correctly mo-
del those axioms as previously described., Finally,
the data type is implemented from the concrete
specifications( which are now known to be 'cor-
rect"), and verified against them.,

The three stages of the design process appear
to be suitable for dividing the work between senior
analysts who can formulate the algebraic specifi-
cations, senior programmers who can formulate
the concrete specifications, and junior program-
mers to do the coding. Although compléte verifi-
cation may still not be practical, this design stra-
tegy will hopefully lead to more relia €& programs.

As far as the unification of algebraic and ab-
stract model specifications goes, we have shown
that a single verification methodology suffices for
both. In particular, this means that an automated
verification system can have a single underlying
theory from which to work, although designers can
choose either specification technique as called for
by a given situation. A lot of effort has previously
been spent on the subject of finding the best gen-
eral purpose specification technique. It appears
however that each proposed technique will likely
be ideally suited for some applications and poorly
suited for others. Thus, as long as we can unify
the underlying theories of the various techniques,
we should encourage the use of whatever specifi-
cation tools are best for a given application,
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