
A PRINCIPLE OF ALGORITHM DESIGN ON LIMITED PROBLEM DOMAIN

Jayadev Misra
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

Abstract

This paper studies the problem of algorithm de-
sign on well defined data structures. A general
principle is presented which is shown to be useful
in designing algorithms which operate on sequences
(strings). A generalization of the principle is pre-
sented for more general data structures. Implications
of these results are discussed.

Introduction

Lately there has been considerable interest in
identifying approaches to problem solving rather than
a specific algorithm for a specific problem. The goal
of such research is to systematize the intuitive pro-
cess of algorithm construction. Once certain syste-
matic schemes for handling a class of problems are
known, a programmer would attempt to apply these
methods rather than trying to develop one by some ad
hoc technique. An example of a general principle is
"depth first search" which has been explored in great
detail for problem solving on undirected graphs [7].

Admittedly, the approaches usually taken for
problem solving depend on human intuition and differ
considerably from problem to problem and person to
person. However it turns out that in a surprisingly
large number of cases similar methods of attack are
often successful on problems having similar structure.
Clearly a mathematical study of problem solving must
include a rigorous definition of the structure of
a problem (so that conditions may be derived under
which two problems may considered to be of identical
structure), a rigorous formulation of the problem solv-
ing approach and conditions under which a certain
approach is applicable to a certain problem. There
has been very little work on any of the above areas.
Classical work of Bellman on dynamic programming [i]
formulated a certain approach to solving problems which
are of a decomposable type.

Though a mathematical formulation is desirable
and is an important research area, it is hard (with
the current methods) to characterize any nontrivial
class of problems. Difficulty arises due to many
special restrictions attached to a specific problem.
It is thus worthwhile tO study approaches which may he
termed systematic though not algorithmic. Such schemes
usually involve some human intuition. Dynamic pro-
gramming may be viewed as a process where the applica-
bility criterion is dependent on human intuition.

In this paper, we will mainly study the class of
problems which arise in connection with sequences
(strings/one dimensional files). The problems are
usually of the type where a certain quantity needs to
be computed from a given sequence by a "left to right
scan" type of algorithm. We will present a systematic
way of generating such algorithms by a process of

iteration. Human intuition would be involved in
answering questions such as, "given x, is it possible
to compute y?" or "what is needed to compute y, given
x?". We believe that algorithm designers follow a
similar process without explicit recognition of the
iterations. (Brighter ones, of course, skip all the
iterations). We will consider certain nontrivial
problems and apply the principle to obtain algorithms.
In a later section, we discuss the general problem
of designing algorithms which compute specific func-
tions on nonlinear structures such as trees and graphs.
A generalization of the principle for sequences is
shown to result in a principle for more general struc-
tures. Implications of these results are discussed in
the final section.

Problems on Sequences

We will consider sequences of the form x:(x I x 2 x 3

... Xn), n ~ i, where each x i is of a certain given

type. Character strings, sequences of integers etc.
fit into the above definition. We will not put any
a-priori bound on n, the length of the sequence; the
implication is that the algorithms which would be
designed, would be general enough to work for all
nonnull sequences.

Let D be a certain function that is defined on
any sequence: D(x I x 2 ... Xn) denotes the value of

the function on the sequence (x I x 2 ... Xn). Our

problem is to design an algorithm which computes D
for any input sequence x. For instance, D may be a
simple term (the value of the maximum element on an
integer sequence), a substring (a longest contiguous
subsequence of a character sequence that does not
contain the character ",") or another sequence (the
sorted sequence from the given one). In fact D
could be any conceivable function on sequences.

Usual methods of attack for computing D, is to
compute D(x I) and then successively D(x I x2),

D(x 1 x 2 x3) e t c . w h e r e D(x 1 x 2 . . . X i + l ~ i s computed

from D(Xl...xi) and xi+ I. Thus finally D(x I x2...x n)

is obtained.

Example I: Find the maximum of any sequence (Xl...Xn),

n ~ I, where each x. is a positive integer. Clearly,
1

Max (Xl) = x I. and Max (x I x 2 ... xi+ I) =

maximum (Max (x I x 2 ...x i) , Xi+l). Thus an iterative

algorithm as shown below may be employed.

479

begin
Max: = Xl;

for i: = 2 to n do

Max: = maximum (Max, xi);
end for;

end;

However it is often impossible to compute
D(x I x 2 ... Xi+l) solely from D(x I x 2 ... xi) and

xi+ I. Suppose for instance that D(x I x 2 ... xi)

represents the length of the longest substring (con-
tiguous elements of the sequence) that does not contain
the character ",". Then the knowledge of D(x I x2...xi)

and xi+ I is not sufficient for computing D(Xl...Xi+l).

Consider the string"a, bc, pqr,". It is not possible
to compute D(a,bc,pqr,) given only that the last
character is a "," and D for the substring excluding
the "," is equal to 2. In this case, we need to com-
pute and carry along something more than D.

Example 2: Suppose we want to compute the length of
the longest substring not containing ",". Then we
may compute

Dl(X I x 2 ...x i) = length of the longest sub-

string in (x I x 2 ... xi) not containing ","

D 2 (x I x 2 ... x i) = length of the substring

following the last (rightmost) "," in
(x I x 2 ... xi). (It is equal to i if there

is no "," in x I x 2 ... xi).

Thus Dl(a,bc,pqr) = 2

D2(a,bc,pqr) = 3

Now, if x I = "," then Dl(Xl) = 0 else Dl{Xl) = i

Similarly if x I = "," then D2(xi) = 0 else D2(Xl) = i.

Next suppose that Dl(Xl...xi) and D2(Xl...xi) have

been computed. Then Dl(Xl...Xi+l) and D2(Xl...Xi+l)

may be computed as follows:

If xi+ I / "," then

D I (x I x2''-xi+ I) = Dl(Xl...xi)

D 2 (x I x 2 xi+ I) = 1 + Dl(Xl...xi).

= " " then If xi+ 1

D2(Xl...xi+ I) = 0

D 1 (Xl...xi+ I) = maximum (Dl(Xl...xi) ,

D2(Xl-..xi))

These equations follow from the definition of Di, D 2.

We needed to compute and carry along DI, D 2 even

though we only need the final value of D I. This situa-

tion occurs quite often in solving problems on sequen-
ces as well as on more general data structures. Thus
the major aspect of algorithm construction for com-
puting D involves identifying certain set of quantities
D' such that

(i) D'(Xl) is easy to compute.

(ii) D'(Xl...Xi+l) can be obtained easily from

D'(Xl...xi) and xi+ I.

(iii) D(Xl...xi) can be computed easily from

D'(Xl...xi).

Then the algorithm for computing D looks as follows:

begin
compute D': = D'(x I)

for i: = 2 to n do

compute new D' from old D' and xi;

compute D from D';

end for;

end;

In the example 2, D' = {Di, D R . Trivially

D'(Xl...xi) may just be the string (Xl...xi). This

D' however yields little clue as to how to proceed
from one step to the next; to compute D'(Xl...Xi+l)

from D'(Xl...x i) and xi+ I. Principle A, given below

will almost always yield a nontrivial D'. Since D'
represents the amount of information that needs to be
carried along, D' should be as small as possible.
Furthermore, we should be able to compute (ii), (iii)
as fast as possible. The following principle uses
a scheme similar to successive approximation, for
locating D', starting with D as an initial estimate
of D'. We will assume through out that D(Xl) is easy

to compute. In the following description, Di,D' i

would denote D(x l...xi) and D'(x l...x i) respectively.

Principle A: (for locating D', given D)

be$in
Let D': = D;
While D'i+ 1 can not in general be obtained

easily from D' i, xi+ 1 (for arbitrary i~l) do-

Let D" be some quantity such that D' can in
i+l

general be computed (easily) from D" i, Xi+l;

D I : = D"

end do;
end;

This principle may be applied for computing success-
ive D' such that the final D' obtained meets condition
(ii). Usually condition (i) is trivially met. Condi-
tion (iii) would be met since computation of D' would
include the computation of D.

Example 2 (continued):

We apply the principle to the problem of locating
the length of a longest substring not containing ",",
in a character string. Initially let D' i be the

length of the longest substring in (Xl...x i) not con-

taining ",". As we noticed earlier, D'i+l can not

be computed from D'i and xi+ I. Hence we have to

locate D" such that, we can compute the length of the
longest substring in (Xl...xi+ I) given D". and I Xi+l"
D" = ~DI, D2~_ is a suitable condidate, where D 1 , D 2

are as defined in example 2. Next we consider whether
D'.l and xi+ 1 are sufficient to compute D'i+ I. Since

this is affirmative, we terminate the process.

The next example illustrates the power of the pro-
posed method on a nontrivial problem.

Example 3: Given a sequence x = (x I x 2 ... Xn), n ~ i,

of positive integers, it is required to find a longest
ascending subsequence (not necessarily contiguous);

... X, i.e. a subsequence (Xil xi2 iy) such that

480

,°. i I < i 2 ... < iy and Xil< xi2 <xiy and Y is as

large ~s possible. For the sequence x = (6 7 3 5 1 9
2 12), two longest ascending subsequences are (3 5 9
12) and (6 7 9 12).

We will abbreviate longest ascending subsequence
by LAS. Algorithms for the problem appear in [3,6].
The following algorithm derived from Principle A
closely resembles an algorithm developed independently
by Matuszek [5].

We start the process with D' = D = LAS. Next
we ask the question whether it is possible to obtain
D'i+ 1 (easily) from D'.i and xi+l; i.e. given any

LAS for (Xl...xi)and xi+ I, is it possible to obtain an

LAS for (Xl...Xi+l)? Suppose the last element of the

LAS for (Xl...x i) is larger than xi+ I. In this case

the current LAS can not be extended. However, if there
is another LAS whose last element is less than Xi+l,

then that LAS can be extended. We thus conclude that
from an arbitrary LAS for (Xl...xi) and xi+ I, we can

not in general get another LAS for (Xl...Xi+l).

However, these arguments show that if we pick
an LAS from (Xl...xi) whose last element is as small

as possible, we can compute a__n LAS for (Xl...Xi+l),

from this LAS and Xi+l: if xi+ 1 is smaller than the

last element of the current LAS, the current LAS is an
LAS for (Xl...Xi+l); otherwise the current LAS can be

extended to include xi+ I. Thus let D' i be the

(unique) LAS from (Xl...xi) whose last element is as

small as possible. We call such an LAS, a best LAS
or BLAS.

At the next iteration, we ask the question
whether a BLASi+ 1 can be obtained easily from BLAS.

1

and xi+ I. Suppose we can extend the BLAS i by addition

of xi+ 1 at the end. Then this must necessarily be

BLASi+ 1 (since there is no other ascending subsequence

of equal length whose last element is other than
Xi+l). Next suppose that BLAS i can not be extended by

adding xi+ 1 at the end, which would be the case if

xi+ 1 is smaller than the last element of BLAS i. Is

BLAS i equal to BLASi+ 1 in that case? Note that

BLAS (i 2 5) = (i 2 5), However, BLAS(i 2 5 3) =
(i 2 3). Thus unfortunately the answer is in negative
to the question posed above. Using the arguments pre-
sented previously, we see that BLASi+ 1 can be obtained

from xi+ I, BLAS i and the best ascending subsequence

whose length is one less than BLAS.. Thus D' for the
1

next iteration is BLAS and best ascending sequence
of length one less than BLAS (we denote it by
BLAS (-i)).

On the next iteration, using similar arguments,
we conclude that in order to compute BLASi+ I and

BLASi+i(-i), we need to have Xi+l, BLASi(-i) and

BLASi(-2). It is then easy to see that continuing

w~ll lead us to require D' = ~BLAS, BLAS(-i), iterations
BLAS(-2) ~ , i.e. D' will be the set of best
ascending subsequences of all possible lengths starting
from length i and including the best longest ascending
subsequence, it may be easily verified that such a

481

D' indeed satisfies the condition for the iteration
in Principle A, to terminate.

Now that we have located a proper D' to carry
forward the computation, the major design problems
have almost been solved. It remains to design the
proper data structure for D' such that D' may be

i+l
quickly computed from D'i and xi+ I. We omit these

details here, noting that only the last elements of
various BLAS need to be stored. Since these elements
would be sorted (a best ascending sequence of length
j must have a last element which is strictly smaller
than the last element in the best ascending sequence
of length j+l), a binary search can be carried out
with xi+ 1 to locate that particular best ascending

sequence which should be modified (extended).

We note the following important facts above the
proposed scheme, as exemplified above.

(I) We had no need to decide the complexity of
computing D'i+l from D'i and xi+ I. Through out the

example (except at the very end) it was impossible
to compute D'i+l from D'i and xi+ I. Thus we did not

have to make any difficult design decisions of compar-
ing alternate D". Fortunately, this turns out to
be the case in all the examples that we have studied.

(2) D can almost always be computed easily from
D'. This is a consequence of the initialization and
our insistence that we only consider those D' from
which the previous D' can be computed.

(3) D" usually includes D' in successive itera~
tions. In the example studied, the successive approx~
imations led from any LAS to BLAS to best ascending
sequence of all lengths. Such refinements are almost
always encountered in dynamic programming type situa-
tions, where in order to compute a certain function,
a more general function is computed. The value of
the desired function is obtained by setting certain
arguments in the generalized function to certain
specific values.

(4) D' finally obtained may be regarded as being
closed in that D'i and xi+ 1 permit computation of

D' Closure in this sense is very general and
i+l"

is almost always a property of dynamic programming
problems. There are two conceivable techniques of
creating such a closed set: we start with a large
set and shrink its size. Or we start from a small set
and increase its size. The first techl~ique corresponds
to starting with D • being the string (x x.), which
• . 1 . . 1 1
is the maximum amount of information we would ever
need to compute any function. The difficulty with
this approach is that little, if any, clue exists as
to how to proceed. We have adopted the second tech-
nique in this paper; in addition to providing a
systematic scheme for progressing toward a solution,
we are assured at every step that D can indeed be
computed from D'.

(5) Human intuition played an important role in
deciding whether a certain quantity can be computed
from some other quantity. This question is usually
quite simple to answer (by enumerating several
possibilities) and determining whether there is
enough information to carry forward the computation.

Extensions to Other Data Structures

Ideas of the previous section can be extended to
compute useful functions on data structures other

than sequences~ such as trees, etc. Usually there
are two kinds of generalization involved in computing
D over such a data structure.

Structural Generalization: We may compute the quantity
over various substructures of the original structure,
each substructure being of the same type as the orig-
inal structure. Finally, we combine the various D's
computed on substructures to compute D over the orig-
inal structure. Note that D for each of the sub-
structures may be computed by the same technique by
decomposing it into its substructures.

Examples of structural generalization abound:
finding the maximum element in an integer sequence
(where substructures are the subsequences which start
from the beginning of the sequence) and finding the
maximum path length in a tree(substructures are sub-
trees) are two simple applications. Substructure
generalization is a basic property of many algorithms
that work on recursively defined data structures.

Functional Generalization: It is often necessary to
compute something more than D on substructures so
that D may be computed over the original structure.
We have discussed the need for such a generalization
on sequences. Similar arguments apply to other re-
cursive data structures. A generalization of prin-
ciple A for such structures is given below.

Principle A': Do a substructure decomposition; i.e.,
identify the different substructures of the original
structure and substructures of substructures etc.;
Apply Principle A to locate D' such that for any
substructure S, given D' values of all its substructures
(and some nominal information about the substructure S
itself) D' for S can be computed.

Clearly, we could then successively compute D'
of larger substructures and then compute D of the orig-
inal Structure from it. We illustrate the application
of Principle A' in the next example.

Example 4: Consider a binary tree each node of which
holds a certain symbol. Symbols may be repeated. An
example of such a tree is shown below.

a

b / ~ a

a / ~

Given some symbol s, it is required to find out if the
symbol s occurs on any longest path from root to a
terminal node. An usual substructure decomposition
with trees is to take each subtree as the substructure.
D is a yes/no type of answer. Applying Principle A, we
first ask whether, given yes/no from the two subtrees
L,R and the symbol p (as shown below), we could com-
pute yes/no for the entire tree T. For the moment, we
ignore the possibility that either or both L,R may
be null .

! l
I I
L l

\ I
\ 11 T

Consider the case when D L = "no" and D R = "yes"

and p p s. Suppose the maximum Path length in L is
larger than R; then the answer should be "no". How-
ever, if maximum pathlength in L is less than or
equal to that in R then the answer should be "yes".
Hence we conclude that it is impossible to compute D T

from DL, D R and p.

Using the above argument, we may set D'j =

Dj, maximum path length in J} for any subtree J.

In the next iteration we question whether D'L, D' R and

p can be used to compute D T and maximum pathlength in

T. Let PL,PR denote the maximum pathlength from L,R

respectively. Clearly, PT = I+ max (PL,PR). Following

table lists the value of D T for various possibilities.

if PL ~ PR; No otherwise.

if PR ~ PL; No otherwise.

D L D R ~ D T

no no ~s no

no no =s yes

yes no ~s yes

yes no =s yes

no yes ~s yes

no yes =s yes

yes yes #s yes

yes yes =s yes

From the above table, it is clear what needs to be
done for the case of null tree: maximum pathlength
for a null tree is zero and D should be "no".

Conclusion and Summary

The problem of designing algorithms on certain
classes of data structures has been considered. A
principle of successive approximation is presented
which yields the required information to be computed

O

of the substructures in order to (recursively) compute
a particular function on the original structure. The
method could be applied systematically where every
iteration involves answering questions of the type
"can x be computed from y?" or "what is needed to
compute x? '~. Interestingly, answers to such questions
are often reduced to enumerating several mutually ex-
clusive possibilities and answering questions individ-
ually for each one.

The algorithms generated by principle A are of
"left to right scan" type. Hence, a sorting algorithm
designed by using Principle A, would most likely be
similar to insertion sort. An efficient algorithm such
as quick sort [4] requires a deeper understanding of
the problem structure. The proposed method is not
intended to replace a mathematical analysis of the
problem. There are problems for which no left to
right scan algorithm exists and hence they can not be
solved by techniques presented in this paper. Further-
more, the analysis involved in applying the principle
will vary from person to person leading to different
algorithms. However, we believe that such unified
principles are useful heuristics for construction of
a large class of algorithms.

Acknowledsment

This research was partially supported by National
Science Foundation Grant DCR75-09842.

482

References

[i] Bellman, R. E., Dynamic Programming, Princeton
University Press, 1957.

[2] Dijkstra, E. W., O. J. Dahl, C.A.R. Hoare,
Structured Programming, Academic Press, 1972.

[3] Fredman, M. L., "On Computing the Length of the
Longest Increasing Subsequence", Discrete Math-
ematics, vol. ii, Jan. 1975, pp. 29-35.

[4] Knuth, D. E., Art of Computer Programming: Sort-
in S and Searchin$, Addison-Wesley, 1972.

[5] Matuszek, D., Personal Communication

[6] Szymanski, T° G., "A Special Case of the Maximal
Common Subsequence Problem", Tech. Report, Elec-
trical Engineering Dept., Princeton University,
1975.

[7] Tarjan, R. E., "Dept First Search and Linear
Graph Algorithms", Siam J. of Computing, vol.l,
no. 2, June 1972.

483

