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Abstract 

This paper studies the problem of algorithm de- 
sign on well defined data structures. A general 
principle is presented which is shown to be useful 
in designing algorithms which operate on sequences 
(strings). A generalization of the principle is pre- 
sented for more general data structures. Implications 
of these results are discussed. 

Introduction 

Lately there has been considerable interest in 
identifying approaches to problem solving rather than 
a specific algorithm for a specific problem. The goal 
of such research is to systematize the intuitive pro- 
cess of algorithm construction. Once certain syste- 
matic schemes for handling a class of problems are 
known, a programmer would attempt to apply these 
methods rather than trying to develop one by some ad 
hoc technique. An example of a general principle is 
"depth first search" which has been explored in great 
detail for problem solving on undirected graphs [7]. 

Admittedly, the approaches usually taken for 
problem solving depend on human intuition and differ 
considerably from problem to problem and person to 
person. However it turns out that in a surprisingly 
large number of cases similar methods of attack are 
often successful on problems having similar structure. 
Clearly a mathematical study of problem solving must 
include a rigorous definition of the structure of 
a problem (so that conditions may be derived under 
which two problems may considered to be of identical 
structure), a rigorous formulation of the problem solv- 
ing approach and conditions under which a certain 
approach is applicable to a certain problem. There 
has been very little work on any of the above areas. 
Classical work of Bellman on dynamic programming [i] 
formulated a certain approach to solving problems which 
are of a decomposable type. 

Though a mathematical formulation is desirable 
and is an important research area, it is hard (with 
the current methods) to characterize any nontrivial 
class of problems. Difficulty arises due to many 
special restrictions attached to a specific problem. 
It is thus worthwhile tO study approaches which may he 
termed systematic though not algorithmic. Such schemes 
usually involve some human intuition. Dynamic pro- 
gramming may be viewed as a process where the applica- 
bility criterion is dependent on human intuition. 

In this paper, we will mainly study the class of 
problems which arise in connection with sequences 
(strings/one dimensional files). The problems are 
usually of the type where a certain quantity needs to 
be computed from a given sequence by a "left to right 
scan" type of algorithm. We will present a systematic 
way of generating such algorithms by a process of 

iteration. Human intuition would be involved in 
answering questions such as, "given x, is it possible 
to compute y?" or "what is needed to compute y, given 
x?". We believe that algorithm designers follow a 
similar process without explicit recognition of the 
iterations. (Brighter ones, of course, skip all the 
iterations). We will consider certain nontrivial 
problems and apply the principle to obtain algorithms. 
In a later section, we discuss the general problem 
of designing algorithms which compute specific func- 
tions on nonlinear structures such as trees and graphs. 
A generalization of the principle for sequences is 
shown to result in a principle for more general struc- 
tures. Implications of these results are discussed in 
the final section. 

Problems on Sequences 

We will consider sequences of the form x:(x I x 2 x 3 

... Xn), n ~ i, where each x i is of a certain given 

type. Character strings, sequences of integers etc. 
fit into the above definition. We will not put any 
a-priori bound on n, the length of the sequence; the 
implication is that the algorithms which would be 
designed, would be general enough to work for all 
nonnull sequences. 

Let D be a certain function that is defined on 
any sequence: D(x I x 2 ... Xn) denotes the value of 

the function on the sequence (x I x 2 ... Xn). Our 

problem is to design an algorithm which computes D 
for any input sequence x. For instance, D may be a 
simple term (the value of the maximum element on an 
integer sequence), a substring (a longest contiguous 
subsequence of a character sequence that does not 
contain the character ",") or another sequence (the 
sorted sequence from the given one). In fact D 
could be any conceivable function on sequences. 

Usual methods of attack for computing D, is to 
compute D(x I) and then successively D(x I x2), 

D(x 1 x 2 x3)  e t c .  w h e r e  D(x 1 x 2 . . .  X i + l ~  i s  computed  

from D(Xl...xi) and xi+ I. Thus finally D(x I x2...x n) 

is obtained. 

Example I: Find the maximum of any sequence (Xl...Xn), 

n ~ I, where each x. is a positive integer. Clearly, 
1 

Max (Xl) = x I. and Max (x I x 2 ... xi+ I) = 

maximum (Max (x I x 2 ...x i) , Xi+l). Thus an iterative 

algorithm as shown below may be employed. 
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begin 
Max: = Xl; 

for i: = 2 to n do 

Max: = maximum (Max, xi); 
end for; 

end; 

However it is often impossible to compute 
D(x I x 2 ... Xi+l) solely from D(x I x 2 ... xi) and 

xi+ I. Suppose for instance that D(x I x 2 ... xi) 

represents the length of the longest substring (con- 
tiguous elements of the sequence) that does not contain 
the character ",". Then the knowledge of D(x I x2...xi) 

and xi+ I is not sufficient for computing D(Xl...Xi+l). 

Consider the string"a, bc, pqr,". It is not possible 
to compute D(a,bc,pqr,) given only that the last 
character is a "," and D for the substring excluding 
the "," is equal to 2. In this case, we need to com- 
pute and carry along something more than D. 

Example 2: Suppose we want to compute the length of 
the longest substring not containing ",". Then we 
may compute 

Dl(X I x 2 ...x i) = length of the longest sub- 

string in (x I x 2 ... xi) not containing "," 

D 2 (x I x 2 ... x i) = length of the substring 

following the last (rightmost) "," in 
(x I x 2 ... xi). ( It is equal to i if there 

is no "," in x I x 2 ... xi). 

Thus Dl(a,bc,pqr) = 2 

D2(a,bc,pqr) = 3 

Now, if x I = "," then Dl(Xl) = 0 else Dl{Xl) = i 

Similarly if x I = "," then D2(xi) = 0 else D2(Xl) = i. 

Next suppose that Dl(Xl...xi) and D2(Xl...xi) have 

been computed. Then Dl(Xl...Xi+l) and D2(Xl...Xi+l) 

may be computed as follows: 

If xi+ I / "," then 

D I (x I x2''-xi+ I) = Dl(Xl...xi) 

D 2 (x I x 2 .... xi+ I) = 1 + Dl(Xl...xi). 

= " " then If xi+ 1 

D2(Xl...xi+ I) = 0 

D 1 (Xl...xi+ I) = maximum (Dl(Xl...xi) , 

D2(Xl-..xi)) 

These equations follow from the definition of Di, D 2. 

We needed to compute and carry along DI, D 2 even 

though we only need the final value of D I. This situa- 

tion occurs quite often in solving problems on sequen- 
ces as well as on more general data structures. Thus 
the major aspect of algorithm construction for com- 
puting D involves identifying certain set of quantities 
D' such that 

(i) D'(Xl) is easy to compute. 

(ii) D'(Xl...Xi+l) can be obtained easily from 

D'(Xl...xi) and xi+ I. 

(iii) D(Xl...xi) can be computed easily from 

D'(Xl...xi). 

Then the algorithm for computing D looks as follows: 

begin 
compute D': = D'(x I) 

for i: = 2 to n do 

compute new D' from old D' and xi; 

compute D from D'; 

end for; 

end; 

In the example 2, D' = {Di, D R . Trivially 

D'(Xl...xi) may just be the string (Xl...xi). This 

D' however yields little clue as to how to proceed 
from one step to the next; to compute D'(Xl...Xi+l) 

from D'(Xl...x i) and xi+ I. Principle A, given below 

will almost always yield a nontrivial D'. Since D' 
represents the amount of information that needs to be 
carried along, D' should be as small as possible. 
Furthermore, we should be able to compute (ii), (iii) 
as fast as possible. The following principle uses 
a scheme similar to successive approximation, for 
locating D', starting with D as an initial estimate 
of D'. We will assume through out that D(Xl) is easy 

to compute. In the following description, Di,D' i 

would denote D(x l...xi) and D'(x l...x i) respectively. 

Principle A: (for locating D', given D) 

be$in 
Let D': = D; 
While D'i+ 1 can not in general be obtained 

easily from D' i, xi+ 1 (for arbitrary i~l) do- 

Let D" be some quantity such that D' can in 
i+l 

general be computed (easily) from D" i, Xi+l; 

D I : = D" 

end do; 
end; 

This principle may be applied for computing success- 
ive D' such that the final D' obtained meets condition 
(ii). Usually condition (i) is trivially met. Condi- 
tion (iii) would be met since computation of D' would 
include the computation of D. 

Example 2 (continued): 

We apply the principle to the problem of locating 
the length of a longest substring not containing ",", 
in a character string. Initially let D' i be the 

length of the longest substring in (Xl...x i) not con- 

taining ",". As we noticed earlier, D'i+l can not 

be computed from D'i and xi+ I. Hence we have to 

locate D" such that, we can compute the length of the 
longest substring in (Xl...xi+ I) given D". and I Xi+l" 
D" = ~DI, D2~_ is a suitable condidate, where D 1 , D 2 

are as defined in example 2. Next we consider whether 
D'.l and xi+ 1 are sufficient to compute D'i+ I. Since 

this is affirmative, we terminate the process. 

The next example illustrates the power of the pro- 
posed method on a nontrivial problem. 

Example 3: Given a sequence x = (x I x 2 ... Xn), n ~ i, 

of positive integers, it is required to find a longest 
ascending subsequence (not necessarily contiguous); 

... X, i.e. a subsequence (Xil xi2 iy) such that 
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,°. i I < i 2 ... < iy and Xil< xi2 <xiy and Y is as 

large ~s possible. For the sequence x = (6 7 3 5 1 9 
2 12), two longest ascending subsequences are (3 5 9 
12) and (6 7 9 12). 

We will abbreviate longest ascending subsequence 
by LAS. Algorithms for the problem appear in [3,6]. 
The following algorithm derived from Principle A 
closely resembles an algorithm developed independently 
by Matuszek [5]. 

We start the process with D' = D = LAS. Next 
we ask the question whether it is possible to obtain 
D'i+ 1 (easily) from D'.i and xi+l; i.e. given any 

LAS for (Xl...xi)and xi+ I, is it possible to obtain an 

LAS for (Xl...Xi+l)? Suppose the last element of the 

LAS for (Xl...x i) is larger than xi+ I. In this case 

the current LAS can not be extended. However, if there 
is another LAS whose last element is less than Xi+l, 

then that LAS can be extended. We thus conclude that 
from an arbitrary LAS for (Xl...xi) and xi+ I, we can 

not in general get another LAS for (Xl...Xi+l). 

However, these arguments show that if we pick 
an LAS from (Xl...xi) whose last element is as small 

as possible, we can compute a__n LAS for (Xl...Xi+l), 

from this LAS and Xi+l: if xi+ 1 is smaller than the 

last element of the current LAS, the current LAS is an 
LAS for (Xl...Xi+l); otherwise the current LAS can be 

extended to include xi+ I. Thus let D' i be the 

(unique) LAS from (Xl...xi) whose last element is as 

small as possible. We call such an LAS, a best LAS 
or BLAS. 

At the next iteration, we ask the question 
whether a BLASi+ 1 can be obtained easily from BLAS. 

1 

and xi+ I. Suppose we can extend the BLAS i by addition 

of xi+ 1 at the end. Then this must necessarily be 

BLASi+ 1 (since there is no other ascending subsequence 

of equal length whose last element is other than 
Xi+l). Next suppose that BLAS i can not be extended by 

adding xi+ 1 at the end, which would be the case if 

xi+ 1 is smaller than the last element of BLAS i. Is 

BLAS i equal to BLASi+ 1 in that case? Note that 

BLAS (i 2 5) = (i 2 5), However, BLAS(i 2 5 3) = 
(i 2 3). Thus unfortunately the answer is in negative 
to the question posed above. Using the arguments pre- 
sented previously, we see that BLASi+ 1 can be obtained 

from xi+ I, BLAS i and the best ascending subsequence 

whose length is one less than BLAS.. Thus D' for the 
1 

next iteration is BLAS and best ascending sequence 
of length one less than BLAS (we denote it by 
BLAS (-i)). 

On the next iteration, using similar arguments, 
we conclude that in order to compute BLASi+ I and 

BLASi+i(-i), we need to have Xi+l, BLASi(-i ) and 

BLASi(-2). It is then easy to see that continuing 

w~ll lead us to require D' = ~BLAS, BLAS(-i), iterations 
BLAS(-2) .... ~ , i.e. D' will be the set of best 
ascending subsequences of all possible lengths starting 
from length i and including the best longest ascending 
subsequence, it may be easily verified that such a 
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D' indeed satisfies the condition for the iteration 
in Principle A, to terminate. 

Now that we have located a proper D' to carry 
forward the computation, the major design problems 
have almost been solved. It remains to design the 
proper data structure for D' such that D' may be 

i+l 
quickly computed from D'i and xi+ I. We omit these 

details here, noting that only the last elements of 
various BLAS need to be stored. Since these elements 
would be sorted (a best ascending sequence of length 
j must have a last element which is strictly smaller 
than the last element in the best ascending sequence 
of length j+l), a binary search can be carried out 
with xi+ 1 to locate that particular best ascending 

sequence which should be modified (extended). 

We note the following important facts above the 
proposed scheme, as exemplified above. 

(I) We had no need to decide the complexity of 
computing D'i+l from D'i and xi+ I. Through out the 

example (except at the very end) it was impossible 
to compute D'i+l from D'i and xi+ I. Thus we did not 

have to make any difficult design decisions of compar- 
ing alternate D". Fortunately, this turns out to 
be the case in all the examples that we have studied. 

(2) D can almost always be computed easily from 
D'. This is a consequence of the initialization and 
our insistence that we only consider those D' from 
which the previous D' can be computed. 

(3) D" usually includes D' in successive itera~ 
tions. In the example studied, the successive approx~ 
imations led from any LAS to BLAS to best ascending 
sequence of all lengths. Such refinements are almost 
always encountered in dynamic programming type situa- 
tions, where in order to compute a certain function, 
a more general function is computed. The value of 
the desired function is obtained by setting certain 
arguments in the generalized function to certain 
specific values. 

(4) D' finally obtained may be regarded as being 
closed in that D'i and xi+ 1 permit computation of 

D' Closure in this sense is very general and 
i+l" 

is almost always a property of dynamic programming 
problems. There are two conceivable techniques of 
creating such a closed set: we start with a large 
set and shrink its size. Or we start from a small set 
and increase its size. The first techl~ique corresponds 
to starting with D • being the string (x .... x.), which 
• . 1 . . 1 1 
is the maximum amount of information we would ever 
need to compute any function. The difficulty with 
this approach is that little, if any, clue exists as 
to how to proceed. We have adopted the second tech- 
nique in this paper; in addition to providing a 
systematic scheme for progressing toward a solution, 
we are assured at every step that D can indeed be 
computed from D'. 

(5) Human intuition played an important role in 
deciding whether a certain quantity can be computed 
from some other quantity. This question is usually 
quite simple to answer ( by enumerating several 
possibilities) and determining whether there is 
enough information to carry forward the computation. 

Extensions to Other Data Structures 

Ideas of the previous section can be extended to 
compute useful functions on data structures other 



than sequences~ such as trees, etc. Usually there 
are two kinds of generalization involved in computing 
D over such a data structure. 

Structural Generalization: We may compute the quantity 
over various substructures of the original structure, 
each substructure being of the same type as the orig- 
inal structure. Finally, we combine the various D's 
computed on substructures to compute D over the orig- 
inal structure. Note that D for each of the sub- 
structures may be computed by the same technique by 
decomposing it into its substructures. 

Examples of structural generalization abound: 
finding the maximum element in an integer sequence 
(where substructures are the subsequences which start 
from the beginning of the sequence) and finding the 
maximum path length in a tree(substructures are sub- 
trees) are two simple applications. Substructure 
generalization is a basic property of many algorithms 
that work on recursively defined data structures. 

Functional Generalization: It is often necessary to 
compute something more than D on substructures so 
that D may be computed over the original structure. 
We have discussed the need for such a generalization 
on sequences. Similar arguments apply to other re- 
cursive data structures. A generalization of prin- 
ciple A for such structures is given below. 

Principle A': Do a substructure decomposition; i.e., 
identify the different substructures of the original 
structure and substructures of substructures etc.; 
Apply Principle A to locate D' such that for any 
substructure S, given D' values of all its substructures 
(and some nominal information about the substructure S 
itself) D' for S can be computed. 

Clearly, we could then successively compute D' 
of larger substructures and then compute D of the orig- 
inal Structure from it. We illustrate the application 
of Principle A' in the next example. 

Example 4: Consider a binary tree each node of which 
holds a certain symbol. Symbols may be repeated. An 
example of such a tree is shown below. 

a 

b / ~ a  

a / ~  

Given some symbol s, it is required to find out if the 
symbol s occurs on any longest path from root to a 
terminal node. An usual substructure decomposition 
with trees is to take each subtree as the substructure. 
D is a yes/no type of answer. Applying Principle A, we 
first ask whether, given yes/no from the two subtrees 
L,R and the symbol p ( as shown below), we could com- 
pute yes/no for the entire tree T. For the moment, we 
ignore the possibility that either or both L,R may 
be null . 

! l 
I I 
L l 

\ I 
\ 11 T 

Consider the case when D L = "no" and D R = "yes" 

and p p s. Suppose the maximum Path length in L is 
larger than R; then the answer should be "no". How- 
ever, if maximum pathlength in L is less than or 
equal to that in R then the answer should be "yes". 
Hence we conclude that it is impossible to compute D T 

from DL, D R and p. 

Using the above argument, we may set D'j = 

Dj, maximum path length in J} for any subtree J. 

In the next iteration we question whether D'L, D' R and 

p can be used to compute D T and maximum pathlength in 

T. Let PL,PR denote the maximum pathlength from L,R 

respectively. Clearly, PT = I+ max (PL,PR). Following 

table lists the value of D T for various possibilities. 

if PL ~ PR; No otherwise. 

if PR ~ PL; No otherwise. 

D L D R ~ D T 

no no ~s no 

no no =s yes 

yes no ~s yes 

yes no =s yes 

no yes ~s yes 

no yes =s yes 

yes yes #s yes 

yes yes =s yes 

From the above table, it is clear what needs to be 
done for the case of null tree: maximum pathlength 
for a null tree is zero and D should be "no". 

Conclusion and Summary 

The problem of designing algorithms on certain 
classes of data structures has been considered. A 
principle of successive approximation is presented 
which yields the required information to be computed 

O 

of the substructures in order to (recursively) compute 
a particular function on the original structure. The 
method could be applied systematically where every 
iteration involves answering questions of the type 
"can x be computed from y?" or "what is needed to 
compute x? '~. Interestingly, answers to such questions 
are often reduced to enumerating several mutually ex- 
clusive possibilities and answering questions individ- 
ually for each one. 

The algorithms generated by principle A are of 
"left to right scan" type. Hence, a sorting algorithm 
designed by using Principle A, would most likely be 
similar to insertion sort. An efficient algorithm such 
as quick sort [4] requires a deeper understanding of 
the problem structure. The proposed method is not 
intended to replace a mathematical analysis of the 
problem. There are problems for which no left to 
right scan algorithm exists and hence they can not be 
solved by techniques presented in this paper. Further- 
more, the analysis involved in applying the principle 
will vary from person to person leading to different 
algorithms. However, we believe that such unified 
principles are useful heuristics for construction of 
a large class of algorithms. 
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