
Simulation Modeling
and Statistical Computing

N. Adam
Guest Editor

Asynchronous
Distributed Simulation
via a Sequence of
Parallel Computations
K. M. Chandy and J. Misra
University of Texas, Austin

An approach to carrying out asynchronous,
distributed simulation on multiprocessor message-
passing architectures is presented. This scheme differs
from other distributed simulation schemes because (1)
the amount of memory required by all processors
together is bounded and is no more than the amount
required in sequential simulation and (2) the
multiprocessor network is allowed to deadlock, the
deadlock is detected, and then the deadlock is broken.
Proofs for the correctness of this approach are
outlined.

Key Words and Phrases: discrete event simulation,
distributed systems, message-passing systems,
communicating sequential processes, deadlock,
recovery, parallel algorithms

CR Categories: 3.8, 8.1

1. A Scheme for Distributed Programming

The design of parallel programs is a vitally important
issue as increasingly common parallel architectures are
developed. One approach to constructing parallel pro-
grams is to recognize parallelism in existing sequential
programs. This approach does not seem to be generally
successful. It is particularly poor for simulation because
of the frequent manipulation of a single data structure
(the event-list). A different approach to the problem of

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Authors' present addresses: K.M. Chandy and J. Misra, Depart-
ment of Computer Science, University of Texas, Austin, TX 78712

This work is partially supported by NSF grants MCS77-09812 and
MCS 79-25383 and AFOSR 77-3409.
© 1981 ACM 0001-0782/81/0400-0198 $00.75.

simulation is proposed here. A number of problems
admit the following solution structure: Phases of the
problem may be solved in parallel where the phases are
required to follow one another in a sequential manner
(Figure 1). This solution structure is called a sequence of
parallel computations. It allows asynchrony within phases
and requires synchronism at phase interfaces. In this
paper the sequence of parallel computations approach is
applied to the problem of simulation.

Because we do not want to have a centralized process
which oversees the network, it is critically important that
the termination of a phase be detected in a distributed
manner by the network. Dijkstra and Scholten [6] were
the first to propose a distributed solution to this problem.
In our simulation algorithm the termination of a phase
is manifested as a deadlock, which is detected in a
distributed manner using a modification of the Dijkstra-
Scholten scheme. The start of the next phase corresponds
to recovery from deadlock. It seems more efficient to run
the computation until deadlock, recover from the dead-
lock, and then resume the computation than to avoid
deadlock altogether in distributed simulation.

The time required to obtain statistically valid results
from simulations may be prohibitively large for some
complex systems. The advent of multiprocessor architec-
tures offers the possibility of reducing run-times by
concurrently carrying out the simulation on several proc-
essors. Unfortunately, multiprocessor architectures can-
not be used with conventional event-driven simulation
techniques because of the inherently sequential nature
of event-list manipulation and the very high frequency
with which event-lists are manipulated; this makes it
difficult to run parts of the simulation concurrently.
Significant parallelism can be achieved only by doing
away with the event-list in its usual form.

One approach to distributed simulation is to have a
single global clock that drives every processor in the
network. This approach is used with time-driven simu-
lation. We do not wish to use any global variables nor
do we want to use a single process to drive the simulation
because it will prove to be a bottleneck. Our approach is
totally asynchronous; every process maintains its own
local clock and there is no global synchronization mech-
anism such as a global clock.

2. Overview of Distributed Simulation Algorithms

Any system where component entities interact at
discrete times can be represented by a network of pro-
cesses that communicate via messages (where processes
correspond to entities). Any interaction between entities
i and j can be modeled as a message between processes
i and j. Physical systems will be simulated that can be
partitioned into physical processes (PPs) that communi-
cate with one another exclusively via messages. The
behavior of a PP at time t cannot be influenced by
messages transmitted to it after t. This is called the
realizability condition.

198 Communications April 1981
of Volume 24
the ACM Number 11

Fig. I. A Sequence of Parallel Phrases.

! i

I I
I

I I
I I

t I
! I

' i i

! I
i parallel phase l phase
! linterface I
l I
I I j

All asynchronous distributed simulation schemes
have some common characteristics. There is a logical
process (LP) corresponding to every PP. Each LP simu-
lates the corresponding PP. A message m from PPi to
PPj at time t is simulated by LPi sending LPj a tuple: (t,
m). The encoding of time in logical messages results in
synchronization without a global clock.

An LP simulates the corresponding PP in the follow-
ing manner. Let the sequence of messages sent by LPi to
LPj be (t], ml) , (/2, m2), (tz, m3) We require that

(1) 0 _< t~ .~. t2 _< t3 (monotonicity) and
(2) PPi must have sent message mk to PPj at time th,

k = 1, 2, 3 and
(3) PPi must have sent no other messages to PPj besides

ml, m2 mk i.e., the sequence of messages
sent by an LP must correspond exactly to the actual
sequence of messages sent by the corresponding PP.
During the course of the simulation, if LPi sends
LPj a message (tk, mk) it implies that all messages
from PPi to PPj have been simulated up to time tk.

The protocol used for message communication in the
LP network is designed to ensure that the total amount
of memory used by all the processes in the network is
approximately the same as that used in a sequential
simulation. This is achieved by using bounded (rather
than infinite) buffers for communication. In the follow-
ing discussion buffers of size 0 (zero) are assumed for
simplicity of exposition; our algorithm works for buffers

Example 1

i,]©
source queue 1

I I I
I I

I J
I a I
I I
I !
I I !

! !
!

! ,

! I I
! I

I parallel phase | phase I
linterface !

! I !
! i

! !
!

of arbitrary size. Thus, a message is transmitted from
LPi to LPj only if LPi is waiting to send a message to
LPj and LPj is waiting to receive a message from LPi.
This protocol was proposed by Hoare [8]. (If we have
nonzero size buffers between LPi and LPj, then LPi may
transmit messages until the buffer is full).

Example 1 (see Figure 2 below)
In Example 1 assume that queues 1 and 2 have a

First-Cme First-Served (FCFS) discipline. The source,
sink, and each queue are simulated by distinct LP's.
Assume that the source produces the first customer at
time 3 and the second at time 5. The generation of the
first customer at the source results in a message (3, 1)
from the LP simulating the source (called LP0) to the
LP simulating queue 1 (called LP 1); the first component
of the message indicates the time (i.e., 3) customers
transit from source to queue 1 and the second component
denotes the number of customers (i.e., 1). Upon receipt
of this message LPI can determine that this customer
will depart at time 13 (arrival time + service time).
Hence LPI can now send the message (13, 1) to LP2.
Upon receipt of this message LP2 can determine that the
customer will depart queue 2 at time 33. It will then send
the message (33, 1) to LP3 simulating the sink. Mean-
while LP0 would have sent the message (5, 1) to LPI to
indicate the time of arrival of the next customer. LP1
will then send the message (23, 1) to LP2 (where 23 =
last departure + service time). Upon receipt of this
message LP2 will send (53, 1) to LP3.

Note that all the LP's could be working in parallel.

;iSiD- ,
queue 2 sink

service time = i0

Fig. 2. Examplelllustrating MessageTransmission.

199

service time = 20

Communications
of
the ACM

April 1981
Volume 24
Number I l

3. LP Operation and the Problem of Deadlock

The clock value Ti of LPi at any point in simulation
is defined as the maximum time satisfying the following
requirement:

All subsequent messages (t, m) sent or received by LPi
must have t > Ti.

This means that

(i)

(ii)

LPi must have received a message along each input line, where
the t-component of the message is greater than or equal to Ti.
(Thus LPi can guarantee that all subsequent input messages will
have t-components no less than T~, from the monotonicity re-
quirement of Sec. 2.)
LPi must have deduced that it will not send any message (t, m)
on any output line where t ~ Ti. (LPi can make this deduction
based on its simulation of PPi, it is not necessary for LPi to have
actually sent messages (t, m); t _> T/on every output line provided
it can guarantee that t-components of all subsequent output
messages will be greater than Ti).

A process i computes the clock-value o a line (i, j) , which is
a lower bound on the t-component of the next message transmit-
ted by i along that line. Processj computes the clock-value of line
(i, j) as the t-component of the last message received along (i, j) .
LP's i and j, in general, will compute different clock-values for
line (i, j) ; it should be clear from the context which value is
meant. Initially clock-value is zero for every line.

The operation of an LP is as follows. It alternates
between computing and waiting to communicate. When-
ever it is waiting, it follows these waiting rules.

3.1 Waiting Rules for LP's

(1) An LP waits to receive messages on all input lines
whose clock values equal the LP clock value.
(2) An LP waits on all output lines on which there is

a message to be sent.

Upon receipt or transmission of a message, the LP enters
the computational phase, which is of finite duration, to
determine which set of lines it should wait on next
according to the waiting rules, after which it waits to
communicate once again according to the above rules.

Fig. 3. A FCFS Queue with Two Input Lines.

i N I F - - -- -- 7

INz

Example 2
Consider the PP shown in Figure 3. The PP consists of
a First-Come First-Served queue fed by 2 input lines in1,
in2 and a single output, out. Assume a constant service
time of 8 units for every job. Initially the clock values
for all lines are 0 and the LP clock value = 0. Hence, the
LP waits for input on inl and in2 and does not wait to
output since there is no message to be output. Assume
(10, ml) is received on inl. The LP cannot compute any
output with a message on in1 alone. Now the LP waits
only on in2. Suppose (5, m2) is received on in2. The LP
can then guarantee that (1) no other message will arrive
at PP before time 5 and (2) the next output will occur at
5 + 8 = 13 corresponding to m2. The LP clock value is
now 5. The LP waits to input on line in2, since t2 = LP
clock-value and waits to output (13, m2), since it has
something to output. A possible sequence of message
transmissions is displayed in Table I.

3.2 Deadlock
Deadlock can occur in a simulation. (See the follow-

ing example in Figure 4.)

Example 3
Assume for this example that all jobs are of the same

class. Each edge (i, j) is labeled with the pair {time-of-
next-message, time-of-last-message along the line}. If
LPi is waiting to send a message (t*, m) to LPj, then the
time-of-next-message along edge (i, j) is t*. If LPi is not
waiting to send a message to LPj, then the time-of-next-
message along edge (i, j) is unknown and is represented
by a question mark (?). In Figure 4 the messages are

{150,100}
{220,200} {200,150}~ { i0~80} {?,40}

{7,20} [{?,40}
{? ,30}

Fig. 4. Example of a System That May Deadlock. A: Source of jobs. B, C, E, F, G, H, J: First-Come First-Serve Queues. D: Probabilistic Branch
Process Sends Jobs to E or F as Appropriate. I: Merge Process as in Example 3, but Without an Associated Queue. K: Sink.

200 Communications April 1981
of Volume 24
the ACM Number 11

Table I. Sequence of Messages in Example 2.

Message, if
LP Set of lines on any, that LP

clock which the LP is waiting to
value is waiting output Next event

5 {in2, out} (13, mz) (13, m2) is sent on out

5 {in2} . . . (7, m3) is received on in2

7 {in2, out} (21, rn3) a (12, m4) is received on in2

10 {in1, out} (21, ma) (21, m3) is sent on out

10 {in, , out} (29, ml) (18, m4) is received on in1

Service for the job m:~ cannot begin until the departure of m2 (at 13). Hence
it will depart at 13 + 8 = 21.

tuples (t, m) where m is an integer representing the
number of jobs traversing the line at time t. Normally rn
will be 1 (one), though the possibility of batch arrivals is
allowed. In the example, the source, (process A) has sent
a message (200, 1) to queue B representing the entry of
a single job at time 200 into queue B. Process A has
determined that the next job to depart from the source
will do so at time 220. Thus, process A is waiting to
output message (220, 1). However, process B is not
waiting to receive a message from A so this message
cannot be sent; we therefore label the edge (A, B) {220,
200).

The situation shown in Figure 4 is the result of the
following events: Jobs are generated in the physical
system at times 0, 40, 60, 80, 130, 180, 200 and 220. The
jobs generated at times 0 and 180 take the DF branch at
branch point D and all others take the DE branch. All
service times at B, C, E, G, J are a constant l0 units and
at F, H a constant 7 units.

Table II shows the times when each job crosses the
corresponding line of the physical system. All entries on
the upper left of the jagged line have already been
simulated. Entries on the lower right cannot be simulated
because of a deadlock.

The deadlock centers around the branch point D; D
has already sent a message (100, 1) to E but now wishes
to send a message (150, l) to E. However, E is not
waiting to receive a message. E is waiting to output (110,
l) to G and G is waiting to output (100, l) to I. Mean-
while F is waiting to receive a message from D, having
processed and sent the last message received from D at
20. D is not waiting to send a message to F. It cannot
compute the time of the next job going to F since it has

Table II. Times at Which Jobs Cross Lines in Example 3.

ob #

Lines

A ---~ B

B ---~ C

C ----~ D

D ---~ E

D ----~ F

E --> G

G --* I

F ----~ H

H ---~ I

l ---~ J

J ---~ K

1 2 3 4 5 6 7 8

0 40 60

10 50 70

20 60 80

- - 60 80

20 - - - -

- - 70 90

- - 80 [100
/

27 - - - -

I
80 130 180 200 I 220

I
90 140 190 I 210 230

I
100 150] 200 220 240

I

100 [150 - - 220 240

- - - - 200 - - - -

110 160 - - 230 250

120 170 - - 240 260

- - - - 207 - - - -

- - - - 214 - - - -

120 170 214 240 260

130 180 224 250 270

34 - - - -

34 80 100

44 90 110

not received the time of its arrival from C. Thus, the
time-of-next-message from D to F is represented by a
question mark. Similarly, H is waiting to receive from F
and I is waiting to receive from H. The waiting relation-
ships are shown in Figure 5, where W represents waiting
and N represents not waiting.

Deadlock occurs when there is a cycle of W ~ N
arcs that are assumed to go from W to N. In Figure 5,
the cycle consists of D E G I H F D.

4. Deadlock Avoidance in Previous Asynchronous
Distributed Algorithms

One scheme [3] for breaking deadlock is for LPi to
send a message of the form (t, NULL) to LPj at some
point in the simulation denoting that PPi does not send
PPj any message in the time interval between the last
message along line (i,j) and t. For instance, in Example
3, LP D could send a message (t, NULL) along an
outgoing line every time it sends a message (t, m) on the
other outgoing line. The N U LL message does not cor-
respond to any real message in the physical system. It

>

N, W Np.. "j W,----.

Fig. 5. Waiting Conditions at Deadlock in Example 3.

201 Communicat ions April 1981
of Volume 24
the ACM Number 11

will be shown in some detail how null messages are used
to avoid deadlock in Example 3. The entries correspond-
ing to null messages are circled in Table III. For example,
the message (20, NULL) is sent from D to E; LP E can
then deduce that its next output to G will not occur
before time 30 and hence it sends a message (30, NULL)
to G, which then sends (40, NULL) to I. Note that the
merge process I will output a stream of messages (34, 1),
(40, NULL), (74, NULL), (80, 1), (94, NULL), etc. Thus
deadlock is broken. See [3, 4] for a formal proof of
absence of deadlock.

Empirical evidence [15] suggests that this approach
to deadlock avoidance is expensive because a large frac-
tion of the messages transmitted are NULL messages.
Note that the presence of N U L L messages causes L P J to
process about twice the number of messages that A
produces. If there is a feedback path from the output of
I to the input of D, a large number of " N U L L jobs" will
be created at D for every "real job" entering D. Every
message entering D will cause a N U L L message to be
sent along at least one of the two outgoing edges but
there is no mechanism to annihilate N U L L jobs.

Peacock et al. [13] and Holmes [9] have suggested a
method of detecting deadlock by using "probes". Probes
are messages periodically sent out to collect status infor-
mation of processes. Our approach [5], which is based
on the work of Dijkstra and Scholten [6], avoids the use
of probes for deadlock detection; it is possible to specify
bounds on the number of message transmissions for
deadlock detection in this scheme.

5. Overview of a Distributed Scheme to Detect and
Recover from Deadlock

The entire algorithm works using the following se-
quence of computations:

(i) Parallel phase: Run simulation until deadlock.
(ii) Phase interface: Initiate a computation whereby the

various LP's can advance their LP clock values.

A special process, called controller, is proposed which
synchronizes these actions. The controller detects dead-
lock with a distributed scheme based on the termination
detection algorithm of Dijkstra and Scholten [6] which
is discussed in detail in [5]. The controller then orders
the various LP's to start the phase interface computa-
tions. Upon termination of phase interface computation
by any LP, the LP informs the controller of the termi-
nation of this computation and then resumes the parallel
phase. The controller is a central process; however, it is
not expected to be a bottleneck since the only message
transmissions involving the controller take place at the
terminations of the parallel phase and the phase interface
computations. The sole function of the controller is to
detect the termination of one phase and to initiate the
next one; the controller does not carry out any compu-
tation.

Table III. Deadlock Avoidance Using Null Messages.

"". job #

Lines " ~ 1 2 3 4 5 6 7 8
1

A ~ B 0 40 60 80 130 180 200 220

B --~ C

C --~ D

D -.-~ E

D --~ F

E ---> G

G --~ I

F ---, H I

H - * I

10 50 70 90 140 190 210 230

2 0 6 0 8 0 1 0 0 1 5 0 2 0 0 2 2 0 2 4 0

@ 6 0 8 0 1 0 0 1 5 0 @ ' 2 2 0 2 4 0

® 7o 9o ,,o ®

® ® @ ® @@
34 @ @ @ @ 214 @ @

5.1 Implementation of the Phase Interface
Upon detection of deadlock, two quantities, Uo and

W 0 for each edge (i, j) , are computed that are used to
advance the computations of LP's. For any edge (i, j) ,
U,j is defined to be the time-of-next-message output by
LPi along edge (i , j) , assuming the next message received
by LPi along every input edge corresponds to time oo (or
equivalently assuming no further input is received by
LPi). Let M o be the content of the message. Thus if no
further message is received along any input line, LPi
should send (U o, Mij) along line (i, j) . Uij c a n be
computed locally at LPi; other processes, in particular
LPj, may not know the value of Uo.

Example 4:
Consider the system in Figure 4.

UAB = 220, since process A is waiting to output at 220.
UBC = 210, Uco = 200, UoE = 150, UEG = 110,

UGI = 100.
UDr = oo, UFH = 00, U m = oo, Uag = oo, for similar

reasons.
Uta = 80, since if (oo, m) is received along Urn, then the

next output along (I, J) will be at 80.

The definition of Uij is derived from sequential sim-
ulation concepts. In a sequential simulation, each process
posts into the event-list the time t of its next output
assuming it receives no further inputs. The event with
the smallest time in the event-list is guaranteed to be the
next event in the physical system. The Uu are used for a
similar purpose. However, unlike sequential simulation,
many events can be concurrently initiated when dead-
lock is broken.

Let Ukr be the minimum of all Uij. It is guaranteed
that LP k will not receive any further messages with time
components less than Ukr, for the same reason as in
sequential simulation. Therefore, LP k can send out its
next message (Ukr, Mkr). One scheme to break deadlock

202 Communications April 1981
of Volume 24
the ACM Number 4

is to compute Uhr ~ min,u ~.i (UO.} in a distributed
manner and then signal LP k to resume computation
and send message (Uk~, Mkr).

The performance of the simulation can be improved
by starting up many LP's. However, it must be guaran-
teed that if LPi is started up to send a message (t*, m*)
to LPj, then all succeeding messages to LPi must have
time-components greater than t* so they cannot impact
the time or the content of the next message sent by LPi.
Therefore, the goal is to find the best possible lower
bound on the time-component of the next message to be
transmitted along (k, r) for every (k, r). Obviously the
minimum over all UO. is a lower bound, but it can be
improved on.

If there is a directed path from (i, j) to (k, r), then
edge (i , j) is said to be an ancestor of (k , r).

Example 5
In Figure 6, (2, 4) is an ancestor of (6, 8) whereas (1,

3) is not. Obviously only those messages along ancestor
lines can affect messages along any given line. Hence, in
the above example, messages along (1, 3) cannot impact
messages along (6, 8) whereas messages along (2, 4) may.
Thus, it it is obvious that the time-component t* of the
next message transmitted along (k, r) must be greater
than or equal to min (UO.} where the minimum is taken
only over ancestors of (k, r) and not over all edges of the
network. In this example, a lower bound for t*, the time
component of the next message on (6, 8), is the minimum
of U2,4, U4.6, and /.]6,8.

An even tighter bound on t* can be obtained as
follows. Consider any path (i, j) (x, y) . Suppose
LPx is waiting to output (:, rh) to LPy. No message
transmitted along (i, j) can alter the fact that the next
transmission along (x, y) is (:, th). Therefore, the best
lower bound Wij on the time of the next message on each
line (i, j) must satisfy the following equation:

{ L if LPi is waiting to output a message
Wo. = (L rh) to LPj

max (to., mini UO., min (Wri}]), otherwise
r

The first case in the above equation follows from the
previous paragraph. The argument for the second case

is as follows. The earliest time component of the next
message received by LPi is W~ -~ mint(Wri}. Now
consider three cases.

Case (a) W~ < tij -< Uij

The next message on line (i, j) must have a time
component greater than the last message on the line.
Hence we set WO. = tij. Note that (in general) LPi can
send a message with thetime component arbitrarily
close to to.. Thus, a better bound cannot be obtained.

Case (b) to. ~_ W ~ _~ Uo.

LPi may send a message with time component W~ as
a consequence of receiving a message with time com-
ponent W~. Hence we set Wo. = W~'.

Case (c) to. ~ UO. < W ~

In this case LPi will definitely send a message with
time component UO.. Because future inputs to a PP
cannot affect its past output, it follows that PPi will
send a message to PPj at time Uo. if it receives its next
input (if any) after UO.. In this case, we set WO. = UO..

An algorithm for computing the lower bounds W/j's
is found later in this section; it is also shown that every
LP can determine for itself that its computation of l'E/s
is complete.

Example 6
Consider the system in Figure 4.

Using the equations describing WO., we have,

WAR = 220, WBC = 210, WCD = 200, WDe = 150,
WEa = 110, Woz = 100,

W~ = WED=200
WnF = max(tnF, min (W~ UDv)) = max (20, min (200,

oo)) = 200

Similarly,

WFH = W m = 200
W~ = min(Win, Wai) = 80
Wij = max(40, min(100, 80)) = 80
WjK = 80

Fig. 6. A Possible LP Network.

203

5.2 Computation of W: Computing Lower Bounds on
Time of Next Events

The following computation procedure for I'Ej is mo-
tivated by the definitions given earlier. A proof of cor-
rectness of this procedure appears in Sec. 6.

Let W~))= Uij

~:0", if LPi is waiting to send (to, tho.) to LPj W~? +1) ~- (k) {max(tij , min[UO., mint (Wri }]), otherwise

Then Wig = W~ ~).

The computation of W~), for all lines i, j and l <_ k
_< n can b¢ carried out in a distributed manner as follows.

Communicat ions April 1981
of Volume 24
the ACM Number 4

Table IV. Message Transmissions After the Deadlock is Broken.

((1, J), (80, 1)) ((G, I), (100, 1)) ((1, J), (100, 1)) ((O, E), (150, 1))
((J, K), (90, 1)) ((E, G), (110, 1)) ((G, 1), (120, 1))

((J, K), (110, 1))

The computation at each LP consists of n cycles, 1
through n, wherein the kth cycle LPi computes W (.¢),j and
sends it to LPj, for every outgoing line (i, j) . LPi also
receives WI,*/) along every incoming line (r, i) during the
kth cycle, which enables LPi to carry out computation in
the (k + l)th cycle. Note that there is no possibility of
deadlock since every LP is waiting to communicate along
every incident line in every cycle.

5.3 Restarting LP's--How the Network Resumes after
Deadlock

Upon completion of the computation of W, LPi can
be assured that it will receive no message with time
component less than W,i on input line (r, i), nor will it
send out a message with time component less than Wii
on line (i, j) . Thus, the clock value of every line incident
on LPi is updated to reflect this fact. LPi also updates its
LP clock values and then starts waiting to input or output
according to the waiting rules given in Sec. 3.1. LPi is
defined to be resumable if the set of lines it waits on at
this point are different from the set of lines it was waiting
on at the point of deadlock. Thus, at the end of the W-
computation, each LP can determine if it is resumable.
Each LP then sends a signal to the controller stating
whether or not it is resumable. An LP is free to send and
receive messages for the next computation phase (i.e.,
continuing the simulation) after sending this signal to
the controller. It is shown in Sec. 6 that there is at least
one resumable process and that at least one message will
be transmitted before the next deadlock.

Example 7
Consider the system in Figure 4 and U, W as given

in Examples 4 and 6. For LPI, W m = 200 and hence
node I may increase its clock value to 80 which makes it
wait on input line G, I. It also waits on output line I, J,
since it has (80, 1) to output along I, J. Since LPI was
previously waiting only on H, I, LPI is thus resumable.
Table IV shows a possible scenario of message transmis-
sions from this point.

The entry ((i, j) , (t, m)) in column k of Table IV
denotes that message (t, m) is sent along (i , j) in the kth
simulation step. Note that many processes may transmit
messages in parallel.

5.4 Summary of the Algorithm

5.4.1 Algorithm for Each LP

initially: clock value is 0 for every line
(hence LP clock value is 0 for every LP);
Define this LP to be resumable if it is
waiting to output along some line;

2O4

loop:
communicate with controller:

{this phase is entered initially and upon completion of W-com-
putation}
send a signal to controller stating whether or not this LP is
resumable;

simulate:
use waiting rules of Sec. 3.1 to send and receive tuples (t, m);

compute 14,':
{this phase is entered upon detection of deadlock. Controller sends
a signal to each LP to enter this phase.}
Use algorithm of Sec. 5.2 to compute U and W.

end-loop
end-algorithm-for-LP.

5.4.2 Algorithm for the controller

loop:
receive signals from all LP's as to whether or not they are resumable;
receive signals denoting deadlock;
send signals to all LP's to initiate W-computation

end-loop
end-algorithm-for-controller.

Note: It is not immediately obvious why L P's commu-
nicate their resumable status to the controller. The LP's
do so because of the way the deadlock detection algo-
rithm is structured in [5]. The controller detects deadlock
only when it receives signals from all previously resum-
able processes. Therefore, at the end of W-computation
the controller needs to keep a list of all resumable
processes for the next deadlock detection.

6. Proofs of Properties of the Algorithm

The following properties of the algorithm are proved
in this section.

(1) No LP will terminate in an infinite horizon simu-
lation, i.e., every LP must either be computing or
waiting to communicate.

(2) The 14~/s computed in Sec. 5.2 satisfy the defini-
tion in Sec. 5.1.

(3) Following the W-computation, there exists at least
one resumable process and at least one message
must be transmitted before the next deadlock.

It follows therefore that the algorithm can continue
to simulate up to any point in physical time.

LEMMA 1. According to the waiting rules of Sec. 3.1, an
LP must wait to communicate along at least one incident
line.
PROOF: Let txy denote the clock value of line
(x, y) at any point in simulation. If LPi does not wait on
line (i , j) because it has nothing to output, then tij _> minr
{ tri}; this is because all outputs up to minr { t,i) can be
predicted for every output line from the realizability
condition of Sec. 1. Therefore, if LPi waits on no output
line, then t~j ~ minr (tri} for every output line (i , j) and
hence min i (tii} --> min, { trz}. Recall that the clock value
of LPi

= min(tri, lij)
r, j

Communications April 1981
of Volume 24
the ACM Number 4

= min{tri}, if min(tij) _> min{tri)
r j r

Hence, if LPi is waiting on no output line, it must wait
on all input lines having the minimum clock value.

THEOREM 1: The Wij~S computed in Sec. 5.2 satisfy the
definition in Sec. 5.1.

PROOF: We show that W~) is a lower bound on the
time component of the next message transmitted along
line (i, j) assuming that no further message is transmitted
on lines of distance k or more 1 from line (i, j) , i.e.,
assuming Uxy = oo, if (x, y) is at distance k or more from
(i, j) . It then follows that Wt~7) meets the definition of
Wij in Sec. 5.1, where n is the number of LP's.

The proof is by induction on k. For k = 1, every line
(x , y) , (x , y) # (i , j) , is at distance k or more from (i,j);
hence W<~ .~ = Uo, if all Uxy = oo.

Assume that the claim holds for all j, 1 _< j _< k. Any
fine (x, y) at a distance of (k + 1) or more from line (i,
j) must be at a distance of k or more from any input line
(r, i) to process i. Hence, mint (W~)) is a lower bound
on the time component of the next message transmitted
to LPi provided Uxy = oo if line (x, y) is at a distance of
(k + 1) or more from (i,j). The next message transmitted
along line (i, j) must have a time component of at least
to (from monotonicity condition) and at most Uo (from
the definition of U0). Combining this with the meaning
of minr { W~i ~ } given above, the theorem is proven.

LEMMA 2: There is a line (y, z) such that,

Uyz = Wy~ = min { Wij }
(id)

PROOF: If there are several lines with the same mini-
mum value of W, then pick that line (y, z) with the
minimum value of k such that _w ¢k)y~ = Wyz, in the com-
putation procedure of Sec. 5.2. It is shown that Wy~ =
Uy~. According to the procedure of Sec. 5.2, Wy~ _< Uy~.
Let ~ denote minx { Wx. y}. If Wy~ < Uy~, then W~ _<
Wy,. If W~ < Wy~, then rain<i j) { W/j} # Wy~. If ~ =
Wy,, then for some line (x, y), Wxy = Wy~ and line (x, y)
has lower k such that W~xk] = Wy,. Contradiction, there-
fore Wy~ = Uy~.

THEOREM 2: Following the W-computation, there exists
at least one resumable process and at least one message
must be transmitted before the next deadlock.

PROOF: Any LPy can move its clock up to minx., { Wxy,
Wy,}, following the W-computation. Consider the line
(y, z) as defined in LEMMA 2. Clearly both LPy and LPz
can move their LP clocks up to Wy~. LPz will start
waiting on line (y, z) since it now has the minimum
clock value. LPy will start waiting on line (y, z) since,
from LEMMA 2, Wy, = Uy, and therefore LPy must have
something to send on this line.

i A l ine (x , y) is at d i s tance k _> 1 from (i , j) where (i , j) # (x , y)
i f the shortest pa th f rom (x, y) to (i, j) is (xo, x l xk, xk+~) where
xo = x, x~ = y , x~ = i, xh+~ = j . The d is tance of a l ine to i t se l f is a s sumed
to be 0 (zero).

205

Not both LPy and LPz were waiting on line (y, z) at
the time of deadlock (otherwise there would not have
been a deadlock). Since at the end of W-computation,
they are both waiting on line (y, z), at least one of these
LP's must have changed the set of lines it is waiting on
and hence is resumable. Furthermore, there cannot be
another deadlock until at least either LPy or LPz changes
the set of lines it is waiting on--this can happen only
after at least one message gets transmitted.

7. Discussion

Sequential simulation and its associated event-list
mechanism is the point of departure for this paper. One
possible way to view the proposed algorithm in terms of
the event-list mechanism is that this scheme allows sev-
eral events in the event-list to take place simultaneously
when it can be guaranteed that the events so chosen
cannot be impacted by any event occurring in the future.
This causes parts of the simulator to be far ahead of
others. However, the asynchronous approach causes
deadlock. Deadlock is detected in a distributed manner.
Then a scheme derived from sequential simulation is
used to determine the processes at which the next set of
events are guaranteed to occur. These processes are given
control and the procedure repeats.

Our algorithm may be profitably used with queueing
network simulations where processes are queues or rout-
ing nodes and messages correspond to jobs or "tokens"
[14]. The topology of process interaction (and conse-
quently, of paths between processors in the simulation)
is described in the network model. An elegant scheme
for describing the topology is found in RESQ [14].
Processes in RESQ are described either by defining he
process type (First-Come First-Served, preemptive, etc)
from a system-defined set of process types or by writing
simulation procedures for user defined types. It is con-
ceptually straightforward to compile a RESQ program
for a distributed simulation architecture. Information
control nets [5] are also suitable for distributed simula-
tion. It is more difficult to compile simulations written
in other languages, though the problems are implemen-
tation-related rather than fundamental.

Work on infinite buffer simulation models was car-
fled out by Bryant [1] and Peacock, Wong, and Manning
[11-13]. Peacock et al. [11] provide a very comprehensive
study of distributed simulation in general. The major
difference between these approaches and ours is that
ours does not have infinite buffers. Thus, deadlock is
possible bcause processes cannot output (due to buffer
size limitations) which cannot happen in the other
schemes. In the infinite buffer case, deadlocks can occur
only if all processes are waiting for input; the action of
breaking deadlock is relatively straightforward in this
case.

Nutt [10] presents an interesting distributed fixed
time increment simulator. His model uses information

C o m m u n i c a t i o n s Apr i l 1981
of Vo lume 24
the A C M N u m b e r 4

control nets. He has described process, message types
which implement his algorithm in detail. Our approach
departs from Nutt's in its basis in discrete-event simula-
tion. As in sequential simulation there are cases where
discrete-event approaches are preferable to time driven
simulations and there are cases where the reverse is true.

The running time of the distributed algorithm de-
pends upon the model being simulated. It is known
empirically [15] that the distributed scheme approaches
ideal performance when there are no multiple loops in
the network. Extensive experimentation with various
models is necessary in order to predict the performance
of the proposed algorithm.

Received 2/80; revised 9/80; accepted 12/80

References
!. Bryant, R. E. Simulation of packet communication architecture
computer systems. M.I.T. Lab. Comptr. Sci., M.S. Thesis, Nov. 1977.
2. Chandy, K. M., Holmes, V., and Misra, J. Distributed simulation
of networks. Comptr. Networks 3, 1 (Feb. 1979), 105-113.
3. Chandy, K. M. and Misra, J. Distributed simulation: A case
study in design and verification of distributed programs. IEEE Trans.
on Software Engineering, SE-5, 5 (Sept. 1979), 440---452.
4. Chandy, K. M. and Misra, J. Deadlock absence proofs for
networks of communicating processes. Information Processing Lett. 9,
4, (Nov. 1979), 185-189.
5. Chandy, K. M. and Misra, J. Termination detection of diffusing
computations in communicating sequential processes. Dept. of
Comptr. Sci., Tech. Rept, TR-144, 1980, University of Texas, Austin,
TX.
6. Dijkstra, E. W. and Scholten, C. S. Termination detection for
diffusing computations. EWD687a, 5671 AL Nuenen, The
Netherlands.
7. Ellis, C. A. Information control nets: A methematical model of
office information flow. Proc 1979 Conf. on Simulation, Measurement
and Modeling of Computer Systems. (Aug. 1979), 225-239.
8. Hoare, C. A. R. Communicating sequential processes. Comm.
ACM 21, 8, (Aug. 1978) 666-677.
9. Holmes, V. Parallel algorithms for multiple processor
architectures. Ph.D. Dissertation, Comptr. Sci. Dept. Univ. of Texas,
Austin, TX, 1978.
10. Nutt, G. J. An experimental distributed modeling system. Tech.
Rept, Jan. 1980, Xerox Palo Alto Research Center, Palo Alto, CA
94305.
11. Peacock, J. K., Wong, J. W., and Manning, E. G. Distributed
simulation using a network of processors. Comptr Networks, 3, 1
(Feb. 1979), 44-56.
12. Peacock, J. K., Wong, J. W., and Manning, E. G.
Synchronization of distributed simulation using broadcast algorithms.
Proc of the Winter Simulation Conference, December, 1979.
13. Peacock, J. K., Wong, J. W., and Manning, E. G. A distributed
approach to queueing network simulation. Proc. 4th Berkeley Conf.
on Distributed Data Management and Computer Networks, Berkeley,
CA, August, 1979, 237-259.
14. Sauer, C. H. Characterization and simulation of generalized
queueing networks. RC-6057, IBM Research, Yorktown Heights,
NY, May, 1978.
15. Seethalakshmi, M. Performance analysis of distributed
simulation. M.S. Rept, 1978, Comptr. Sci. Dept., Univ. of Texas,
Austin, TX.

Simulation Modeling N. Adam
and Statistical Computing Guest Editor

Use of Polya
Distributions in .
Approximate Solutions
to Nonstationary
M/M/s Queues
Gordon M. Clark
The Ohio State University

Delays are important processes represented by
continuous simulation models; however, representing
queueing delays efficiently within continuous
simulations merits the development of new
methodology. Rothkopf and Oren introduced the
concept of using a surrogate distribution, viz., the
negative-binomial, as a closure approximation to the
infinite set of Chapman-Kolmogorov equations
representing a nonstationary
M/M/s queue. The method presented in this paper
uses the Polya-Eggenberger distribution as a surrogate
for the true distribution of the number in the queueing
system at a particular time and only requires the
numerical integration of five differential equations. The
paper presents numerical results comparing the Polya
surrogate and Rothkopf and Oren's approximation for a
number of diverse cases, and these results indicate that
the Polya surrogate is, in general, more accurate,
although exceptions were encountered. Moreover,
queueing delays represented by a closure approximation
involving a surrogate distribution, in particular, the
Polya, are suitable for use within a larger continuous
simulation.

Key Words and Phrases: continuous simulation,
queueing delays, M/M/s queue, queueing
approximation, system dynamics.

CR Categories: 5.5, 8.1,

206

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Working Paper Series Number 1980-004
Author's Present Address: Gordon M. Clark, Industrial and Systems
Engineering, The Ohio State University, Columbus, OH 43210.
© 1981 ACM 0001-0782/81/0400-0206 $00.75.

Communications April 1981
of Volume 24
the ACM Number 4

