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An approach to carrying out asynchronous, 
distributed simulation on multiprocessor message- 
passing architectures is presented. This scheme differs 
from other distributed simulation schemes because (1) 
the amount of memory required by all processors 
together is bounded and is no more than the amount 
required in sequential simulation and (2) the 
multiprocessor network is allowed to deadlock, the 
deadlock is detected, and then the deadlock is broken. 
Proofs for the correctness of this approach are 
outlined. 
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1. A Scheme for Distributed Programming 

The design of parallel programs is a vitally important 
issue as increasingly common parallel architectures are 
developed. One approach to constructing parallel pro- 
grams is to recognize parallelism in existing sequential 
programs. This approach does not seem to be generally 
successful. It is particularly poor for simulation because 
of the frequent manipulation of a single data structure 
(the event-list). A different approach to the problem of 
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simulation is proposed here. A number of problems 
admit the following solution structure: Phases of the 
problem may be solved in parallel where the phases are 
required to follow one another in a sequential manner 
(Figure 1). This solution structure is called a sequence of  
parallel computations. It allows asynchrony within phases 
and requires synchronism at phase interfaces. In this 
paper the sequence of parallel computations approach is 
applied to the problem of simulation. 

Because we do not want to have a centralized process 
which oversees the network, it is critically important that 
the termination of a phase be detected in a distributed 
manner by the network. Dijkstra and Scholten [6] were 
the first to propose a distributed solution to this problem. 
In our simulation algorithm the termination of a phase 
is manifested as a deadlock, which is detected in a 
distributed manner using a modification of the Dijkstra- 
Scholten scheme. The start of the next phase corresponds 
to recovery from deadlock. It seems more efficient to run 
the computation until deadlock, recover from the dead- 
lock, and then resume the computation than to avoid 
deadlock altogether in distributed simulation. 

The time required to obtain statistically valid results 
from simulations may be prohibitively large for some 
complex systems. The advent of multiprocessor architec- 
tures offers the possibility of reducing run-times by 
concurrently carrying out the simulation on several proc- 
essors. Unfortunately, multiprocessor architectures can- 
not be used with conventional event-driven simulation 
techniques because of the inherently sequential nature 
of event-list manipulation and the very high frequency 
with which event-lists are manipulated; this makes it 
difficult to run parts of the simulation concurrently. 
Significant parallelism can be achieved only by doing 
away with the event-list in its usual form. 

One approach to distributed simulation is to have a 
single global clock that drives every processor in the 
network. This approach is used with time-driven simu- 
lation. We do not wish to use any global variables nor 
do we want to use a single process to drive the simulation 
because it will prove to be a bottleneck. Our approach is 
totally asynchronous; every process maintains its own 
local clock and there is no global synchronization mech- 
anism such as a global clock. 

2. Overview of Distributed Simulation Algorithms 

Any system where component entities interact at 
discrete times can be represented by a network of pro- 
cesses that communicate via messages (where processes 
correspond to entities). Any interaction between entities 
i and j can be modeled as a message between processes 
i and j. Physical systems will be simulated that can be 
partitioned into physical processes (PPs) that communi- 
cate with one another exclusively via messages. The 
behavior of a PP at time t cannot be influenced by 
messages transmitted to it after t. This is called the 
realizability condition. 
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Fig. I. A Sequence of Parallel Phrases. 
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All asynchronous distributed simulation schemes 
have some common characteristics. There is a logical 
process (LP) corresponding to every PP. Each LP simu- 
lates the corresponding PP. A message m from PPi to 
PPj at time t is simulated by LPi sending LPj a tuple: (t, 
m). The encoding of  time in logical messages results in 
synchronization without a global clock. 

An LP simulates the corresponding PP in the follow- 
ing manner. Let the sequence of messages sent by LPi to 
LPj be (t], ml) ,  (/2, m2), (tz, m3) . . . .  We require that 

(1) 0 _< t~ .~. t2 _< t3 . . . .  (monotonicity) and 
(2) PPi must have sent message mk to PPj at time th, 

k = 1, 2, 3 . . . .  and 
(3) PPi must have sent no other messages to PPj besides 

ml, m2 . . . . .  mk . . . . .  i.e., the sequence of  messages 
sent by an LP must correspond exactly to the actual 
sequence of  messages sent by the corresponding PP. 
During the course of  the simulation, if LPi sends 
LPj a message (tk, mk) it implies that all messages 
from PPi to PPj have been simulated up to time tk. 

The protocol used for message communication in the 
LP network is designed to ensure that the total amount 
of  memory used by all the processes in the network is 
approximately the same as that used in a sequential 
simulation. This is achieved by using bounded (rather 
than infinite) buffers for communication. In the follow- 
ing discussion buffers of  size 0 (zero) are assumed for 
simplicity of  exposition; our algorithm works for buffers 
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of  arbitrary size. Thus, a message is transmitted from 
LPi to LPj only if LPi is waiting to send a message to 
LPj and LPj is waiting to receive a message from LPi. 
This protocol was proposed by Hoare [8]. (If we have 
nonzero size buffers between LPi and LPj, then LPi may 
transmit messages until the buffer is full). 

Example 1 (see Figure 2 below) 
In Example 1 assume that queues 1 and 2 have a 

First-Cme First-Served (FCFS) discipline. The source, 
sink, and each queue are simulated by distinct LP's. 
Assume that the source produces the first customer at 
time 3 and the second at time 5. The generation of the 
first customer at the source results in a message (3, 1) 
from the LP simulating the source (called LP0) to the 
LP simulating queue 1 (called LP 1); the first component 
of  the message indicates the time (i.e., 3) customers 
transit from source to queue 1 and the second component 
denotes the number of  customers (i.e., 1). Upon receipt 
of  this message LPI can determine that this customer 
will depart at time 13 (arrival time + service time). 
Hence LPI can now send the message (13, 1) to LP2. 
Upon receipt of  this message LP2 can determine that the 
customer will depart queue 2 at time 33. It will then send 
the message (33, 1) to LP3 simulating the sink. Mean- 
while LP0 would have sent the message (5, 1) to LPI to 
indicate the time of  arrival of  the next customer. LP1 
will then send the message (23, 1) to LP2 (where 23 = 
last departure + service time). Upon receipt of  this 
message LP2 will send (53, 1) to LP3. 

Note that all the LP's could be working in parallel. 

;iSiD- , 
queue 2 sink 

service time = i0 

Fig. 2. Examplelllustrating MessageTransmission. 
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3. LP Operation and the Problem of Deadlock 

The clock value Ti of  LPi at any point in simulation 
is defined as the maximum time satisfying the following 
requirement: 

All  subsequent messages (t, m) sent or received by LPi 
must have t > Ti. 

This means that 

(i) 

(ii) 

LPi must have received a message along each input line, where 
the t-component of  the message is greater than or equal to Ti. 
(Thus LPi can guarantee that all subsequent input messages will 
have t-components no less than T~, from the monotonicity re- 
quirement of  Sec. 2.) 
LPi must have deduced that it will not send any message (t, m) 
on any output line where t ~ Ti. (LPi can make this deduction 
based on its simulation of  PPi, it is not necessary for LPi to have 
actually sent messages (t, m ); t _> T/on every output line provided 
it can guarantee that t-components of  all subsequent output 
messages will be greater than Ti). 

A process i computes the clock-value o a line (i, j ) ,  which is 
a lower bound on the t-component of  the next message transmit- 
ted by i along that line. Processj  computes the clock-value of  line 
(i, j )  as the t-component of  the last message received along (i, j ) .  
LP's i and j,  in general, will compute different clock-values for 
line (i, j ) ;  it should be clear from the context which value is 
meant. Initially clock-value is zero for every line. 

The operation of  an LP is as follows. It alternates 
between computing and waiting to communicate. When- 
ever it is waiting, it follows these waiting rules. 

3.1 Waiting Rules for LP's 

(1) An LP waits to receive messages on all input lines 
whose clock values equal the LP clock value. 
(2) An LP waits on all output lines on which there is 

a message to be sent. 

Upon receipt or transmission of  a message, the LP enters 
the computational phase, which is of  finite duration, to 
determine which set of  lines it should wait on next 
according to the waiting rules, after which it waits to 
communicate once again according to the above rules. 

Fig. 3. A FCFS Queue with Two Input Lines. 

i N  I F - -  -- -- 7 

INz  

Example  2 
Consider the PP shown in Figure 3. The PP consists of 
a First-Come First-Served queue fed by 2 input lines in1, 
in2 and a single output, out. Assume a constant service 
time of 8 units for every job. Initially the clock values 
for all lines are 0 and the LP clock value = 0. Hence, the 
LP waits for input on inl and in2 and does not wait to 
output since there is no message to be output. Assume 
(10, ml) is received on inl. The LP cannot compute any 
output with a message on in1 alone. Now the LP waits 
only on in2. Suppose (5, m2) is received on in2. The LP 
can then guarantee that (1) no other message will arrive 
at PP before time 5 and (2) the next output will occur at 
5 + 8 = 13 corresponding to m2. The LP clock value is 
now 5. The LP waits to input on line in2, since t2 = LP 
clock-value and waits to output (13, m2), since it has 
something to output. A possible sequence of  message 
transmissions is displayed in Table I. 

3.2 Deadlock 
Deadlock can occur in a simulation. (See the follow- 

ing example in Figure 4.) 

Example  3 
Assume for this example that all jobs are of  the same 

class. Each edge (i, j )  is labeled with the pair {time-of- 
next-message, time-of-last-message along the line}. If  
LPi is waiting to send a message (t*, m) to LPj, then the 
time-of-next-message along edge (i, j )  is t*. If  LPi is not 
waiting to send a message to LPj, then the time-of-next- 
message along edge (i, j )  is unknown and is represented 
by a question mark (?). In Figure 4 the messages are 

{150,100} 
{220,200} {200,150}~ { i0~80} {?,40} 

{7,20} [ {?,40} 
{? ,30} 

Fig. 4. Example of  a System That May Deadlock. A: Source of  jobs. B, C, E, F, G, H, J: First-Come First-Serve Queues. D: Probabilistic Branch 
Process Sends Jobs to E or F as Appropriate. I: Merge Process as in Example 3, but Without an Associated Queue. K: Sink. 
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Table I. Sequence of Messages in Example 2. 

Message, if 
LP Set of  lines on any, that LP 

clock which the LP is waiting to 
value is waiting output  Next event 

5 {in2, out}  (13, mz) (13, m2) is sent on out 

5 {in2} . . .  (7, m3) is received on in2 

7 {in2, out}  (21, rn3) a (12, m4) is received on in2 

10 {in1, out}  (21, ma) (21, m3) is sent on out 

10 {in, ,  out}  (29, ml) (18, m4) is received on in1 

Service for the job m:~ cannot begin until the departure of m2 (at 13). Hence 
it will depart at 13 + 8 = 21. 

tuples (t, m) where m is an integer representing the 
number of  jobs traversing the line at time t. Normally rn 
will be 1 (one), though the possibility of  batch arrivals is 
allowed. In the example, the source, (process A) has sent 
a message (200, 1) to queue B representing the entry of  
a single job at time 200 into queue B. Process A has 
determined that the next job to depart from the source 
will do so at time 220. Thus, process A is waiting to 
output message (220, 1). However, process B is not 
waiting to receive a message from A so this message 
cannot be sent; we therefore label the edge (A, B) {220, 
200). 

The situation shown in Figure 4 is the result of  the 
following events: Jobs are generated in the physical 
system at times 0, 40, 60, 80, 130, 180, 200 and 220. The 
jobs generated at times 0 and 180 take the DF branch at 
branch point D and all others take the DE branch. All 
service times at B, C, E, G, J are a constant l0 units and 
at F, H a constant 7 units. 

Table II shows the times when each job crosses the 
corresponding line of  the physical system. All entries on 
the upper left of  the jagged line have already been 
simulated. Entries on the lower right cannot be simulated 
because of  a deadlock. 

The deadlock centers around the branch point D; D 
has already sent a message (100, 1) to E but now wishes 
to send a message (150, l) to E. However, E is not 
waiting to receive a message. E is waiting to output (110, 
l) to G and G is waiting to output (100, l) to I. Mean- 
while F is waiting to receive a message from D, having 
processed and sent the last message received from D at 
20. D is not waiting to send a message to F. It cannot 
compute the time of  the next job going to F since it has 

Table II. Times at Which  Jobs Cross Lines in Example 3. 

ob # 

Lines 

A ---~ B 

B ---~ C 

C ----~ D 

D ---~ E 

D ----~ F 

E --> G 

G --* I 

F ----~ H 

H ---~ I 

l ---~ J 

J ---~ K 

1 2 3 4 5 6 7 8 

0 40 60 

10 50 70 

20 60 80 

- -  60 80 

20 - -  - -  

- -  70 90 

- -  80 [ 100 
/ 

27 - -  - -  

I 
80 130 180 200 I 220 

I 
90 140 190 I 210 230 

I 
100 150 ] 200 220 240 

I 

100 [ 150 - -  220 240 

- -  - -  200 - -  - -  

110 160 - -  230 250 

120 170 - -  240 260 

- -  - -  207 - -  - -  

- -  - -  214 - -  - -  

120 170 214 240 260 

130 180 224 250 270 

34 - -  - -  

34 80 100 

44 90 110 

not received the time of  its arrival from C. Thus, the 
time-of-next-message from D to F is represented by a 
question mark. Similarly, H is waiting to receive from F 
and I is waiting to receive from H. The waiting relation- 
ships are shown in Figure 5, where W represents waiting 
and N represents not waiting. 

Deadlock occurs when there is a cycle of  W ~ N 
arcs that are assumed to go from W to N. In Figure 5, 
the cycle consists of  D E G I H F D. 

4. Deadlock Avoidance in Previous Asynchronous 
Distributed Algorithms 

One scheme [3] for breaking deadlock is for LPi to 
send a message of  the form (t, NULL)  to LPj at some 
point in the simulation denoting that PPi does not send 
PPj any message in the time interval between the last 
message along line (i,j) and t. For instance, in Example 
3, LP D could send a message (t, NULL)  along an 
outgoing line every time it sends a message (t, m) on the 
other outgoing line. The N U LL message does not cor- 
respond to any real message in the physical system. It 

> 

N, W Np..  "j W,----. 

Fig. 5. Waiting Conditions at Deadlock in Example 3. 
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will be shown in some detail how null messages are used 
to avoid deadlock in Example 3. The entries correspond- 
ing to null messages are circled in Table III. For example, 
the message (20, NULL)  is sent from D to E; LP E can 
then deduce that its next output to G will not occur 
before time 30 and hence it sends a message (30, NULL)  
to G, which then sends (40, NULL)  to I. Note that the 
merge process I will output a stream of  messages (34, 1), 
(40, NULL),  (74, NULL),  (80, 1), (94, NULL),  etc. Thus 
deadlock is broken. See [3, 4] for a formal proof of  
absence of  deadlock. 

Empirical evidence [15] suggests that this approach 
to deadlock avoidance is expensive because a large frac- 
tion of  the messages transmitted are NULL messages. 
Note that the presence of N U L L  messages causes L P J  to 
process about twice the number of messages that A 
produces. If  there is a feedback path from the output of  
I to the input of  D, a large number of  " N U L L  jobs" will 
be created at D for every "real job"  entering D. Every 
message entering D will cause a N U L L  message to be 
sent along at least one of  the two outgoing edges but 
there is no mechanism to annihilate N U L L  jobs. 

Peacock et al. [13] and Holmes [9] have suggested a 
method of  detecting deadlock by using "probes". Probes 
are messages periodically sent out to collect status infor- 
mation of  processes. Our approach [5], which is based 
on the work of Dijkstra and Scholten [6], avoids the use 
of  probes for deadlock detection; it is possible to specify 
bounds on the number of  message transmissions for 
deadlock detection in this scheme. 

5. Overview of  a Distributed Scheme to Detect  and 
Recover from Deadlock 

The entire algorithm works using the following se- 
quence of  computations: 

(i) Parallel phase: Run simulation until deadlock. 
(ii) Phase interface: Initiate a computation whereby the 

various LP's can advance their LP clock values. 

A special process, called controller, is proposed which 
synchronizes these actions. The controller detects dead- 
lock with a distributed scheme based on the termination 
detection algorithm of Dijkstra and Scholten [6] which 
is discussed in detail in [5]. The controller then orders 
the various LP's to start the phase interface computa- 
tions. Upon termination of phase interface computation 
by any LP, the LP informs the controller of  the termi- 
nation of  this computation and then resumes the parallel 
phase. The controller is a central process; however, it is 
not expected to be a bottleneck since the only message 
transmissions involving the controller take place at the 
terminations of  the parallel phase and the phase interface 
computations. The sole function of the controller is to 
detect the termination of  one phase and to initiate the 
next one; the controller does not carry out any compu- 
tation. 

Table III. Deadlock Avoidance Using Null Messages. 

"". job # 

Lines " ~  1 2 3 4 5 6 7 8 
1 

A ~ B 0 40 60 80 130 180 200 220 

B --~ C 

C --~ D 

D -.-~ E 

D --~ F 

E ---> G 

G --~ I 

F ---, H I 

H - *  I 

10 50 70 90 140 190 210 230 

2 0 6 0 8 0 1 0 0 1 5 0 2 0 0 2 2 0 2 4 0  

@ 6 0 8 0 1 0 0 1 5 0 @ ' 2 2 0 2 4 0  

® 7o 9o ,,o ® 

® ® @ ®  @@ 
34 @ @ @ @ 214 @ @ 

5.1 Implementation of  the Phase Interface 
Upon detection of deadlock, two quantities, Uo and 

W 0 for each edge (i, j ) ,  are computed that are used to 
advance the computations of  LP's. For any edge (i, j ) ,  
U,j is defined to be the time-of-next-message output by 
LPi along edge (i , j) ,  assuming the next message received 
by LPi along every input edge corresponds to time oo (or 
equivalently assuming no further input is received by 
LPi). Let M o be the content of  the message. Thus if no 
further message is received along any input line, LPi 
should send ( U  o, Mij) along line (i, j ) .  Uij c a n  be 
computed locally at LPi; other processes, in particular 
LPj, may not know the value of  Uo. 

Example 4: 
Consider the system in Figure 4. 

UAB = 220, since process A is waiting to output at 220. 
UBC = 210, Uco = 200, UoE = 150, UEG = 110, 

UGI = 100. 
UDr = oo, UFH = 00, U m =  oo, Uag = oo, for similar 

reasons. 
Uta = 80, since if (oo, m) is received along Urn, then the 

next output along (I, J) will be at 80. 

The definition of  Uij is derived from sequential sim- 
ulation concepts. In a sequential simulation, each process 
posts into the event-list the time t of  its next output 
assuming it receives no further inputs. The event with 
the smallest time in the event-list is guaranteed to be the 
next event in the physical system. The Uu are used for a 
similar purpose. However, unlike sequential simulation, 
many events can be concurrently initiated when dead- 
lock is broken. 

Let Ukr be the minimum of  all Uij. It is guaranteed 
that LP k will not receive any further messages with time 
components less than Ukr, for the same reason as in 
sequential simulation. Therefore, LP k can send out its 
next message ( Ukr, Mkr). One scheme to break deadlock 
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is to compute Uhr ~ min,u ~.i (UO.} in a distributed 
manner and then signal LP k to resume computation 
and send message (Uk~, Mkr). 

The performance of  the simulation can be improved 
by starting up many LP's. However, it must be guaran- 
teed that if LPi is started up to send a message (t*, m*) 
to LPj, then all succeeding messages to LPi must have 
time-components greater than t* so they cannot impact 
the time or the content of  the next message sent by LPi. 
Therefore, the goal is to find the best possible lower 
bound on the time-component of  the next message to be 
transmitted along (k, r) for every (k, r). Obviously the 
minimum over all UO. is a lower bound, but it can be 
improved on. 

If  there is a directed path from (i, j )  to (k, r), then 
edge ( i , j )  is said to be an ancestor of (k ,  r). 

Example 5 
In Figure 6, (2, 4) is an ancestor of  (6, 8) whereas (1, 

3) is not. Obviously only those messages along ancestor 
lines can affect messages along any given line. Hence, in 
the above example, messages along (1, 3) cannot impact 
messages along (6, 8) whereas messages along (2, 4) may. 
Thus, it it is obvious that the time-component t* of  the 
next message transmitted along (k, r) must be greater 
than or equal to min ( UO.} where the minimum is taken 
only over ancestors of  (k, r) and not over all edges of  the 
network. In this example, a lower bound for t*, the time 
component of  the next message on (6, 8), is the minimum 
of  U2,4, U4.6, and /.]6,8. 

An even tighter bound on t* can be obtained as 
follows. Consider any path (i, j )  . . . . .  (x, y) .  Suppose 
LPx is waiting to output (:, rh) to LPy. No message 
transmitted along (i, j )  can alter the fact that the next 
transmission along (x, y)  is (:, th). Therefore, the best 
lower bound Wij on the time of  the next message on each 
line (i, j )  must satisfy the following equation: 

{ L if LPi is waiting to output a message 
Wo. = (L rh) to LPj 

max (to., mini UO., min (Wri}]), otherwise 
r 

The first case in the above equation follows from the 
previous paragraph. The argument for the second case 

is as follows. The earliest time component of  the next 
message received by LPi is W~ -~ mint(  Wri}. Now 
consider three cases. 

Case (a) W~ < tij -< Uij 

The next message on line (i, j )  must have a time 
component greater than the last message on the line. 
Hence we set WO. = tij. Note that (in general) LPi can 
send a message with thetime component arbitrarily 
close to to.. Thus, a better bound cannot be obtained. 

Case (b) to. ~_ W ~  _~ Uo. 

LPi may send a message with time component W~ as 
a consequence of receiving a message with time com- 
ponent W~. Hence we set Wo. = W~'. 

Case (c) to. ~ UO. < W ~  

In this case LPi will definitely send a message with 
time component UO.. Because future inputs to a PP 
cannot affect its past output, it follows that PPi will 
send a message to PPj at time Uo. if it receives its next 
input (if any) after UO.. In this case, we set WO. = UO.. 

An algorithm for computing the lower bounds W/j's 
is found later in this section; it is also shown that every 
LP can determine for itself that its computation of  l'E/s 
is complete. 

Example 6 
Consider the system in Figure 4. 

Using the equations describing WO., we have, 

WAR = 220, WBC = 210, WCD = 200, WDe = 150, 
WEa = 110, Woz = 100, 

W~ = WED=200 
WnF = max(tnF, min ( W~ UDv)) = max (20, min (200, 

oo)) = 200 

Similarly, 

WFH = W m =  200 
W~ = min( Win, Wai) = 80 
Wij = max(40, min(100, 80)) = 80 
WjK = 80 

Fig. 6. A Possible LP Network. 

203 

5.2 Computation of W: Computing Lower Bounds on 
Time of Next Events 

The following computation procedure for I'Ej is mo- 
tivated by the definitions given earlier. A proof  of  cor- 
rectness of  this procedure appears in Sec. 6. 

Let W~) )= Uij 

~:0", if  LPi is waiting to send (to, tho.) to LPj W~? +1) ~- (k) {max(tij ,  min[ UO., mint (Wri  }]), otherwise 

Then Wig = W~ ~). 

The computation of  W~ ), for all lines i, j and l <_ k 
_< n can b¢ carried out in a distributed manner as follows. 
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Table IV. Message Transmissions After the Deadlock is Broken. 

((1, J), (80, 1)) ((G, I), (100, 1)) ((1, J), (100, 1)) ((O, E), (150, 1)) 
((J, K), (90, 1)) ((E, G), (110, 1)) ((G, 1), (120, 1)) 

((J, K), (110, 1)) 

The computation at each LP consists of n cycles, 1 
through n, wherein the kth cycle LPi computes W (.¢),j and 
sends it to LPj, for every outgoing line (i, j) .  LPi also 
receives WI,*/) along every incoming line (r, i) during the 
kth cycle, which enables LPi to carry out computation in 
the (k + l)th cycle. Note that there is no possibility of 
deadlock since every LP is waiting to communicate along 
every incident line in every cycle. 

5.3 Restarting LP's--How the Network Resumes after 
Deadlock 

Upon completion of the computation of W, LPi can 
be assured that it will receive no message with time 
component less than W,i on input line (r, i), nor will it 
send out a message with time component less than Wii 
on line (i, j) .  Thus, the clock value of every line incident 
on LPi is updated to reflect this fact. LPi also updates its 
LP clock values and then starts waiting to input or output 
according to the waiting rules given in Sec. 3.1. LPi is 
defined to be resumable if the set of lines it waits on at 
this point are different from the set of lines it was waiting 
on at the point of deadlock. Thus, at the end of the W- 
computation, each LP can determine if it is resumable. 
Each LP then sends a signal to the controller stating 
whether or not it is resumable. An LP is free to send and 
receive messages for the next computation phase (i.e., 
continuing the simulation) after sending this signal to 
the controller. It is shown in Sec. 6 that there is at least 
one resumable process and that at least one message will 
be transmitted before the next deadlock. 

Example 7 
Consider the system in Figure 4 and U, W as given 

in Examples 4 and 6. For LPI, W m =  200 and hence 
node I may increase its clock value to 80 which makes it 
wait on input line G, I. It also waits on output line I, J, 
since it has (80, 1) to output along I, J. Since LPI was 
previously waiting only on H, I, LPI is thus resumable. 
Table IV shows a possible scenario of message transmis- 
sions from this point. 

The entry ((i, j) ,  (t, m)) in column k of Table IV 
denotes that message (t, m) is sent along ( i , j )  in the kth 
simulation step. Note that many processes may transmit 
messages in parallel. 

5.4 Summary of the Algorithm 

5.4.1 Algorithm for  Each LP 

initially: clock value is 0 for every line 
(hence LP clock value is 0 for every LP); 
Define this LP to be resumable if it is 
waiting to output along some line; 

2O4 

loop: 
communicate with controller: 

{this phase is entered initially and upon completion of W-com- 
putation} 
send a signal to controller stating whether or not this LP is 
resumable; 

simulate: 
use waiting rules of  Sec. 3.1 to send and receive tuples (t, m); 

compute 14,': 
{this phase is entered upon detection of  deadlock. Controller sends 
a signal to each LP to enter this phase.} 
Use algorithm of  Sec. 5.2 to compute U and W. 

end-loop 
end-algorithm-for-LP. 

5.4.2 Algorithm for  the controller 

loop: 
receive signals from all LP's as to whether or not they are resumable; 
receive signals denoting deadlock; 
send signals to all LP's to initiate W-computation 

end-loop 
end-algorithm-for-controller. 

Note: It is not immediately obvious why L P's commu- 
nicate their resumable status to the controller. The LP's 
do so because of the way the deadlock detection algo- 
rithm is structured in [5]. The controller detects deadlock 
only when it receives signals from all previously resum- 
able processes. Therefore, at the end of W-computation 
the controller needs to keep a list of all resumable 
processes for the next deadlock detection. 

6. Proofs of Properties of the Algorithm 

The following properties of the algorithm are proved 
in this section. 

(1) No LP will terminate in an infinite horizon simu- 
lation, i.e., every LP must either be computing or 
waiting to communicate. 

(2) The 14~/s computed in Sec. 5.2 satisfy the defini- 
tion in Sec. 5.1. 

(3) Following the W-computation, there exists at least 
one resumable process and at least one message 
must be transmitted before the next deadlock. 

It follows therefore that the algorithm can continue 
to simulate up to any point in physical time. 

LEMMA 1. According to the waiting rules of  Sec. 3.1, an 
LP must wait to communicate along at least one incident 
line. 
PROOF: Let txy denote the clock value of line 
(x, y)  at any point in simulation. If  LPi does not wait on 
line ( i , j )  because it has nothing to output, then tij _> minr 
{ tri}; this is because all outputs up to minr { t,i) can be 
predicted for every output line from the realizability 
condition of Sec. 1. Therefore, if LPi waits on no output 
line, then t~j ~ minr (tri} for every output line ( i , j )  and 
hence min i (tii} --> min, { trz}. Recall that the clock value 
of LPi 

= min(tri, lij) 
r, j 

Communications April 1981 
of  Volume 24 
the ACM Number 4 



= min{tri}, if min(tij) _> min{tri) 
r j r 

Hence, if LPi is waiting on no output line, it must wait 
on all input lines having the minimum clock value. 

THEOREM 1: The Wij~S computed in Sec. 5.2 satisfy the 
definition in Sec. 5.1. 

PROOF: We show that W~ ) is a lower bound on the 
time component of the next message transmitted along 
line ( i, j )  assuming that no further message is transmitted 
on lines of  distance k or more 1 from line (i, j ) ,  i.e., 
assuming Uxy = oo, if (x, y)  is at distance k or more from 
(i, j) .  It then follows that Wt~7 ) meets the definition of  
Wij in Sec. 5.1, where n is the number of LP's. 

The proof is by induction on k. For k = 1, every line 
(x , y ) ,  ( x , y )  # (i , j) ,  is at distance k or more from (i,j); 
hence W<~ .~ = Uo, if all Uxy = oo. 

Assume that the claim holds for all j, 1 _< j _< k. Any 
fine (x, y) at a distance of (k + 1) or more from line (i, 
j )  must be at a distance of k or more from any input line 
(r, i) to process i. Hence, mint (W~) ) is a lower bound 
on the time component of the next message transmitted 
to LPi provided Uxy = oo if line (x, y) is at a distance of 
(k + 1) or more from (i,j). The next message transmitted 
along line (i, j )  must have a time component of at least 
to (from monotonicity condition) and at most Uo (from 
the definition of U0). Combining this with the meaning 
of minr { W~i ~ } given above, the theorem is proven. 

LEMMA 2: There is a line (y, z) such that, 

Uyz = Wy~ = min { Wij } 
(id) 

PROOF: If  there are several lines with the same mini- 
mum value of W, then pick that line (y, z) with the 
minimum value of k such that _w ¢k)y~ = Wyz, in the com- 
putation procedure of Sec. 5.2. It is shown that Wy~ = 
Uy~. According to the procedure of Sec. 5.2, Wy~ _< Uy~. 
Let ~ denote minx { Wx. y}. If  Wy~ < Uy~, then W~ _< 
Wy,. If  W~ < Wy~, then rain<i j) { W/j} # Wy~. If  ~ = 
Wy,, then for some line (x, y), Wxy = Wy~ and line (x, y) 
has lower k such that W~xk] = Wy,. Contradiction, there- 
fore Wy~ = Uy~. 

THEOREM 2: Following the W-computation, there exists 
at least one resumable process and at least one message 
must be transmitted before the next deadlock. 

PROOF: Any LPy can move its clock up to minx., { Wxy, 
Wy,}, following the W-computation. Consider the line 
(y, z) as defined in LEMMA 2. Clearly both LPy and LPz 
can move their LP clocks up to Wy~. LPz will start 
waiting on line (y, z) since it now has the minimum 
clock value. LPy will start waiting on line (y, z) since, 
from LEMMA 2, Wy, = Uy, and therefore LPy must have 
something to send on this line. 

i A l ine  ( x , y )  is at  d i s tance  k _> 1 from ( i , j )  where  ( i , j )  # ( x , y )  
i f  the shortest  pa th  f rom (x,  y )  to (i, j )  is (xo, x l  . . . . .  xk, xk+~) where  
xo = x, x~ = y ,  x~ = i, xh+~ = j .  The  d is tance  of  a l ine to i t se l f  is a s sumed  
to be 0 (zero). 
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Not both LPy and LPz were waiting on line (y, z) at 
the time of  deadlock (otherwise there would not have 
been a deadlock). Since at the end of W-computation, 
they are both waiting on line (y, z), at least one of these 
LP's must have changed the set of lines it is waiting on 
and hence is resumable. Furthermore, there cannot be 
another deadlock until at least either LPy or LPz changes 
the set of  lines it is waiting on--this can happen only 
after at least one message gets transmitted. 

7. Discussion 

Sequential simulation and its associated event-list 
mechanism is the point of departure for this paper. One 
possible way to view the proposed algorithm in terms of 
the event-list mechanism is that this scheme allows sev- 
eral events in the event-list to take place simultaneously 
when it can be guaranteed that the events so chosen 
cannot be impacted by any event occurring in the future. 
This causes parts of the simulator to be far ahead of 
others. However, the asynchronous approach causes 
deadlock. Deadlock is detected in a distributed manner. 
Then a scheme derived from sequential simulation is 
used to determine the processes at which the next set of 
events are guaranteed to occur. These processes are given 
control and the procedure repeats. 

Our algorithm may be profitably used with queueing 
network simulations where processes are queues or rout- 
ing nodes and messages correspond to jobs or "tokens" 
[14]. The topology of process interaction (and conse- 
quently, of paths between processors in the simulation) 
is described in the network model. An elegant scheme 
for describing the topology is found in RESQ [14]. 
Processes in RESQ are described either by defining he 
process type (First-Come First-Served, preemptive, etc) 
from a system-defined set of process types or by writing 
simulation procedures for user defined types. It is con- 
ceptually straightforward to compile a RESQ program 
for a distributed simulation architecture. Information 
control nets [5] are also suitable for distributed simula- 
tion. It is more difficult to compile simulations written 
in other languages, though the problems are implemen- 
tation-related rather than fundamental. 

Work on infinite buffer simulation models was car- 
fled out by Bryant [1] and Peacock, Wong, and Manning 
[11-13]. Peacock et al. [11] provide a very comprehensive 
study of distributed simulation in general. The major 
difference between these approaches and ours is that 
ours does not have infinite buffers. Thus, deadlock is 
possible bcause processes cannot output (due to buffer 
size limitations) which cannot happen in the other 
schemes. In the infinite buffer case, deadlocks can occur 
only if all processes are waiting for input; the action of 
breaking deadlock is relatively straightforward in this 
case. 

Nutt [10] presents an interesting distributed fixed 
time increment simulator. His model uses information 
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control nets. He has described process, message types 
which implement his algorithm in detail. Our approach 
departs from Nutt's in its basis in discrete-event simula- 
tion. As in sequential simulation there are cases where 
discrete-event approaches are preferable to time driven 
simulations and there are cases where the reverse is true. 

The running time of the distributed algorithm de- 
pends upon the model being simulated. It is known 
empirically [15] that the distributed scheme approaches 
ideal performance when there are no multiple loops in 
the network. Extensive experimentation with various 
models is necessary in order to predict the performance 
of the proposed algorithm. 
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Use of Polya 
Distributions in . 
Approximate Solutions 
to Nonstationary 
M/M/s Queues 
Gordon M. Clark 
The Ohio State University 

Delays are important processes represented by 
continuous simulation models; however, representing 
queueing delays efficiently within continuous 
simulations merits the development of new 
methodology. Rothkopf and Oren introduced the 
concept of using a surrogate distribution, viz., the 
negative-binomial, as a closure approximation to the 
infinite set of Chapman-Kolmogorov equations 
representing a nonstationary 
M/M/s queue. The method presented in this paper 
uses the Polya-Eggenberger distribution as a surrogate 
for the true distribution of the number in the queueing 
system at a particular time and only requires the 
numerical integration of five differential equations. The 
paper presents numerical results comparing the Polya 
surrogate and Rothkopf and Oren's approximation for a 
number of diverse cases, and these results indicate that 
the Polya surrogate is, in general, more accurate, 
although exceptions were encountered. Moreover, 
queueing delays represented by a closure approximation 
involving a surrogate distribution, in particular, the 
Polya, are suitable for use within a larger continuous 
simulation. 

Key Words and Phrases: continuous simulation, 
queueing delays, M/M/s queue, queueing 
approximation, system dynamics. 
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