
Axioms for Memory Access in Asynchronous
Hardware Systems

J. MISRA
The University of Texas at Austin

The problem of concurrent accesses to registers by asynchronous components is considered. A set of
axioms about the values in a register during concurrent accesses is proposed. It is shown that if these
axioms are met by a register, then concurrent accesses to it may be viewed as nonconcurrent, thus
making it possible to analyze asynchronous algorithms without elaborate timing analysis of opera-
tions. These axioms are shown, in a certain sense, to be the weakest. Motivation for this work came
from analyzing low-level hardware components in a VLSI chip which concurrently accesses a flip-
flop.

Categories and Subject Descriptors: D.l.3 [Programming Techniques]: Concurrent Programming

General Terms: Design, Verification

Additional Key Words and Phrases: Concurrent access

1. INTRODUCTION

This paper is motivated by issues in hardware design. It addresses the problem
of concurrent accesses to registers by asynchronous components. Any system in
which concurrent accesses are permitted can be proven correct only if some
assumptions are made about the behaviors of the registers, particularly under
concurrent reads and writes. Unfortunately, physical behaviors of registers are
so complex that a direct analysis of the physical behavior cannot be employed in
any reasonable correctness argument. Therefore, we propose an axiomatic basis
for the study of registers. We show that if certain axioms are obeyed by a register,
then the device may be analyzed as a “serial device” (i.e., its operation is a
sequence of actions). Hence any correctness issue involving the register is
considerably simplified. We also show that our axioms are the weakest ones
enjoying this property. Discussions with hardware designers lead us to believe
that devices satisfying these axioms can be physically realized.

In analyzing concurrent systems [7], it has generally been assumed that
memory references are nonconcurrent, that is, all accesses to a register are
equivalent to those accesses made in some sequence. Thus, if two or more

This work was supported by the IBM Corporation.
Author’s address: The University of Texas at Austin, Austin, TX 78712.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1986 ACM 0164-0925/86/0100-0142 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1986, Pages 142-153.

Axioms for Memory Access l 143

processes simultaneously attempt to access a register, then the accesses will be
made in some arbitrary sequential order: the effect of concurrent accesses
opl 11 op2 is equivalent to the sequence opl; op2 or 0~2; opl. It follows then that
if two write operations are simultaneously attempted, then one of the values
appears in the register upon completion of both operations. Also, if a read and a
write overlap in time, then the read will either receive the value before the write
or the value after the write.

Nonconcurrency of accesses to a register can be established by locking the
register such that a write operation is never executed concurrently with any other
operation. This paper is motivated by questions of asynchronous hardware design.
At the lowest hardware level, a flip-flop is a register which is capable of storing
one bit. Locking a flip-flop requires implementing a lock bit, which again has to
be implemented as a flip-flop with similar kinds of constraints on accesses. Also,
the overhead of locking and consequent loss of concurrency makes such an
approach unattractive for very low-level hardware implementation. We consider
a different approach: we propose to build the register such that, to an external
observer, concurrent accesses appear nonconcurrent and nonconcurrent accesses
appear to preserve their order.

It is by no means obvious what value gets deposited in a register if two writers
are writing into it simultaneously (see [l, 5,8, lo] for descriptions of some of the
complexities associated with a flip-flop operation). We propose to study registers
axiomatically. We postulate a set of axioms about the properties of a register
which make intuitive sense, and then show that any register obeying these axioms
can be viewed as one for which accesses are nonconcurrent.

Each horizontal line denotes a time interval in which an operation executes.
Notation wl:O, w3:O denote write operations that write a “0” into the register;
analogously, w2 : 1. Notation r2 : 0 denotes a read operation that returns a value
0; analogously, rl : 1. Subscripts are used to distinguish among operations. In
Figure 1, operations w2: 1, rl : 1 are concurrent because they overlap in time and
so do w2 : 1 and wg : 0. Figure 1 pictorially depicts certain concurrent accesses to
a register.

If the register behaves in the manner depicted in Figure 1, its behavior is
indistinguishable from a register where the operation takes place one-at-a-time
and in the sequence shown in Figure 2.

In this case (Figure 1) processes that access the register can be analyzed as if
concurrent memory references were sequentially ordered. Consider, however, the
situation depicted in Figure 3, which is identical with Figure 1, except that the
last read operation returns a value 1. We show that the operations in Figure 3
cannot be ordered so that nonconcurrent operations preserve their order and the
reads receive consistent values.

Assume for this example (Figure 3) that a process P sequentially executes
w1 : 0, rl : 1, w3 : 0 and r2 : 1 and a process Q executes w2 : 1. It is then impossible to
analyze processes P, Q, assuming that concurrent accesses to the common register
are sequentially ordered. Because, if concurrent accesses are sequentially ordered
and process P is aware that Q writes a “1” into the register after its first write
and before its last read, then process P can guarantee that one of its reads will
return value “O”, contradicting the actual operation as given in Figure 3. The

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1986.

144 l J. Misra

Fig. 1. Concurrent accesses to a
register.

wl:o w2:l r2:0

-------------- -----___________---_------------ _________-___

rl:l w3:o

----v-v--- -_---_----

WI:0 w2:l rl:l w3:o r2:0

------- -------- ------- -------- --------
Fig. 2. Operations in Figure 1

ordered logically.

Fig. 3. Another set of concur-
rent accesses to a register.

WI :o w2:l r2:l
-------e---- ------------------------------------ _______-____

rl:l w3:o

----------- -----------

question then is: what properties of the register will make it behave as in Figure
1 and not as in Figure 3.

We formally state the problem in the next section. We define valid schedules,
a sequence of operations whose effect is equivalent to some sequential (noncon-
current) executions of these operations. We suggest a set of axioms for a register
in Section 3. We show, in Section 4, that these axioms define only valid schedules
and, in a sense, are the weakest. We also give a simple, necessary, and sufficient
condition for the validity of a schedule.

The example in Figure 3 is from Mills and Lounsbery [6]. They show that
elaborate timing analysis is needed if a register is indeed to behave in this
manner. Work reported here began after reading that paper, and as an attempt
to derive conditions under which a register will not display such pathological
behavior.

Lamport [2, 31 has considered the problem of concurrent reading and writing
on a register which may hold more than one atomic data item; the possibility of
an inconsistent read therefore exists. In [2, 31 he proposes protocols for reading
and writing which guarantee consistency of every read. We do not consider the
problem of receiving an inconsistent value in a read operation. In [4] he treats a
problem similar to the one treated here for the special case of one writer (i.e.,
there are no overlapping write operations). It is then shown that a schedule is
valid if and only if a write operation overlaps with at most one read operation.
This result holds under very weak assumptions about the change in register value
during a write.

A problem similar to the one addressed here appears in concurrent database
access and is called the serializability problem [9]. In that problem, a number of
transactions-analogous to processes-each having several atomic steps, concur-
rently read from and write into a database. It is assumed that truly concurrent
steps, that is those happening at exactly the same time, are arbitrarily ordered,

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1986.

Axioms for Memory Access - 145

and therefore the result of concurrent access is an interleaved sequence of steps
accessing the database. It is required to develop conditions that guarantee that
any interleaved sequence of transaction steps is equivalent to some serial exe-
cutions of the transactions. Therefore each transaction may assume that it is
executing alone, even if that is not the case, when these conditions are met. Our
problem is different in several respects. Our notion of serial execution is much
weaker: we merely observe the accesses made to a register, without knowing
which process made an access. Our problem is to devise conditions under which
concurrency is equivalent to interleaving; database concurrency problems assume
this equivalence and ask when interleaving is equivalent to sequential execution.

2. BASIC CONCEPTS

An operation is either a read or a write. Associated with each operation is a value.
For a read operation, the associated value represents the result of reading the
register contents. For a write operation, the associated value is the value that is
being written into the register. We adopt the convention that all values written by
write operations are distinct. This convention may be enforced by encoding the
actual value being written and the instance of the write operation together into
a single value which is associated with the write operation. This requirement is
only for convenience: we can now distinguish different write operations through
their associated values and also we can associate a read operation with a specific
write operation if their associated values are identical. It should be realized that,
in practice, distinct values are not necessarily written by distinct write operations.
Even then the axioms that we propose would be meaningful, and their imple-
mentation would lead to valid schedules only. However, our claim that the axioms
are the weakest ones defining valid schedules would no longer be true.

Each operation, read or write, has an associated start and end event. We use
lop : x and op : xl to denote start and end, respectively, of operation op, with
associated value X. We omit x when this value is irrelevant to the discussion.

A schedule is a sequence of operation starts and ends such that for every lop
there is a unique opl and vice versa.

For a given schedule, precedes denotes that some event (start or end of an
operation) happens before another event. Thus lop1 : x precedes lop2 : y means
that opl starts before 0~2. We write opl precedes op2 to denote that opl I precedes
lop2 (i.e., opl ends before op2 starts). Operations opl, op2 are concurrent if
neither precedes the other; they are nonconcurrent otherwise.

A valid schedule S is one for which it is possible to rearrange the operations so
that all operations are nonconcurrent, all nonconcurrent operations in S preserve
their orders, and the values received by the read operations are consistent with
the write operations. Formally, S is a valid schedule iff there exists a permutation
S ’ of S satisfying all of the following validity conditions.

Validity Conditions

VCl. For every op, I op precedes op I in 5”.
VC2. Every pair of operations in S’ is nonconcurrent.
VC3. If opl precedes op2 in S, then opl precedes op2 in S’.
VC4. In S ‘, every read operation has a preceding write operation, and, if w : x is

the closest preceding write operation for r:y in S’, then y = x.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1986.

146 l J. Misra

Figure 1 depicts a valid schedule because the permutation of it given by Figure
2 satisfies the four validity conditions. Figure 3 depicts an invalid schedule, that
is, a schedule that is not valid, we prove this assertion in the next section.

If a set of processes access a register in such a manner that their access
schedule S is valid, then we can analyze these processes using the familiar
assumption that memory references are nonconcurrent. We can then imagine
that the register is being accessed in a sequential manner as given by 5”.
Conversely, if an access schedule is invalid, then such an assumption cannot be
made, in general, and therefore analysis of the corresponding concurrent program
becomes far more formidable.

Valid schedules constitute a rich class. For instance, 1 w : x 1 w : y w : xl 1 r : y 1 r : x
w : yl F : yl r : x 1 is valid, even though the two read operations r : x and r : y may
start and end nearly simultaneously and still return different values.

3. AXIOMS FOR REGISTER OPERATION

The following axioms state some facts about the value held by a register, how it
is manipulated by writes, and how it affects the results of reads. We assume that
a register has a unique value at some time instants and that its value is undefined
at other time instants. The undefined value may coqrespond to the point where
a component, such as a flip-flop, may be undergoing state transition.

We first present the axioms and then provide the rationale. In the following,
point is a time instant. If tl, t2 are points, then tl c t2 denotes that tl is a time
instant before t2. When there can be no confusion, we use (op and op(to denote
the start and end times of operation op. Point t is within op means 1 op I t 5 opl .
As usual, r: x, w: x denote read operation and write operation with value x,
respectively.

3.1 Register Axioms

Al. For every r : x there is some point within r where the register value is X.
A2. If the register value is x at point t and a write operation, w :y, starts after t

and ends before t’, t < t’, then the register value at t’ is different from x (it
could be undefined).

A3. If register value is n at point t ‘, then there exists t, t 5 t’ such that t is
within w : x and the register value at t is X.

A4. If the register value is x: at t and t’, then it is x at all points between t
and t’.

3.2 Rationale for the Axioms

Axiom Al says that is impossible to return a value x if the register never has the
value x during a read. Note that the register may have several different values
during a read, and the axiom does not specify which value will be returned by
the read.

Axiom A2 says that a write operation will have some effect on the value of the
register. Upon completion of a write operation, w:y, it may be asserted that the
register no longer has its former value. Note, however, that we do not require the
register value to be y upon completion of w :y. It is likely that the register never
has value y if w : y is concurrent with other write operations.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1986.

Axioms for Memory Access 147

Axiom A3 says that any register value x at t’ must be written by a write
operation that starts at or before t’ (i.e., the register cannot change its value
spontaneously). In this case the write operation w : x deposits the value x at some
point within w, at or before t’.

Axiom A4 implies that w: x writes the value only once and does not try to
rewrite if the value changes, presumably as a result of another write. Therefore,
once the value changes, the register never regains its former value. This require-
ment is realistic in the way hardware typically changes values in a register.
Multiple writing of the same value by one write will only overwrite the value of
a competing write; in a pathological situation, this could lead to nonterminating
operations if, for instance, two writes alternatively overwrite each other’s values.

Notation. We use (x) within a schedule to denote that the register value is x
at that point and remains x until some other (y) appears in the schedule.

Example 1. It can be verified that the following schedule is valid and satisfies
all the register axioms.

Iw:x Iw:y (y) w:xI Ir:y w:yl r:yl

The only read operation returns a value of y. However, a modification of this
schedule, in which there is an extra read operation that returns value x, is invalid;
axiom (A4) is being violated in this case:

(w:x Iw:y w:xl Ir:y w:yl Ir:x r:yl r:xl

3.3 Notes on the Axioms

(1) It follows from Al and A3 that a read operation receives value x only if
there is a w : x in the schedule.

(2) It is possible to combine A3 and A4: if the register value is x at t’, then
there exists t 5 t ’ such that t is within w : x and the register value is x at all t”,
t 5 t” I t’. We have kept the two axioms separate to emphasize the distinct
assumptions embodied in each one.

(3) Axiom A4 may be weakened to read: if register value is x at t and t’, then,
for all t”, t I t” 5 t’, the value is either x or undefined. All the theorems in this
paper are satisfied when this weak version is substituted for A4. It should be
noted, however, that this weakening is without much merit; under the assumption
that every read returns some value as its result, no set of experiments can
establish whether a register obeys A4 or this weak version of A4.

4. PROPERTIES OF VALID SCHEDULES

We now show that all schedules on a register satisfying these axioms are valid.
We also show that these axioms are, in a sense, the weakest axioms guaranteeing
validity. We first give a necessary and sufficient condition for the validity of a
schedule.

Given any schedule S, define a relation before on the values associated with
the operations, as follows:

(1) x before x, if some r : x precedes w : x or there is no w : x.
(2) x before y, y # x, if opl :x precedes 0~2 :y for some opl, 0~2.
(3) x before z, if for some y, x before y and y before z.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1986.

148 l J. Mist-a

Example 2. Consider the schedule:

(w:y (w:x w:y((w:z w:x((r:y w:z(r:y(

Note that x before y, because w : x precedes r : y and y before z because w : y precedes
w : z. Furthermore, x before z because x before y and y before z. Note that before is
irreflexive for this schedule.

Define the relation before to be a partial order if it is irreflexiue (not x before x,
for all x), antisymmetric (x before y implies not y before x, for all x, y), and
transitive (x before y and y before z implies x before z, for all x, y, z). Note that
usual definitions of partial order require the relation to be reflexive. Our definition
is more useful in our context because we expect no read operation to precede the
corresponding write operation. Observe also that relation before is transitive from
definition, and hence it suffices to show that it is irreflexive and antisymmetric
to prove that it is a partial order.

THEOREM 1. A schedule is valid if and only if relation before, corresponding to
this schedule, is a partial order.

PROOF. Let before be a partial order for some schedule S. Then, from irreflex-
ivity of before, for every read operation r : x, there is a w : x in the schedule. For
eachvalue x, construct the subsequence: 1w:x w:xl Irl:x rI:xl lrz:x rz:xj . . . ,
where the write operation w : x appears first, followed by all the read operations,
if any, whose associated value is x; if rj : x precedes rk : x in S, then rj appears prior
to rk in this subsequence.

Let x0, x1 . . . be a total order of all values in S consistent with the partial order
before; such a total order can be obtained by a topological sort of the values with
respect to before. Now construct the desired permutation S’ from S by appending
the subsequences, corresponding to x0, x1, We claim that S’ is a permutation
of S which satisfies the validity conditions. Validity condition VC1 is trivially
satisfied. Every pair of operations in S’ is nonconcurrent, by construction. If
opl : x precedes op2 : x in S, then, from the irreflexivity of before, op2 is a read,
and hence the relative order of opl, op2 is preserved by the construction. If opl : x
precedes op2 : y, x # y, in S, then x before y holds. The subsequence corresponding
to x appears prior to that of y, and hence the order is preserved. Thus VC3 is
satisfied. Every read receives the value of the closest preceding write, by construc-
tion, and therefore VC4 is satisfied.

Conversely, we show that if S is a valid schedule, then before is a partial order.
Since S is valid, there exists a permutation S ’ satisfying the validity conditions.
In S ‘, all operations with associated value x must appear contiguously and w : x
precedes all r: x; otherwise some read will not receive the value of the closest
preceding write. Therefore, S’ defines a total order on the values. This total
order must be consistent with the relation before. Hence before must be a partial
order, otherwise no total order would be consistent with it. Irreflexivity of before
follows trivially. Cl

Example 3. Schedule S of Example 2 has the following associated S’, con-
structed by the procedure given in Theorem 1. The only total order consistent
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1986.

Axioms for Memory Access l 149

with before is

XYZ.

From this, we construct S’:

Iw:x w:xI Iw:y w:yl Ir:y r:yl Iw:z u):zJ

Example 4. Consider the following schedule, which is the one given pictorially
in Figure 3.

Iw:x w:xI Iw:y Ir:y r:yl Iw:z w:zl w:yl Ir:y r:yl

Relation before is not a partial order because y before z and z before y. Therefore,
this schedule is not valid.

For any schedule S satisfying the axioms, define for any value X,

R, = (t 1 value of register at point t is x).

Observation

(1) R, is an interual, that is, if tl, tz are in R,, then any t, tl < t < t2, is also
in R,.

(2) If R, is nonempty, then for every op: x in S there is some point within op
which is in R,.

Proof of Observation. Proof of (1) follows from axiom A4. Proof of (2): if op is
a read, then the result follows from axiom Al; if op is a write, pick any point t
from R, and apply axiom A3.

THEOREM 2. Any schedule satisfying register axioms Al, A2, A3, and A4 is
valid.

PROOF. We show that before is an irreflexive and antisymmetric relation for
such a schedule. Since before is transitive, using Theorem 1, the result follows.

In S, for each r : x, there is a w : x and w : x does not precede r : x. This is because,
from axiom Al, there is some point t’ within a read where the register value is x
and, from A3, there is some point t within w:x such that t I t’. Therefore, the
first rule in the definition of before does not apply to any value X.

We now show that before is antisymmetric. Consider any two values, x, y,
x # y, for which R, is nonempty and Ry is nonempty. For opl : x, op2 : y, some
point tl within opl is in R, and some point t2 within op2 is in Ry, from the
observation. If opl precedes 0~2, then tl < t2. Since R,, RY are intervals, then
every point in R, is prior to every point in Ry. Therefore, if x # y, R,, and RY are
both nonempty and x before y, then every point in R, is prior to every point in
R,,; hence before is antisymmetric with respect to x, y.

Next, consider some value y where RY is empty. Then there can be no r : y in
the schedule because, from axiom Al, register value is y at some point within
r : y, which implies RY is not empty. Therefore, there can only be a single operation
with y, w: y, in S. Suppose x before y and y before x. From definition of before
and the fact that only a single operation w : y with value y exists in the schedule,
it follows that there are two distinct operations opl : x, op2 :x such that opl :x

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 1, January 1986.

150 l J. Misra

precedes w : y and w : y precedes op2 : x. Since there are two distinct operations
with value x, there is at least one read operation with value x, and hence R, is
nonempty. From the previous observation, some tl within opl and some t2 within
op, are both in RX. Since tl < Iw : y and w: y(< tz, w: y is completely within R,.
This violates axiom A2.

Therefore, before is antisymmetric. Also, before is irreflexive, from the argu-
ments in the first paragraph and antisymmetry. Cl

Theorem 2 shows that, in any schedule, if the register values satisfy Al through
A4, then the schedule is valid. We prove the converse in Theorem 3: for every
valid schedule it is possible to specify register values at certain points such that
axioms Al through A4 are satisfied. While it is difficult to define the notion of
weakest axioms precisely, we can reasonably claim-based on Theorems 2 and
3-that our proposed axioms are the weakest. Theorem 4 shows that the axioms
are all independent (i.e., no axiom is implied by the other three).

THEOREM 3. It is possible to assign register values at certain points in a valid
schedule such that axiom Al through A4 are satisfied.

PROOF. For any valid schedule S, there is a permutation S’ satisfying the
validity conditions. We use S’ to assign register values at certain points in S.
Let opl, 0~2, . . . , op, be the sequence of operations in S’ and let vi be the value
associated with opi. Note that vi’s are not necessarily distinct; however vi # vj,
where i < j, means that vi # vk, for any k, k 2 j. As before, the notation (vi)
within a schedule means that the register has value vi at that point and continues
to have the value vi until there is some (vi), vj # vi, in the schedule. We use the
following algorithm to assign (vi), 1 5 i 5 n, to some points in the schedule S.

(1) (vl) is assigned immediately following lop1 in S.
(2) (vi), 1 < i, is assigned immediately following lopi or (Uci-l)), whichever comes

later in S.

Note that (v,), (vz), . . . appear in this order in the schedule.
We first show that (vi) is between lopi and opil for all i in S, according to our

construction. We always assign (Vi) after lOpi, and hence we only need to show
that (vi) appears before opi I. We will show, using induction on i, that (vi) appears
before opj I in S, j z i. Note that I opi precedes opj I in S if j L i, because otherwise
S ’ does not preserve order among opi, opj. Now (~1) appears before opj I, j L 1, by
construction and the fact that lop, precedes opjl. Next, (vi), i > 1, either comes
immediately after (v+~)) and since, according to induction, (~(i-~,) appears before
OpjJ, j 1 i - 1, the result holds-or (Vi) comes immediately after lopi and lopi
precedes opj 1, j 2 i.

Axiom Al is satisfied because within each operation, and hence within each
read operation, the register has the associated value. Axiom A2 can be shown to
be satisfied as follows. For a write operation opj, let register value be vi prior to
the write, and hence vi # vi. Register value is vj at some point during the write
(from the construction and arguments of the previous paragraph). Register value
at any point after the write is uk, for some k, k 2 j, and since Vi # Uj, it follows
that Vi # Vk.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1986.

Axioms for Memory Access 151

Axiom A3 holds because in S ‘, if opi : x is a write and opj: x is a read, then
i < j; according to our construction (ui) appears before (uj) and (vi) appears
within opi. Axiom A4 holds trivially. Cl

COROLLARY. For any schedule there exist register values satisfying axioms Al
through A4 if and only if the schedule is valid.

Example 5. We show an example of assignment described in Theorem 3.

Let, S: Iw:y Iw:x Ir:y w:xl r:yl w:yl
Let, S’: Iw:x w:xl Jw:y w:yl Ir:y r:yJ
u1 is x, v2 is y, v3 is y.

Assignment to schedule S leads to

Iw:y Iw:x (x) (y) Ir:y (y) w:x(r:y(w:yJ

We now show that the axioms are independent: if we drop any one of the
axioms, we can find an invalid schedule with a sequence of register values which
satisfy the remaining axioms.

THEOREM 4. Any three axioms (from Al to A4) are satisfied by some assignment
of register values to some invalid schedule.

PROOF. For each combination of three axioms we show an invalid schedule
with register values satisfying these axioms.

Al, A2, A3: (w:y Iw:x Ir:x (x) r:xl (y) w:yl Ir:y r:yl Ir:x (x) w:xl r:xl

This schedule is invalid because, from the read operations alone, it follows that
x before y and y before x.

Al, A2, A4: /r-:x(x) r:xl Iw:x w:xI

This schedule is invalid because a read precedes the corresponding write, and
hence x before x.

Al, A3, A4: (w:x (x) Ir:x r:xl (w:y w:y(w:xl Ir:x r:x(

This schedule is invalid because x before y and y before x.

A2, A3, A4: Iw:x (x) w:x(Iw:y (y) w:yl Ir:x r:xl

This schedule is invalid because x before y and y before x. III

We now derive certain properties of schedules satisfying the register axioms
Al through A4.

PROPERTY 1. If the register value is x at all points during a read, then the read
returns a value x.

PROOF. Using Al, no other value can be returned. 0

PROPERTY 2. A read operation r receives the value of apreceding write operation
w if no other write operation executes in the interval I w r-1.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1986.

152 l J. Misra

PROOF. If the write and read have values X, y respectively and x # y, then,
from Al and A3, register value is y at some point before 1 w: x and also at some
point after w : xl. This contradicts A2. Cl

It follows that a write operation is successful in depositing its value in the
register provided it is nonconcurrent with every other write.

PROPERTY 3. The register value persists in the absence of writes (i.e., if register
value is different atpoints t and t’, t < t’, then there is a t”, t I t” 5 t’, which is
within some write operation.

PROOF. By applying axioms A2 and A3. Cl

PROPERTY 4. Let r:xl, r:x2, . . . be a set of concurrent read operations.
Suppose no write operation is concurrent with any of these read operations. Then,
Xl = x2 =

PROOF. From Property 3, the register value will remain unchanged during all
the read operations. The result then follows from Property 1. •i

5. SUMMARY AND CONCLUSION

There has been a considerable amount of research on asynchronous concurrent
programming in the last 15 years. This paper is an effort to study the applicability
of this research in hardware design. We have studied a fundamental assumption-
nonconcurrency of simultaneous access-which is basic to most concurrent
programming work. We have shown how this assumption can be met by designing
registers that meet certain axioms. The axioms seem quite basic and are usually
met in practice, at least for flip-flops, The most nonintuitive is axiom A4, which
says that the implementation of a write operation must attempt to write its value
only once. We have shown that these axioms are sufficient and, in a sense,
necessary.

ACKNOWLEDGMENTS

Dr. Harlan D. Mills, of IBM, has pointed out the necessity of elaborate timing
analysis if the nonconcurrency assumption is not met [6J. I am indebted to him
for suggesting the problem and for his enthusiasm, encouragement, and advice. I
am grateful to other members of the Provable Hardware Design Group (Jim
Aylor, Ray Hookway, Norm Pleszkoch, John Saunders) of IBM, Federal System
Division, for interaction and constructive criticism during the course of this
work. Professor Doug Jensen has pointed out that the proposed axioms may be
viewed as design rules for constructions of registers. Dr. Leslie Lamport has
kindly brought some of his early unpublished work to my attention. Detailed
comments from Professors Charles Seitz and Alain Martin, and an anonymous
referee are deeply appreciated.

REFERENCES

1. CHANEY, T., AND MOLNAR, C. Anomalous behavior of synchronizer and arbiter circuits. IEEE
7’rans. Cornput. (Apr. 1973), 421-422.

2. LAMPORT, L. Concurrent reading and writing. Commun. ACM 20, 11 (Nov. 1977), 806-811.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1986.

Axioms for Memory Access l 153

3. LAMPORT, L. A new approach to proving the correctness of multiprocess program. ACM 2’ran.s.
Program. Lang. S’yst. 1, 1 (July 1979).

4. LAMPORT, L. A theorem on multiprocess algorithms. Tech. Rep. CA-7503-2011, Massachusetts
Computer Associates, Mar. 1975.

5. MARINO, L. P. General theory of metastable operation. IEEE Trans. Comput. C-30, 2 (Feb.
1981).

6. MILLS, H. D., AND LOUNSBERY, J. M. Combinatorial analyses of process synchronization. IBM,
FSD (internal memo), Aug. 1983.

7. OWICKI, S., AND GRIES, D. An axiomatic proof technique for parallel programs. Acta hf. 6, 4
(1976),319-340.

8. SAUNDERS, J. M. Engineering description of a flip-flop reader and writer. IBM, FSD (internal
memo), Jan. 1984.

9. ULLMAN, J. D. Principles of Database Systems. Computer Science Press, Rockville, Md., 1980.
10. WANN, D., AND FRANKLIN, M. Asynchronous and clocked control structures for VLSI-based

interconnection networks. IEEE Trans. Comput. C-32,3 (Mar. 1983), 264-293.

Received June 1984; revised June 1985; accepted July 1985

ACM Transactions on Programming Languages and Systems, Vol. 8, NO. 1, January 1986.

