INFORMATION PROCESSING LETTERS

Volume 4, number 1

September 1975

OPTIMAL CHAIN PARTITIONS OF TREES

Jayadev MISRA

Department of Computer Science, University of Texas at Austin,
Austin, Texas 78712, USA

and
~.

R. Endre TARJAN #

Department of Electrical Engineering and Computer Scicrces and the Electronics Research Laboratory,
§ University of California at Berkeley, Berkeley, CA 94720, USA

Received 5 May 1975, revised version received 13 June 1975

Algorithm, priority queue, chain, tree, dynamic programming

A tree T =(V, E) is an undirected graph with vertex
set ¥ and edge set £ such that T is connected and con-
tains no cycles. In a tree there is a unique simple path
between any two vertices. A rooted tree (T, r) is a tree
T with a distinguished vertex r called the root. If v
and w are vertices in a rooted tree (T, r), we say v is
an ancestor of w and w is a descendant of v (denoted
by v % w) if v is contained in the path from 7 to w. By
convention v v for all vertices v. If v > w and {v, w}
is an edge of T, we say v is the father of w and wisa
son of v (denoted by v = w).

It is useful to have a numbering of rooted tree ver-
tices such that each vertex has a number smaller than
its father. One such numbering, which is easy to com-
pute, is a postorder numbering [4]. A postorder num-
bering of the vertices of a rooted tree (7, r) is any
numbering generated by the following algorithm

Research sponsored by National Science Foundation Grant
GJ-35604X1 and by a Miller Research Fellowship, at Uni-
versity of California, Berkeley, and by National Science
Foundation Grant GJ-36473X at Stanford University.

24

procedure POSTORDER (7, r);
begin
procedure SEARCH (v);
begin
for w such thatv—w do SEARCH(w);
NUMBER (v) :=1 :=i+1;
end SEARCH;
i:=0;
SEARCH(r);
end POSTORDER;

A chain partition of a rooted tree (T, r) is a collec-
tion E' of edges such that, for any vertex v, E' con-
tains at most one edge {v, w} with v =~ w. Any chain
partition E' can be uniquely written as E'= Uf-czl P,
where P; is a set of edges which define a simple path
in T such that for any two vertices v and w on F;,
either v w or w 5 v, and where the edges of P; have
no vertices in common with those of P; for i #7.

Given a rooted tree (T, r), a non-negative cost
¢ (v) associated with each vertex, an (unrestricted)
real-valued cost ¢, (v, w) associated with each edge, and
a maximum cost m 2> max,c i ¢1 (v), we would like
to find a chain partition C = U, P; of maximum to-
tal edge cost satisfying 2, o, p,¢q)< mforalli.

Such a chain partition we call an optimal chain parti-
tion.

¥
{

Volume 4, number 1

The optimal chain partition problem and similar
problems occur when trying to divide a computer
program optimally into pages and in other contexts
where some kind of clustering is desired. See for in-
stance [2, 3]. Suppose we represent a computer pro-
gram as a directed graph, with each vertex v represent-
ing a block of code of size ¢ (v) and each edge (v, w)
representing a transfer of control with associated cost
¢ (v, w). We desire a partition of the program into
blocks not exceeding size m such that the total cost
of inter-block jumps is minimum. Thus the (avoided)
total cost of jumps within blocks is maximum. This
problem is NP-complete for arbitrary directed graphs
[1], even if all ¢q (v) and all ¢, (v, w) are one. We give
an efficient algorithm for trees.

If m 2 Z, <y cq (v) there is a very simple algorithm
for trees. Let C(T) contain, for each vertex v, a single
edge {v, w} of positive cost such that v >w and {v,w}
has maximum cost among {v, x } sach that v = x. (If
no edge {v, w} with v - w has positive cost, then
C(T) contains no edge for vertex v.) Obviously C(7T)

is an optimal chain partition of (7, 7) if m =2 Z oy ¢, (v).

Furthermore it is easy to construct C(T) in O(F) =
On) time if [V]=n

The general case for trees is somewhat harder.
Henceforth assume that V= {1,2, ..., n} where
NUMBER (i) = i defines a postorder numbering of the
vertices. (The above procedure computes a postorder
numbering in O(#) time. Then we can identify ver-
tices by their postorder numbers.)

Let v be any vertex of T The set of vertices
w3 w} defines a subtree T, of T. For all w such
that v 3w, let [, (v) be the max1mum total edge
weight of a chain partition U 1 B of T, such that the
set of vertices in Py is exactly {xlv =>X and x 5w}
and EUEP c1 (W) <m for 2<i<k.(The path P; need
not satlsfy the vertex constraint.) Let g,,, (U) =
bty €1 (). Let f(v) = max {f,, W)lv3wand
8,, () < m}; this is finite since g, (v) <m.

Several facts are obvious from these definitions.
The cost of an optimal chain partition of (T,7) is
1) = F(0). Also £,©) = 2, .., F(x) and g, () = ; ().
Last, u ~> v and v=>wimply g, (1) =g, (v) + ¢ ()
(and thus g,, (W) = g,, (), and £, () = f,, (V)
tep (u’ v) + zuﬁx,x#uf(x)'

These “dynamic programming” equations are
enough to allow efficient calculation of f(n). For i
running from 1 to n (i.e. working from sons to fathers)

INFORMATION PROCESSING LETTERS

September 1975

we calculate f(7), and fj(z') and g; () for all vertices in

a subset of T large enough to support succeeding cal-
culations. To implement these calculations we associ-
ate a set Q(7) (the “queue” of i) with every vertex i.
Each element x of Q(7) will have three associated param-
eters:

I(x): avertexjinT;;
F(x): the value of f; (z),
G(x): the value of gj(i).

To compute the desired values efficiently we need
the following operations.

(i) INSERT (i, x): inserts the element x into Q(7).

Time required: O(1).

(ii) QUNION (F, /): moves all the elements in Q)
into Q(¥), leaving Q(j) empty.
Time required: O(loglQ()I +loglQ () + 1).

(iii) MAXF (¥): returns an element in Q(f) with max-
imum F-value, and deletes the element from
0(@).
Time required: O(loglQ () + 1).

(iv) ADDF(i, z): adds the value z to the F-variable
of all the elements in Q7).
Time required: O(1).

(v) ADDG(G, z): adds the value z to the G-variable
of all the elements in Q(7).
Time required: O(1).

These operations can be implemented to run in the
given time bounds by using leftist trees, as shown in
[5,6]; operations (iv) and (v) put special kinds of
nodes into the data structure.

In the algorithm given in fig. 1 all the queues are
initially empty. The idea behind the queues is that
after a vertex I is processed (by the outermost loop)
but before its father is processed, Q(7) must contain
an element for each vertex j in T} such that gj(i) <m.
(It may also contain some j’s such that g]-(z') >m.)
The program stores, for each vertex i, the value of
() and a value A(¥) which denotes the last vertex on
the path containing 7 in the optimal chain partition
which is computed.

It is easy to see that OCP correctly computes f(7)
for each ¢ and hence correctly computes f(n). By
using the values k(7), 1 <i<n, it is easy to construct
a directed chain partition having total edge weight
f(n). The time required by OCP is dominated by the
time spent in queue operations. There are 2n INSERT

25

Volume 4, number 1

INFORMATION PROCESSING LETTERS

algorithm OCP;
begin
for i :=1until n do
begin
§:= 2isi FO);

let x be a new queue element with parameters

Ix)=1i Fix) =5 G(x)=0;
INSERT(, x);
for j such thati—j do
begin
ADDF(,s-f()+ ¢ G, 1));
QUNIONG,);
end ;
ADDG(, ¢y ());
x = MAXF(@);
while G(x) >m do x := MAXF();
7@ = F(x);
h() =1(x);
INSERT(, x);

end
end OCP;

operations, n—1 QUNION operations, n—1 ADDF
operations, ADDG operations, and at most 2n
MAXEF operations (only 2n elements are added to

26

Fig. 1.

September 1975

queues and hence only 2n can be deleted), so OCP re-
quires O(n log n) time total. The space requirements
are O(n) (see [5,6]).

Our thanks to the referee for his unusually percep-
tive and helpful remarks.

References

[1] M.R. Garey, D.S. Johnson and L.J. Stockmeyer, Some
simplified NP-complete problems, Sixth ACM Symp. on
Theory of Computing (1974) 47-63.

[2] B.W. Kernighan, Optimal sequential partitions of graphs,
J. ACM 18 (1971) 34-40.

[3] J. Kral, To the problem of segmentation of a program,
Information Processing Machines, Research Inst. for
Mathematical Machines, Prague (1965) 140-—-149.

[4] D. Knuth, The Art of Computer Programming, Vol. 1:
Fundamental Algorithms (Addison-Wesley, Reading,
Mass., 1968), 315—-346.

[5] D. Knuth, The Art of Computer Programming, Vol. 3:
Sorting and Searching (Addison-Wesley, Reading, Mass.,
1973), 150-152.

[6] R. Tarjan, “Finding minimum spanning trees”, Memo No.
ERL-M501, Flectronics Research Lab., Univ. of Cali-
fornia (1975).

