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A tree T =(V, E) is an undirected graph with vertex
set ¥ and edge set £ such that T is connected and con-
tains no cycles. In a tree there is a unique simple path
between any two vertices. A rooted tree (T, r) is a tree
T with a distinguished vertex r called the root. If v
and w are vertices in a rooted tree (T, r), we say v is
an ancestor of w and w is a descendant of v (denoted
by v % w) if v is contained in the path from 7 to w. By
convention v v for all vertices v. If v > w and {v, w}
is an edge of T, we say v is the father of w and wisa
son of v (denoted by v = w).

It is useful to have a numbering of rooted tree ver-
tices such that each vertex has a number smaller than
its father. One such numbering, which is easy to com-
pute, is a postorder numbering [4]. A postorder num-
bering of the vertices of a rooted tree (7, r) is any
numbering generated by the following algorithm
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procedure POSTORDER (7, r);
begin
procedure SEARCH (v);
begin
for w such thatv—w do SEARCH(w);
NUMBER (v) :=1 :=i+1;
end SEARCH;
i:=0;
SEARCH(r);
end POSTORDER;

A chain partition of a rooted tree (T, r) is a collec-
tion E' of edges such that, for any vertex v, E' con-
tains at most one edge {v, w} with v =~ w. Any chain
partition E' can be uniquely written as E'= Uf-czl P,
where P; is a set of edges which define a simple path
in T such that for any two vertices v and w on F;,
either v w or w 5 v, and where the edges of P; have
no vertices in common with those of P; for i #7.

Given a rooted tree (T, r), a non-negative cost
¢ (v) associated with each vertex, an (unrestricted)
real-valued cost ¢, (v, w) associated with each edge, and
a maximum cost m 2> max,c i ¢1 (v), we would like
to find a chain partition C = U, P; of maximum to-
tal edge cost satisfying 2, o, p,¢q )< mforalli.

Such a chain partition we call an optimal chain parti-
tion.
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The optimal chain partition problem and similar
problems occur when trying to divide a computer
program optimally into pages and in other contexts
where some kind of clustering is desired. See for in-
stance [2, 3]. Suppose we represent a computer pro-
gram as a directed graph, with each vertex v represent-
ing a block of code of size ¢ (v) and each edge (v, w)
representing a transfer of control with associated cost
¢ (v, w). We desire a partition of the program into
blocks not exceeding size m such that the total cost
of inter-block jumps is minimum. Thus the (avoided)
total cost of jumps within blocks is maximum. This
problem is NP-complete for arbitrary directed graphs
[1], even if all ¢q (v) and all ¢, (v, w) are one. We give
an efficient algorithm for trees.

If m 2 Z, <y cq (v) there is a very simple algorithm
for trees. Let C(T) contain, for each vertex v, a single
edge {v, w} of positive cost such that v >w and {v,w}
has maximum cost among {v, x } sach that v = x. (If
no edge {v, w} with v - w has positive cost, then
C(T) contains no edge for vertex v.) Obviously C(7T)

is an optimal chain partition of (7, 7) if m =2 Z oy ¢, (v).

Furthermore it is easy to construct C(T) in O(F) =
On) time if [V]=n

The general case for trees is somewhat harder.
Henceforth assume that V= {1,2, ..., n} where
NUMBER (i) = i defines a postorder numbering of the
vertices. (The above procedure computes a postorder
numbering in O(#) time. Then we can identify ver-
tices by their postorder numbers.)

Let v be any vertex of T The set of vertices
w3 w} defines a subtree T, of T. For all w such
that v 3w, let [, (v) be the max1mum total edge
weight of a chain partition U 1 B of T, such that the
set of vertices in Py is exactly {xlv =>X and x 5w}
and EUEP c1 (W) <m for 2<i<k.(The path P; need
not satlsfy the vertex constraint.) Let g,,, (U) =
bty €1 (). Let f(v) = max {f,, W)lv3wand
8,, () < m}; this is finite since g, (v) <m.

Several facts are obvious from these definitions.
The cost of an optimal chain partition of (T,7) is
1) = F(0). Also £,©) = 2, .., F(x) and g, () = ; ().
Last, u ~> v and v=>wimply g, (1) =g, (v) + ¢ ()
(and thus g,, (W) = g,, (), and £, () = f,, (V)
tep (u’ v) + zuﬁx,x#uf(x)'

These “dynamic programming” equations are
enough to allow efficient calculation of f(n). For i
running from 1 to n (i.e. working from sons to fathers)

INFORMATION PROCESSING LETTERS

September 1975

we calculate f(7), and fj(z') and g; () for all vertices  in

a subset of T large enough to support succeeding cal-
culations. To implement these calculations we associ-
ate a set Q(7) (the “queue” of i) with every vertex i.
Each element x of Q(7) will have three associated param-
eters:

I(x): avertexjinT;;
F(x): the value of f; (z),
G(x): the value of gj(i).

To compute the desired values efficiently we need
the following operations.

(i) INSERT (i, x): inserts the element x into Q(7).

Time required: O(1).

(ii) QUNION (F, /): moves all the elements in Q)
into Q(¥), leaving Q(j) empty.
Time required: O(loglQ()I +loglQ () + 1).

(iii) MAXF (¥): returns an element in Q(f) with max-
imum F-value, and deletes the element from
0(@).
Time required: O(loglQ () + 1).

(iv) ADDF(i, z): adds the value z to the F-variable
of all the elements in Q7).
Time required: O(1).

(v) ADDG(G, z): adds the value z to the G-variable
of all the elements in Q(7).
Time required: O(1).

These operations can be implemented to run in the
given time bounds by using leftist trees, as shown in
[5,6]; operations (iv) and (v) put special kinds of
nodes into the data structure.

In the algorithm given in fig. 1 all the queues are
initially empty. The idea behind the queues is that
after a vertex I is processed (by the outermost loop)
but before its father is processed, Q(7) must contain
an element for each vertex j in T} such that gj(i) <m.
(It may also contain some j’s such that g]-(z') >m.)
The program stores, for each vertex i, the value of
() and a value A(¥) which denotes the last vertex on
the path containing 7 in the optimal chain partition
which is computed.

It is easy to see that OCP correctly computes f(7)
for each ¢ and hence correctly computes f(n). By
using the values k(7), 1 <i<n, it is easy to construct
a directed chain partition having total edge weight
f(n). The time required by OCP is dominated by the
time spent in queue operations. There are 2n INSERT
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algorithm OCP;
begin
for i :=1until n do
begin
§:= 2isi FO);

let x be a new queue element with parameters

Ix)=1i Fix) =5 G(x)=0;
INSERT(, x);
for j such thati—j do
begin
ADDF(,s-f()+ ¢ G, 1));
QUNIONG, );
end ;
ADDG(, ¢y ());
x = MAXF(@);
while G(x) >m do x := MAXF();
7@ = F(x);
h() =1(x);
INSERT(, x);

end
end OCP;

operations, n—1 QUNION operations, n—1 ADDF
operations,  ADDG operations, and at most 2n
MAXEF operations (only 2n elements are added to
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Fig. 1.
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queues and hence only 2n can be deleted), so OCP re-
quires O(n log n) time total. The space requirements
are O(n) (see [5,6]).

Our thanks to the referee for his unusually percep-
tive and helpful remarks.
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