Volume 9, number 4

INFORMATION PROCESSING LETTERS

20 November 1979

DEADLOCK ABSENCE PROOFS FOR NETWORKS OF COMMUNICATING PROCESSES *

K.M.CHANDY and J. MISRA

Computer Sciences Department, University of Texas, Austin, TX 78712, U.S.A.

Received 15 June 1979; revised version received 16 August 1979

Processor networks, synchronisation, deadlock avaoidance

1. Network model

A network is a finite collection of processes which
communicate with one another exclusively through
messages as in Hoare’s model [5] and similar models
{1,6]. Our model is motivated by the work of Hoare;
it will be helpful if the reader is familiar with this
work. A network may be represented logically as a
labeled graph where the vertices are processes and
the edges are communication links. There may be
several edges between a pair of processes correspond-
ing to many communication links. We assume a simple
protocol for message transmission as in [5] and [1]:

» message is transmitted along a link only when the
two processes at both ends of the link are waiting to
communicate along that link. ‘

A process is said to be executable if some state-
ment in the process can be executed. Note that if
processes hy and hj are waiting to communicate along
an edge ¢, then both processes are executable since
the statements causing message transmission can be
executed. A process is said to be blocked if it is not
executable and it is waiting to communicate along one
or more links. A blocked process h waiting on a set of
edpes &= {e,, e,, ...} must continue to wait on each
one of the edges in € until a message is transmitted
along at least one edge in & (after which it may wait
on any arbitrary, and possibly null, set of edges).
Processes which are neither executable nor blocked
are said to be terminated; a process which has termi-
nated cannot later become executable nor blocked.

* This research was supported by NSF Grant MCS77-09812.

As in Hoare’s model, a process may have parallel
constructs which allow it to execute a statement and
simultaneously wait on an edge. Note that a process
which can execute a statement is executable in our
mode] regardless of whether it is simultaneously
waiting on some edge.

1.1. Process state transitions

A process may be in one (and only one) of three
states: executable, blocked and terminated. We now
discuss the three possible state transitions:

(1) Executable to blocked: A process transits from
executable to blocked when no statement in the pro-
cess can be executed and if the process is waiting (to
send or receive a message) on an edge e and the pro-
cess at the other end of e is not waiting on e.

(2) Blocked to executable: A blocked process must
be waiting on a non-empty set of edges € the process
will transit to an executable state when a process at
the other end of any edge e of & starts waiting on e.

(3) Executable to terminated: A process transits
from executable to terminated when it executes a
special statement such as a HALT statement at which
point it ceases execution and ceases waiting on edges
(if any) that it was waiting on.

A process cannot transit from blocked to termi-
nated. A terminated process cannot change states.

There are references to suspended and unborn pro-
cesses in the literature, where suspended processes are
temporarily in a quiescent state waiting to be invoked
and unborn processes are created later by invocations
from other processes. In our model suspended and

s

185

Volume 9, number 4

unborn processes are treated as blocked processes
because a suspended process is waiting for a message
which will invoke it, and an unbomn process may be
thought of as waiting for a message fo create it.

In practice there may be buffers on the communica-
tion links. In our model, each buffer is a process, and a
communication link itself does not have buffers. Thus
a buffered communication link between processes h;
and h; will be represented in our model as two un-
buffered links connecting h; and h; to a buffer process.

Our model can be used to prove properties of pro-
grams which are written in Hoare’s [5] notation. Note
that Hoare’s notation is very powerful and has been
used to describe distributed data base and communi-
cation protocols [4], and can be used to describe
resource scheduling and a number of situations arising
in concurrent computation.

2. Deadlock

A set of processes h in a network N is said to be
deadlocked at some stage in the computation if and
only if

Deadlock conditions:

(1) termination condition: not all the processes in
h have terminated and

(2) executability condition: no process in his
executable and

(3) closure condition: if h; in h is waiting on edge
e, and e is incident on hj, then h; is in h.

If h is deadlocked, then no process in h can pro-
ceed with execution and at least one process in h will
never terminate. N is said to be deadlock-free at some
stage of the computational process if no set of pro-
cesses h is deadlocked at that stage. N is deadlock-free
if it is deadlock-free at every stage in every computa-
tion sequence.

To prove that a network is deadlock-free at some
stage we shall assign a number called priority g(e) to
each edge e, and show that the priorities satisfy cer-
tain conditions; the existence of such priorities will
be shown to be necessary and sufficient for the
absence of deadlock.

Proper priority conditions:
Priorities g(e) are said to be proper for N at some

186

INFORMATION PROCESSING LETTERS

20 November 1979

stage if for every process h in N at that stage, h is
either
(1) executable or
(2) terminated with g(e) = o for all edges e inci-
dent on h or
(3) blocked , waiting on at least the set of edges €
where,
(i) €= {ejlg(e;) < g(e), for any e incident on
h} and
(i) g(e;) is finite if g; € €.

Thus if a network is waiting properly on priorities
g, then every blocked process must be waiting on
every edge of minimum priority incident on it;in
addition it may wait on other incident edges.

Theorem 1. N is deadlock-free at any stage of compu-
tation if and only if there exists a proper set of
priorities g(e) at that stage.

Proof. We first show that the assumption of a proper
g(e) and a deadlocked set of processes h leads to a
contradiction. Let ¢” be the edge of minimum priority
among all edges incident on processes in h. Since all
processes in h cannot have terminated, g(e*) is finite.
From the closure condition for deadlock, and the
waiting condition for proper priorities, the processes
on either end’of ¢* must be waiting on ¢*, and are
therefore executable, whence h is not deadlocked.

We next present an algorithm for assigning proper
priorities g(e) to all edges e given that N is deadlock-
free at some stage; this algorithm also assigns numbers
called labels to the processes. Let label(h) be the label
for process h.)

Algorithm
Initialization: label all executable processes 0 (zero);
Iteration: while there exists an edge e incident on h;,
hy where h; is unlabeled and blocked and
waiting on e, and h; is labeled do
label (h;) := label (h;) + 1;
g(e) := label (h;)
enddo;
Termiration: for every edge e not already assigned a
priority set g(e) = oo,

We now outline a proof that the algorithm will
terminate with proper priorities on every edge:

Volume 9, number 4

(1) The iteration step terminates because the num-
ber of labeled processes increases by one in each itera-
tion and there are a finite number of processes.

{2) We now show by contradiction that every non-
terminated process is labeled. Assume the contrary,
i.e. no deadlock and there exists an unlabeled process
h; which has not terminated.

Since h; is unlabeled it follows from the initializa-
tion step that it is blocked. Suppose h; is waiting on
some edge e, whose other end is incident on a pro-
cess hy. If hy were labeled, then h; could be labeled;
hence hj must be unlabeled. Thus the set of unlabeled
processes must be deadlocked since this set satisfies
the executability, termination and closure conditions.
Contradiction!

(3) Every edge is given a priority because of the
termination step.

(4) Every edge is assigned a priority only once —
obvious.

(5) The assigned priorities are proper. It follows
from the iteration step that a process labeled m,
where m > 0, must have one and only one edge inci-
dent on it with priority m, and all other edges inci-
dent on this process must either have a priority of
m + 1 (assigned by the iteration step) or a priority of
infinity (assigned on the termination step); further-
more, the process labeled m must be waiting on (at
least) the single edge with priority m incident upon it.
Hence the priorities are proper for blocked processes.
Edges incident on only terminated processes are given
(infinite) priorities only on the termination step,
because only non-terminated processes are labeled in
the initial and iteration steps. Hence the priorities are
proper for terminated processes as well. Thus the
priorities assigned by the algorithm are proper.

This completes the proof of the theorem.

Note that the theorem merely says that there
exists a set of proper priorities; it does not imply that
every set of priorities for deadlock-free networks is
proper. In fact, it is possible to have a set of priorities
that is not proper for a set of processes that is dead-
lock-free.

Corollary 1. Let g be a set of proper priorities over a
network. If at some stage for some e, g(e) is finite,
then the network has at least one executable process.

INFORMATION PROCESSING LETTERS

20 November 1979

Proof. Let e be the edge for which g(e) is minimum
and hence finite. Suppose e is incident on h;, h;. Since
the priorities are proper and g(e) is finite, h;, h; have
not terminated. Hence if neither of hy, h; is executable,
then both of them must be blocked; in this case, from
the proper priority condition, they must both be
waiting on e and hence executable. Contradiction!

This corollary is useful in showing that computa-
tion must be proceeding within a network.

Recall that a network is deadlock-free if it is dead-
lock-free at every stage during all possible computa-
tions. We can therefore prove absence of deadlock in
the following manner. At every stage we show either

(i) by direct, obvious reasoning that there exists an
executable process or

(ii) a set of proper priorities, which implies the
existence of an executable process if all processes
have not terminated.

Note that the priority assigned to an edge will in gen-
eral change from stage to stage; we emphasize that
ours is a dynamic priority scheme in contrast to static
priority schemes. We also emphasize that deadlock-
free computation implies the existence of a set of
dynamic priorities whereas the same cannot be said
for static priorities. It may seem that the priorities
have to be contrived. This is not so. Qur experience
shows that dynamic priorities are naturally related to
the problem at hand. The naturalness of dynamic
priorities is the most important issue in this metho-
dology. An elegant method of constructing deadlock-
free networks is to first postulate a set of dynamic
priorities and then design the network to wait properly
on these priorities. We give a brief example of such a
methodology applied to an important practical prob-
lem: distributed simulation. Readers interested in
deadlock absence proofs of communication and dis-
tributed data base protocols and other related prob-
lems may refer to {4].

Example (for more details, see [3]). Consider a net-
work of real-time processes which communicate exclu-
sively through messages. Whether a process h sends a
message m along an edge e at time t depends only upon
the sequences of messages received along the input
edges of h up to time t — €, where € is a positive con-
stant. An example of such a network is a job-shop
where processes are work-stations and messages are

187

Volume 9, Number 4

jobs. We will represent a work-station as a black-box
with one or more input edges and one or more output
edges. Jobs arrive and depart along edges after being
processed in a First-Come-First-Served (FCFS) manner
by the work-stations. Let a; be the time of the i arri-
val to the work-station, d; the time of it departure,
and s; the processing time for the i™ job. Then because
of the FCFS discipline,

di = s; + max{a;, di_;} , .
Convention: dg = 0. o

Suppose we wish to carry out a distributed simula-
tion of this network by a network of asynchronous
(non-real time) processes which we call a logical net-
work of logical processes. Each physical process (PP)
in the real-time network is simulated by a logical pro-
cess (LP). The event ‘PP; sends a message m to PP; at
time t” will be simulated by LP; sending LP; a message
which is a 2-tuple (t, m); our objective is to allow
asynchrony by encoding time into every message.
Assume that we wish to simulate the real-time network
for an indefinite period. How can we design a logical
network which is guaranteed not to deadlock?

The first thing that a designer must do is to settle
upon a set of dynamic priorities. The obvious dynamic
of an edge is the time to which it has been simulated,
i.c. the t-component of the last tuple (t, m) trans-
mitted along that edge (which is O (zero) by conven-
tion when no messages have been transmitted along
that edge). The time to which an edge has been
simulated is called its clock-value. A reasonable choice
for the dynamic priority of an edge is its clock-value.
This choice of dynamic priorities implies that a pro-
cess waits on all edges of minimum clock-value when
it is blocked.

To clarify these concepts let us once again con-
sider the job-shop example in detail. A message in the
logical system has the form (t, m) where m is an
integer representing the number of jobs which traverse
the edge at time t, assuming that all jobs are of the
same type. Consider a work-station h. Let the n'" job
have departed h at or before time t. Then, if the
(n+ 1)“‘ job arrives at or before t, we can predict the
departures, if any, on all output edges up to time:

dn+1 = Sper T max{ansy, dp} . (2)

If the (n + 1) job arrives after t, we can predict that

188

INFORMATION PROCESSING LETTERS

20 November 1979

Current Clock-value
¥ X
10

Fig. 1. Logical process showing clock-values of edges.

there will be no departures on any output edge up to
time

t' =5y tt. 3)

Consider the example shown in Fig. 1. The logical
process must wait on the output edges because they
have minimum clock-values. Assume that the next
departure occurs at time t = 15 (this departure must
occur after time 10 from (2)), along the upper edge.
Since we are also waiting on the lower edge we must
send some message along it which increases its clock-
value; this forces us to invent a new message (t, 0)
which implies that no message was sent in the physical
network between the time equal to the current clock-
value and t.

We are now in a position to discuss the waiting
behavior of logical processes. An LP always waits on
all edges of minimum clock-value. If it is waiting on
a set of edges € it continues waiting until message
transmission has been completed along all the edges
in & For any message (t, m) received along an input
edge, the LP uses (2) and (3) to process the message.
If it is waiting on an output edge, the LP outputs
some message whose m-component may be 0 (zero).
This waiting condition is sufficient to guarantee
absence of deadlock.

References

{1] K.M. Chandy and J. Misra, An axiomatic proof technique
for networks of communicating processes, Technical
Report 98, Department of Computer Sciences, University
of Texas, Austin, TX (1978).

[2] K.M. Chandy and J. Misra, Proving temporal properties
for networks of communicating processes, Technical
Report, Department of Computer Sciences, University of
Texas, Austin, TX (1978).

{3] K.M. Chandy and J. Misra, Distributed simulation: A case
study in design and performance of distributed systems,
IEEE Trans. Software Engrg., to appear.

Volume 9, number 4 INFORMATION PROCESSING LETTERS 20 November 1979

[4] K.M. Chandy, J. Misra, L. Myers and P. Verman, Proofs of [61 G. Kahn, The semantics of a simple language for parallel
absence of deadlock in distributed programs and protocols, programming, in: J.L. Rosenfeld, Ed., Information
Technical Report, Department of Computer Sciences, Processing 74 (North-Holland, Amsterdam, 1974)
University of Texas, Austin, TX (1979). 471-475.

[5] C.A.R. Hoare, Communicating sequential processes,
Comm. ACM 21 (8) (1978) 666—677.

189

