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Abstract 
A problem of considerable importance in designing 

computations by process networks, is detection of 
termination. We propose a very simple algorithm for 
termination detection in an arbitrary network using a 
single marker We show an application of this scheme in 
solving the problem of token loss detection and token 
regeneration in a token ring. 

I n t r o d u c t i o n  

We study the problem of detecting termination of 
computation in a network of processes. If every process 
in a network is idle, i.e. waiting for messages in order to 
carry out further computations, and there are no 
messages in transit, i.e. all messages that have been sent 
have been received, then no process will carry out any 
further computation. It is often important to detect 
such a situation. Multiphase algorithms [15] in which a 
phase is to be initiated only upon completion of the 
previous phase, requires termination detection of a 
phase. Francez, Rodeh and Sintzoff [11[ suggest that it 
may be easier to devise a distributed algorithm in two 
steps: (1} design an algorithm that maintains the desired 
safety properties and eventually guarantees a 
terminating global state; (2) superimpose a termination 
detection algorithm on the basic algorithm. Deadlock 
detection [8] which is related to termination detection is 
of fundamental importance in distributed data bases. 
Detection of token loss in a token ring can be shown to 
be a termination detection problem. 

We suggest an algorithm for termination detection in 
an arbitrary network of processes. The algorithm uses a 
single marker which repeatedly traverses the edges of 
the network until it detects termination. We make no 
assumption about the network structure, process 
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behavior or message delays. Our only assumption is 
that a process receives (only and all) messages from 
another process in the order sent by the sender. Our 
solution is symmetric among the processes, i.e. process 
id's are not used in the solution. As an application of 
the scheme in this paper, we give a simple and efficient 
algorithm for detecting token loss and regenerating the 
token in a token ring network. The marker algorithm 
has also been applied [14] in avoiding deadlocks in 
distributed simulations. 

There has been a considerable amount of work in 
termination detection. For a specific class of 
computations, called diffusing computations, Dijkstra 
and Scholten [2] proposed a very elegant algorithm. 
Their approach has been extended and applied to a 
variety of problems [4,5,6,7]. The major drawbacks of 
their approach are: (1) termination detection algorithm 
must be initiated whenever the diffusing computation 
starts and (2) the number of messages used for 
termination detection is equal to the number of 
messages in the diffusing computation itself. Our 
solution does not suffer from these drawbacks. 

A series of papers has been published by Francez and 
co-workers [9,11,12] leading to a marker type algorithm. 
The algorithm proposed in this paper refines, simplifies 
and removes some of the restrictions of their approach. 
Independently Gouda [1] and Dijkstra [3] have proposed 
similar schemes, again with certain restrictions. All of 
these schemes use the marker to determine if a process 
has remained mcontinuously idle m over an interval of 
time; the idea of continuous idleness also appears in [8 I 
for deadlock detection. 

Recently Chandy and Lamport [10] have proposed a 
very elegant and general scheme for detecting stable 
propertieo of a network; a property (proposition I P is 
stable if it remains true once it becomes true. Clearly 
properties such as Unetwork computation has 
terminated," and "a subset of processes are deadlocked" 
are all stable properties. Even though we treat the 
narrower problem of termination detection, our solution 
is simpler and more efficient for this specific problem. 

P r o b l e m  Description 
We consider computations in finite networks of 

processes in which processes communicate only by 
messages. A process is either idle or active at any time. 
(For simplicity in exposition, we assume that processes 
do not terminate. Extension of the algorithm for 



terminated processes is straightforward.) Only active 
processes can send messages. An idle process becomes 
active only upon receiving a message; an active process 
may become idle at any time. Every message sent in 
the network is received by its intended recipient after 
an arbitrary (possibly zero) delay. All messages sent by 
a process x to another process y will be received by y in 
the order sent by x .A  network's computation 
terminates when every component process is idle and 
there is no message in transit, because in this case no 
process will ever become active again. 

It is required to develop an algorithm to be 
superimposed on the basic computation in which, (1) 
termination is reported only when network's 
computation terminates and (2} termination is reported 
within finite time of the termination of network 
computation. 

Initially, {i .e.  when the termination detection 
algorithm is initiated), processes are in arbitrary states 
and there are arbitrary number of messages in transit. 

The M a r k e r  A l g o r i t h m  

In the following algorithm, a marker visits all the 
processes in the network and checks to see if they are 
idle or active. Because of messages in transit, the 
marker cannot assert that the computation has 
terminated if it finds all processes to be idle after one 
round of visits. However, for the special case of a 
network in which processes are arranged in the form of 
a ring (i.e. every process has a unique predecessor from 
which it can receive messages and a unique successor to 
which it can send messages), the marker can assert that 
the computation has terminated if it finds after one 
round of visits that every process has remained 
continuously idle since the last visit of the marker to 
that process. This algorithm can be implemented quite 
easily. The marker is a special type of message, sent 
only by an idle process. The marker paints a process 
white when it leaves the process. A process turns black 
if it becomes active. If the marker arrives at a white 
process, it can claim that the process has remai'hed 
continuously idle since the marker's last visit. The 

m a r k e r  detects termination if it visits- N whiteprocesses 
in a row, where N is the number of processes in the 
ring. 

We generalize this scheme for arbitrary networks of 
processes. Crucial to our technique is the assumption 
that messages sent by one process to another are 
received in the order sent; therefore if the marker is sent 
from process x to process y (at which point process x is 
white) and on a subsequent visit the marker finds 
process x to be white then it can assert that (1) x has 
remained continuously idle during this interval and (2) 
there is no message in transit along edge (x,y) at this 
point because all messages along (x,y) would have been 
"flushed out" when the marker was received by y and 
subsequently x could not have sent a message since it 
has remained idle. Therefore it is necessary for our 
marker to traverse every edge of the network to 
guarantee that there are no messages in transit. For the 
moment, we assume that the network is strongly 
connected; extension of this scheme for arbitrary 
networks is sketched in the next section. 

In every strongly connected network there exists a 

cycle c, not necessarily a simple cycle, which includes 
every edge of the network at least once. Let c denote 
the length of e. The marker will carry an integer m 
with it with the meaning that all processes seen during 
the last m edge traversals have been continuously idle, 
i.e. each of them was white when the marker arrived at 
the process. The entire algorithm is defined by the 
following rules. 

(RO)  Initially, every process is black. 
Marker departs from an arbitrary 
process x along some outgoing edge, 
according to rule (R1) below. 

(R1) Marker departure from process x: 
Marker departs along the next edge 
(x,y) of c only when x is idle. Prior to 
departure set, 

0, if x is black 
m :--- 

re+l,  if x is white 
{termination is 
reported if m----c} 

and paint x white. 

{To guarantee that termination is 
eventually detected, we require that 
the marker cannot stay permanently 
at an idle process.} 

(R2) Message arrival at process x: process 
x paints itself black. 

P r o o f  o f  the  A l g o r i t h m  

We must show that (1) if the network's computation 
terminates then the marker eventually declares 
termination and (2) if the marker declares termination, 
then n~twork" computationhas terminated: Property (I) 
is easy to see: Rule (RI) will be repeatedly applied 
upon termination and Rule {R2) will never be applied; 
therefore every process will eventually become white 
and after that m will increase to c. We next prove 
Property (2). The following proof, due to Chandy, 
considerably simplifies the original proof of the author. 

If the marker reports termination (m~c), consider the 
time instant t at which the marker last set m to zero 
and departed from a process. We show that the 
network computation must have terminated at t. Since 
the marker eventually sets m to c, it traverses every 
edge of the network and visits every process, after 
t. Since it never sets m to zero after t, every process 
must be white when the marker visits it (after t) and 
therefore every process must be white at t. There can 
be no message in transit along any edge at t; if there 
were a message in transit along edge (x,y), then when 
the marker traverses the edge (x,y} and arrives at y, it 
must find y black since y must have received the 
message before the marker. 

Extension for Arbitrary Networks 
(1) This algorithm can be applied to a network G 

which may not be strongly connected. Let G1,G 2 ... be 
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the maximal strongly connected components of 
G. Define G i to be a predeceasor of Gj if. processes-in G i 
are reachable from processes in G i. The algorithm is 
applied successively to each strongly connected 
component starting with components which have no 
predecessors and the marker moving to a new 
component only after termination has been detected for 
all its predecessors. Therefore the marker visits the 
components in a topological sort sequence. 

We claim that  every component for which termination 
has been detected will remain terminated. We prove it 
using induction on the topological sort sequence of the 
components. 

(i) All components without predecessors 
must remain terminated after 
termination detection because they 
cannot receive messages from 
predecessors and become active. 

(il) Assume that every predecessor of G i 
for which termination has been 
reported, will remain terminated. 
When termination is reported for Gi, 
G i will remain terminated because 
from induction hypothesis, no process 
in G i will ever receive a message from 
any predecessor component and 
thereby become active. 

The network computation terminates when every 
strongly connected component has been declared 

terminated. 

(2) One drawback of the algorithm is the requirement 
that the network be preprocessed to determine its 
maximal strongly connected components and a cycle for 
each component containing all edges. We sketch a 
distributed algorithm, i.e. an algorithm in which no 
global information is available to any process. We 
assume that the marker can traverse edges in both 
directions. Then as far as the marker is concerned, the 
network is connected and undirected (and hence 
strongly connected). 

We may use any standard search strategy for the 
marker to traverse all edges of this network. We sketch 
the algorithm with depth first search as the strategy. A 
new depth first search {we call it a round) is started 
when a black process is seen. The root of a round is the 
(black} process where the depth first search started. 
The marker carries with it the number of its current 
round; each process retains the last round number of the 
marker, when the marker visits the process. The 
marker increments its round number (starts a new 
round) upon arriving at a black process. Then it paints 
the process white and departs along some edge when the 
process is idle. The algorithm for a process that is white 
(prior to marker departure) is given below. 

i f  the marker has a different {higher) round number: 
{join the depth first search} 

designate the sender of the marker as the 
fa ther ;  
update one round number; 
propagate the marker (see below) 

i f  the marker has the same round number: 

i f  the marker has come from a son 
t h e n  propagate the number (see below) 
else {marker has come from a process 

other  than a sony 

re turn  the marker to the l a s t  sender. 

Propagate the marker: 

choose some edge along which the marker has 
not been received or sent in the current round; 

i f  there i s  such an edge 
t h e n  aend the marker along tha t  edge 
e l s e  { there  i s  no such edgeY send marker 

to the fa ther  or i f  there i s  no 
fa ther  { th is  i s  the root  processY 
repor t  termination.  

Proof of the algorithm is identical to the previous 
proof; note that  the depth first search of an undirected 
graph leads to the construction of a cycle which includes 
all the edges (in both directions). 

Resilient Token Ring 

A token ring provides a useful mechanism for ensuring 
that at ay time at most one process out of a group of 
processes can enter a critical section. The =marker = in 
the termination detection algorithm is a special case of a 
token. The group of processes P0,Pl,'",PN-I are 
arranged in a ring where Pi receives messages from Pi-1 
and sends messages to Pi+l (additions, subtractions are 
modulo N). A single token circulates among the 
processes in the order P0,Pl,'",PN-I,Po,'- etc. A process 
Pi which wishes to enter its critical section waits until it 
receives the token from Pi-1, then it enters its critical 
section and sends the token to Pi+l upon completion of 
the critical section. A process which does not wish to 
enter its critical section merely transmits the token, 
perhaps after finite delay, upon receiving it. It  follows 
then that  two processes cannot enter critical sections 
simultaneously since at most one of them can hold the 
token at any time. Also if the execution of critical 
section always terminates, every process will send out 
the token within finite time of receiving it. Hence a 
process will execute its critical section within finite time 
of wishing to do so. 

A problem in connection with token rings is recovery 
upon loss of the token. In this case, the token loss must 
be detected and the token must be regenerated. 

A solution for both token loss detection and token 
regeneration has been suggested .by Le Lann [13]. In 
this solution, every process waits a certain period of 
time to receive the token. If the token is not received 
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within this time interval, the process assumes that the  
token is lost and initiates the token regeneration 
process. Since there is a possibility that the original 
token may not have been lost or too many new tokens 
may be generated, a scheme is proposed for destroying 
additional tokens. This scheme makes use of process 
id's which are assumed to be distinct positive integers. 

A N e w  S o l u t i o n  t o  t h e  T o k e n  R e g e n e r a t i o n  
P r o b l e m  

Our solution is based on the observation that loss of 
the token amounts to termination of the network 
computation (we ignore messages other than the token 
in defining network computation), because all processes 
are idle and there is no message in transit. We use the 
marker algorithm to detect termination and regenerate 
the token. However we exploit the structure {token 
ring) to arrive at a solution which is somewhat simpler. 
Since a marker resembles a token, we propose to 
circulate P tokens, token A and token B, in the token 
ring. One of these will be designated the primary token 
to be used by processes for entering their critical 
sections. However for token loss detection and token 
regeneration the two tokens are treated symmetrically, 
i.e. any token may be used to detect the loss of the 
other token and regenerate it. Our solution does not 
use time-outs nor does it make use of process id's. 
Therefore, it may use fewer messages. Furthermore, it 
is simple enough that it can even be implemented in 
hardware; in particular it avoids high-low comparisons 
and uses only equal-unequal comparisons between 
integers. We will show that the loss of a token, say 
token A, will be detected by token B within one round 
of token B's travel. Therefore the algorithm with 2 
tokens is guaranteed to work if no token fails within a 
round (of travel) of the other token's loss. The 
algorithm is easily extended to k tokens, for any k > l ;  
in that case the algorithm will work if at least one token 
is guaranteed to make a round after the loss of one or 
more tokens. 

Our solution makes use of the following observations: 
a token at process Pi can guarantee that the other token 
is lost if since this token's last visit to Pi, neither this 
token nor Pi have seen the other token. We next show 
how to incorporate this observation into a simple 
algorithm. 

We associate with each token a number: nA,nB 
denote the numbers of tokens A and B. Each process Pi 
also carries a number m i which is the associated number 
of the token last seen by Pi" nA,nB are both updated 
whenever the two tokens encounter each other. 

Initially :: 

nA:-~-l; nB:-~-l; all mi's are zero. 

When process Pi receives token A {analogous 

algorithm for token b}:: 

I f  m I = nA 

then  ( t o k e n  B l s  lost: token  A has  made 
a co mp le t e  round without chanElng 
nA; token B has not vlslted thls 
process Pl in the mean tlme) 

r e g e n e r a t e  token B 

e l s e  (token B Is not los t )  m I := nA; 

When tokens encounter each other:: 

nA := nA + I; nB := nB - 1 

Process Pi regenerates token B {analogous 

algorithm) for regenerating token A}:: 

nA := nA + I; nB := -nA; 
(process Pl now holds both tokens) 

The algorithm may cause n.A to become arbitrarily 
large {or nB to become arbitrarily small}. This can be 
avoided as follows: we observe that the algorithm only 
requires nA,nB to take on values different from all mi's 
when they are updated {this is a consequence of equal- 
unequal comparison employed in the algorithm). This 
can be achieved by incrementing nA by l, modulo 
(N+I} (analogously for nB). We claim that nA will 
never get the same value after incrementation as some 
mi; if it does then nA must have been incremented at 
least (N+I) times following its last visit to Pi" This is 
not possible since there are N processes and one token 
encounters the other token at most once at a process. 

We leave the extension for k tokens to the reader. By 
choosing a suitably large k, the probability of loss of all 
tokens can be made arbitrarily small. 
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