
Programming Techniques
and Data Structures

M. Douglas Mcllroy*
Editor

Distributed Computation
on Graphs:
Shortest Path Algorithms
K. M. Chandy and J. Misra
University of Texas at Austin

We use the paradigm of diffusing computation, intro-
duced by Dijkstra and Scholten, to solve a class of graph
problems. We present a detailed solution to the problem
of computing shortest paths from a single vertex to all
other vertices, in the presence of negative cycles.

CR Categories and Subject Descriptors: C.2.4 [Com-
puter-Communicatinn Networks]: Distributed Systems;
D. 1.3 [Programming Techniques]: Concurrent Program-
ruing; F.2.2 [Analysis of Algorithms and Problem Com-
plexity]: Nonnumerical Algorithms and Problems; G.2.2
[Discrete Mathematics]: Graph Theory

General Terms: Algorithm, Theory
Additional Key Words and Phrases: distributed com-

putation, shortest path, negative cycle, depth first search,
diffusing computation

1. Introduction

This paper presents distributed algorithms based on
the work of Dijkstra and Scholten [1], for solving graph
problems using networks of communicating processes.
The solution to one particular graph problem, that of
finding shortest paths from a single vertex to all other
vertices in a weighted, directed graph, in the presence of
negative cycles, is discussed in detail. We then show how
this solution may be applied to other graph problems
including depth-first search in an undirected graph.

* Former editor of Programming Techniques and Data Structures,
of which Ellis Horowitz is the current editor.

This work was supported in part by the Air Force Office of
Scientific Research under grant AFOSR 81-0205.

Authors' Present Address: K. Mani Chandy and J. Misra, Com-
puter Sciences Department, University of Texas, Austin, TX 78712.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a~fee and/or specific permission.
© 1982 ACM 0001-0782/82/1100-0833 $00.75.

Our model of computation is a network of processes
in which processes communicate only by sending and
receiving messages; the model is presented in detail in
Sec. 2. We describe the classical shortest path problem
[2] and the necessary terminology from graph theory in
Sec. 3. The distributed algorithm is given in Sec. 4 and
its proof in See. 5. Applications to other graph problems
are discussed in Sec. 6.

2. Model of a Network of Communicating Processes

A process is a sequential program which can com-
municate with other processes by sending/receiving mes-
sages. Two processes P and Q are said to be neighbors if
they can communicate directly with one another without
having messages go through intermediate processes. We
assume that communication channels are bidirectional:
if P can send messages to Q then Q can send messages
to P. A process knows the identities of its neighbors;
otherwise it is ignorant of the identities of all other
processes and of the general structure of the network.

We assume a very simple protocol for message com-
munication; this protocol is equivalent to the one used
by Dijkstra and Scholten [1]. Every process has an input
buffer of unbounded length. If process P sends a message
to a neighbor process Q, then the message gets appended
at the end of the input buffer of Q after a t'mite, arbitrary
delay. We assume that (1) messages are not lost or altered
during transmission, (2) messages sent from P to Q arrive
at Q's input buffer in the order sent, and (3) two messages
arriving simultaneously at an input buffer are ordered
arbitrarily and appended to the buffer. A process receives
a message by removing one from its input buffer.

The assumption of unbounded length buffers is for
ease of exposition. We show, in Sec. 6, that for our
problem the input buffer length of process Q can be
bounded by the number of neighbors of Q.

3. The Shortest Path Problem

G = (V, E) is a directed graph in which Vis the set
of vertices and E is the set of edges. Edge (vi, vy) has an
associated length wij. If edge (vi, vj) exists then vi is said
to be a successor of v~ and v~ is said to be a predecessor of
vy. It is required to determine lengths of the shortest
paths from a special vertex vl in V to all other vertices in
V. 1 Since some wij may be negative, a cycle of negative
total length (called a negative cycle) may exist in the
graph. If a negative cycle is reachable from vl then all
vertices reachable from that negative cycle will have a
shortest path length of -oo. The distance of a vertex vi is
the length of the shortest path from Vl to v~ and is denoted
by Li.

We assume familiarity with graph theoretic terms such as path,
shortest path, etc.

833 Communications November 1982
of Volume 25
the ACM Number I 1

4. A Distributed Algorithm for the Shortest Path
Problem

Consider a network of processes corresponding to
graph G; process pi represents vertex Vi, for all i, and pi
and p / a r e neighbors if edges (vi, vj) or (vj, v/) exist in
G. pi knows the weight w~/for every outgoing edge (vi,
v/). However, p~ may not know the weights of incoming
edges or the identities of processes other than its neigh-
bors.

Process p~ initiates a computation to determine the
lengths of shortest paths from Vl to all vertices. In the
following, we use vertex v~ and processpi interchangeably
when no confusion can result.

4.1 The Structure of the Algorithm
The algorithm works in two phases, both of which

are initiated by pl. At the end of phase I, every process
pi will have the value ofLi, ifL~ ~ -ce. I f for some vertex
v/, j # l, Lj = -ce then p/wi l l not be aware of this fact
at the end of phase I; the goal of phase II is to inform all
such processes that they are at distances o f -oo .

4.2. The Structure of Phase I Computation

4.2.1 Messages Used in Phase I
Phase I computation uses two kinds of messages:

(1) A length message is a two-tuple (s, p), where p is
the identity of the process sending the message and s is
a number, pi sends a length message (s, p~) topi to inform
pj that there is a path of length s from vl to vj in which
vi is the prefinal vertex.

(2) An acknowledgment message or ack has no other
data associated with it. A process p / sends an ack to a
process pi in response to a length message sent by pi.
Intuitively, an ack denotes that the length sent by pi to
pj has been (or will be) taken into consideration by all
processes reachable from pj.

A processpi, i ~ 1, maintains a local variable d which
denotes the length of the shortest path received so far by
pi. Upon receiving a length s from a predecessor, if s <
d, pi sets d to s and in this case it sends a length message
(s + w~/,p~) to every successor pj. It may seem that acks
are superfluous. Clearly length messages can be used to
compute successively shorter paths. However, the pres-
ence of negative cycles means that this will be a nonter-
minating computation. Acks are used to terminate phase
I computation as described below.

4.2.2 Local Data Used by a Process pi During Phase !
Each process pi uses three local variables:

d This is the shortest length of paths from vl to vi
known to this process at this point in the computa-
tion; d = ce if no length message has been received.
This is the predecessor from which the length d
was received; this is the prefmal vertex on the

pred

834

n u m

shortest path to vi computed so far. pred is unde-
fined if d = oo or i = 1.
This is the number of unacknowledged messages,
that is, the number of messages sent by this
process for which no ack has been received so far.

4.2.3 Phase I Algorithm for Process pj, j ~ 1
Initialization

{no length message has been received; there are no unacknowledged
messages}

begin d := oo; pred is undefined; num := 0 end;

Upon receiving a length message (s, pi)

i f s < d then
begin

{send an ack to pred, the prefinal vertex on the previous shortest
path, if it has not been sent already}

if hum > 0 then send an ack to pred;
{update d, pred}

pred := pi; d := s;
{send length messages to all successors o f b and increment num
appropriately and then return ack to pred i f n u m = 0}

send a length message (d + w/~, Pi) to every successor pk;
num := hum + the number of successors o f vj;
if hum = 0 then send an ack to pred

end
else {s _> d} {new length does not denote a shorter path}

send ack to pi.

Upon receiving an ack f rom process pk

begin
{decrement number o f unacknowledged messages}

hum l= hum - - 1;
{send acknowledgement to pred i f acks have been received for all
messages}

if n u m = 0 then send ack to pred
end.

Note. I f n u m > 0 at any time, then a process has
exactly one message to which it has not sent an ack, and
this ack should go to pred.

4.2.4 Initiation of Phase I

4.2.4.1 Phase I algorithm for process pl

Initialization
d := 0; pred is undefined;
send (wlk, pl) to all successors pk; num := number o f successors o f v~.

Upon receipt o f a length message (s, pi)
{start phase II i f a negative cycle is detected }

if s < 0 then terminate phase I and start phase II
else return ack to pi

Upon receiving an ack
{update num; start phase II i f there is no unacknowledged message
remaining}

hum := hum -- 1;
if n u m = 0 then terminate phase I and start phase II.

4.2.5 Example
Consider the graph shown in Figure 1. Four feasible

snapshots of the network showing possible values for d,
pred, and num for the six processes in this example are
shown below. Since transmission delays are arbitrary,
network computation is nondeterministic. Hence the four

Communica t ions November 1982
of Volume 25
the A C M N u m b e r 11

snapshots shown below form only one of many sequences
which may arise. The question mark denotes an unde-
fined value for pred.

S n a p s h o t 1. px has sent one message to each of p2 and
pa which have not yet been received.

1 2 3 4 5 6

d 0 o0 o0 oo Qo o0

pred ? ? ? ? ? ?

num 2 0 0 0 0 0

Snapshot 2. p2, p3 have received length messages (3,
p l) , (4, p l) , respectively, pa has sent (10, p3) to p4, which
p4 has received.

1 2

d 0 3

pred ? 1

num 2 ! 0

3 4 5 6

4 10 Qo oo

1 3 ? ?

l 0 0 0

Snapshot 3. p~, p6 receive (11, p4), (12, p4) , respec-
tively, fromp4, p6 sends an ack top4; this ack is received
by p4. p4 receives (5, p2). Next p4 sends an ack to p3,
which is received, and sends (6, p4) , (7, p 4) t o p5 and p6,
respectively, which they both receive, p5 sends an ack to
p4 which is received by p4.

1 2 3 4 5 6

d 0 3 4 ~ 5 6 : 7

pred ? 1 1 2 4 4

num 2 1 0 2 0 0

Snapshot 4. pn sends an ack to pl since p3's num is
zero. p5 sends (2, p~) to p2, thus causing p2 to send an ack
to pl. The acks are received since pt has no further
unacknowledged messages it terminates phase I.

1 2 3 4 5 6

d 0 2 4 5 6 7

pred ? 5 1 2 4 4

num 0 1 0 i 2 1 0

4.3 The Structure of Phase II Computation
4.3.1 Messages Used in Phase H

Phase II employs two kinds of messages: over? and
over-. An over- message is sent by process j to all its
successors if process j has determined that phase I is over
and Lj = -oo; an over- message orders the recipient to
halt all phase I computation (if it has not done so
already), set its d to -oo and propagate the over- message
to its successors. I f a process already has its d = -oo
when it receives an over- message, it takes no action. An
over? message is sent by process j to all its successors
when it has determined that phase I is over, but has not
determined whether Lj = -oo. An over? message orders
the recipient to halt all phase I computation. I f the
recipient p~ has n u m = 0 it sends over? messages to its
successors; otherwise (ifpi has num > O) it can be shown

835

Fig. 1. A Network with Weighted Edges.

4
3

()
~ 2 6

- 4

that Li = - ~ , and thereforepi sets its d := - ~ and sends
over- to its successors. Note that it is redundant for any
process pi to send duplicate messages to a process p / o r
to send over? after over-. Every process other thanpl will
receive an over? or an over- message.

4.3.2 Detailed Algorithm for Phase H

4.3.2.1 Initiation of Phase H by Process pl

if pl receives a message (s, p), with s < 0, during phase I
then (pl detects that it is in a negative cycle}

send an over- message to all its successors
else {hum = 0 fo rp l at the end of phase I}

send over? message to all successors.

4.3.2.2 Phase 11 Algorithm for Process pj, j # 1 with
n u m j > 0

Upon receiving a phase I1 message (over- or over?)
if d # - ~ then

begin d := -oo;
send over- to all successors

end.

4.3. 2.3 Phase I I Algorithm for Process p j, j # 1 with
numj = 0

Upon receiving an over- message
if d # -oo then

begin d := -oo;
send over- to all successors

end.

Upon receiving an over ? message

if d # -oo then send over? to all successors w h o have not been sent
such a message.

5. Proof of Correctness

We define vi to be a finite vertex if Li # -oo; vi is an
infinite vertex if Zi ~- --co.

LEMMA 1. For any j, L~ <_ dj at all times.

PROOF. We observe that every d/ is the length of
some path from vl to vj.

Communica t ions No v emb er 1982
of Volume 25
the A C M N u m b e r 11

LEMMA 2. I f there is a finite path of length d~ to a
vertex vj, then from some point onward in the computation
dy _< d~, if phase I does not terminate.

PROOF. Proof is by induction on the number of edges
on the path. Lemma 2 is trivial when the number of
edges in the path is zero. Now assume Lemma 2 holds
for all paths with k or fewer edges. Consider a path with
k + 1 edges from Vl to vj in which vi is the prefmal vertex
and the path length to vi is d~ = d 7 - wij. From the
induction hypothesis eventually, di _< d? = d 7 - w~y;
therefore pj will eventually receive (di + wij, pi) which
guarantees that di -< di + wij _< d~. It follows from the
algorithm that dj can never increase. Therefore, dy _< dfl
from that point onward in the computation.

LEMMA 3. I f phase I does not terminate then from
some point onward in the computation, every infinite vertex
vj will have an infinite vertex for predj and every finite
vertex vy will have a finite vertex for predy, j ~ 1.

PROOF. The following holds for all j , j # 1, at all
times:

di + wij _< dj i f i = pret6.

From Lemma 1, Li _< &, for all i. Therefore,

Li + wij --< dj, if i = predj.

I f vj is infinite then from Lemma 2, eventually dj gets
arbitrarily small. In particular, from some point onward
in the computation, for every finite vi,

dj < L~ + wii.

Hence from that point onward pre~. will be an infinite
vertex.

From Lemmas 1 and 2, if phase I does not terminate
then eventually every t'mite vi will have di = L~ and predi
will be the prefmal vertex on this path; pred~ must
therefore be a f'mite vertex.

THEOREM 1. Phase I terminates.

PROOF. Assume phase I never terminates. Then dj
= Lj for every finite vertex vj from some point in phase
I computation and hence no f'mite vertex sends a length
message from then on. From Lemma 3, finite vertices
eventually form a rooted directed tree where pre~ is the
father of vj, j ~ 1, and v~ is the root. A leaf vertex vj,
j ~ 1, in this tree cannot be thepred for any finite vertex
(since it is a tree) nor can it be the pred for any infinite
vertex, from Lemma 3; therefore eventually numi = 0
and vj will send an ack to predi. Induct on the height of
the tree to show that every finite vertex will eventually
have num= 0. Ifp~ is a finite vertex it will then terminate
phase I computation. I f pl is an in/mite vertex, from
Lemma 2, it will eventually detect that it is in a negative
cycle and hence terminate phase I. Hence phase I will
terminate! Contradiction!

836

THEOREM 2. At the termination of phase I,

(1) if vj is a finite vertex, dj = Lj and numj = 0;
(2) if vj is an infinite vertex, then and only then, there is

some vi such that there is a path from vl to vj through
vi, in the graph, and numi > O.

PROOF. (1) For a finite vertex vi, we defme e (j) to
be the number of edges on a shortest path from Vl to vj
(if there are several shortest paths we choose the shortest
loop-free path with maximum number of edges). The
result follows by induction on aU vertices vj with e (j) _<
k, f o r k = 0 , 1 , 2

(2) Assume the contrary that for an in/mite vertex vj,
every vertex vi on a path from v~ to vj has numi = 0, at
the end of phase I. Even if pl did not terminate phase I
computation, vj will never receive a length message and
thus dj will not decrease. This contradicts Lemma 2. The
other part of the proof follows by similar arguments.

THEOREM 3. Phase H terminates and at that point
d i = Lj for every vertex v i.

PROOF. Phase II terminates since any process sends
at most 2 messages: over? followed by an over- message.

N o i'mite vertex receives an over- message because there
cannot be an infinite vertex on a path from Vl to a tinite
vertex. Therefore dj remains unchanged during phase II
for a finite vertex; and from Theorem 2, dj = Lj at the
beginning of phase II. For an infinite vertex vj, there is
a path from vl to vj through vi, where num~ > 0 at the
end of phase I. Therefore pi will propagate an over-
message once it receives any phase II message, and
therefore dj = -co = L i eventually.

6. Notes on the Algorithm

6.1 Unbounded Buffers
A process pi sends (strictly) monotone decreasing

lengths in every length message to any other process pj.
Therefore any length message sent by pi can overwrite
any earlier message sent by pi which is still in the buffer.
Hencepj need only store one message (the latest message)
from each predecessor. The space requirement for acks
can be reduced by storing the number of acks sent from
pj to pi, which are still in the buffer; this number is
incremented by 1 each time pj sends an ack to pi. pi can
remove multiple acks from the buffer and reduce numi
accordingly. Hence we need space for at most one mes-
sage and one ack count for every neighbor of a process
pj in the input buffer ofpi .

6.2 Applications to Other Graph Problems
A number of other graph problems can be formulated

as shortest path problems using a more general notion of
path length. We defme a path length function 2(a real
valued function on paths, starting from vl, as follows:

Communications November 1982
of Volume 25
the ACM Number 11

/ [p a t h with no edges] = 0

/ [e i ; (i ,y)] = g i (/ (e i) , wij),

where Pi is any path from vl to vi, Pi; (i, j) is the path Pi
followed by edge (vi, vj), gi is any arbitrary computable
function which is monotone in the first argument, and
wij is some given real number denoting the "length" of
edge (vl, vj).

The shortest path algorithm of Sec. 4 can be used to
compute

dj = r a in (/ (P j) I P1 is a path from vl to vj), for allj.

The only change is in phase I computation in the
content of the length message sent; instead ofpj sending
(dj + wjk, pj) to a successorpk, it now sends (gj(d~, wjk),
pj)). Monotonicity of g in the first argument is essential,
since it guarantees that every process sends monotone
decreasing path lengths, if it receives monotone decreas-
ing path lengths.

We list some graph problems and show how they can
be solved under this shortest path formulation.

(1) Find all vertices reachable from vi. We wish to set
dj to 0 if vj is reachable from v~; else set dj to oo. We use
the following function,

gi(x, y) = x .

(2) Find all vertices which can reach v~. This is the
same as (1), except length messages are sent to predeces-
sors.

(3) Find the maximum strongly connected compo-
nent. Determine if a given vertex Vl is in a nontrivial
strongly connected component: use both (1) and (2). A
separate computation is then needed to determine
whether there is a vertex which has its d set to 0 in both
computations.

(4) Construct a depth-first search tree. Consider an
undirected graph G. For each vertexj label all the edges
incident on j with 1, 2, 3 In a depth-first search we
would normally label the "left-most" edge on j with 1,
the next left-most edge 2, and so on. (However, for
purposes of proof the labeling is arbitrary.) Note that
edge (i, j) may be the rth left-most edge incident on i
and the sth left-most edge incident on j and it is not
necessary that r = s. An example is shown below.

In a depth-first search starting from a vertex (say
vertex 1), the vertices of the graph are traversed begin-
ning with a depth-first search of the left-most successor
of vertex 1. The collection of paths traversed to reach
each vertex for the f irst time forms a tree called the
depth-first search tree. In the above example the depth-
first search tree has edges (1, 2), (2, 3), and (3, 4). Our
goal is to determine the depth-first search tree; in partic-
ular we want to determine the path leading to every
vertex in the depth-first search tree.

F~. 2. An Undirected Graph with Labe~d Edges: An Apphcation of
Depth-First Search.

3 1 " ~ edge (1,4) has label 2 at vertex 1

1 2

1 2 3k-----edge (1,4) has label
4~ 3 at vertex 4

Let P be a path (/1 ik). Then d e / m e / (P) =
(jl jk-1), where in, m ---- 1 k - 1, is the label
assigned to edge (ira, ira+l) at vertex i~. In our example,
i f P = (1, 2, 3, 4) t h e n / (P) = (1, 1, 2).

L e t / (P) = (jx jm) a n d / (e ') = (kl k ,) . W e
d e / m e / (P) < / (P ') if and only if either

(i) for some r, jr < k , and ji = ki for i = 1 r - 1, or

(ii) n > m and j i = ki for i = 1 m.

Thus (1, 2, 3) < (3) and (1) < (1, 1, 2, 2).
It is evident that dj = ra in{/ (Pj) I PJ is a path from

vl to vj} denotes the path in the depth-first search tree
up to vj.

6.3 Earlier Work
The algorithm suggested in this paper is a modifica-

tion of an algorithm proposed by Dijkstra and Scholten
[1] for termination detection of a class of distributed
computations, called diffusing computations. In their
algorithm predj does not change as long as numj > 0; the
algorithm terminates when numj = 0 for every Pi- We
allow predj to change while numj > O; this allows us to
terminate the phase I algorithm even when some numj
> O. This is critical for identifying infinite vertices since
those are the ones which are reachable from a vertex
with n u m > O.

Acknowledgments. We are indebted to E. W. Dijkstra
for his comments on an earlier draft of this paper; his
suggestions led to more concise proofs in Section 5. We
are also grateful to unknown referees and M. D. Mcllroy
for their suggestions and corrections.

Received 7/80; revised 9/81; accepted 3/82

References
1. Dijkstra, E.W., and Scholten, C.S. Termination detection for
diffusing computations. Inf. Process. Lett 11, (Aug. 1980), 1, 1--4.
2. Ford, L.R., and Fulkerson, D.R. Flows in Networks. Princeton
Univ. Press, Princeton, N. J., 1962.

837 Communications November 1982
of Volume 25
the ACM Number 11

