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Distributed Simulation: A Case Study in Design and
Verification of Distributed Programs

K. MANI CHANDY anp JAYADEV MISRA, MEMBER, TEEE

Abstract-The problem of system simulation is typically solved in a
sequential manner due to the wide and intensive sharing of variables by
all parts of the system. We propose a distributed solution where pro-
cesses communicate only through messages with their neighbors; there
are no shared variables and there is no central process for message rout-
ing or process scheduling. Deadlock is avoided in this system despite
the absence of global control. Each process in the solution requires
only a limited amount of memory. The correctness of a distributed
system is proven by proving the correctness of each of its component
processes and then using inductive arguments. The proposed solution
has been empirically found to be efficient in preliminary studies. The
paper presents formal, detailed proofs of correctness.

Index Terms—Concurrent processes, distributed systems, perfor-
mance, program proving, simulation.

1. INTRODUCTION
A. Distributed Programs

ROGRAMS which consist of two or more cooperating

processes which communicate with each other exclusively
through messages will be called distributed programs. In par-
ticular, processes in a distributed program cannot share vari-
ables; every variable in a distributed program must be local to
a single process. Furthermore, control in distributed pro-
grams is distributed; there are no central processes through
which messages are routed, nor are there control processes
which direct the operation of other processes. If there are
enough processors available, a distributed program may be
run on a loosely coupled system by running one process on
each processor. Distributed programs are likely to be in-
creasingly common in the future due to the rapid decline in
the cost of processing. In this paper, we develop a distributed
algorithm for solving a class of simulation problems.

B. An Overview
The Physical System or the System to be Simulated

We consider physical systems in which processes communi-
cate exclusively through messages. A process may decide to
send a message at any arbitrary time t > 0. Whether a message
is sent out at t or not depends only on the messages received
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by the process up to t. The contents of the message sent out
by a process at t, if any, also depend only on the messages
received by that process up to t. Note that the output mes-
sages of a process may depend both on the content and on the
times at which messages were received by the process. Ex-
amples of such systems are job shops (where messages are
jobs), data base systems, and communications networks.

The Logical System (Simulator)

Each process in the physical system is simulated by a sepa-
rate logical process. We use the term LP for logical process
and PP for physical process. The logic of an LP depends only
upon the PP that it is simulating; it is independent of the rest
of the physical system. We place no restriction on the logic
of any PP provided it can be simulated. There is a communica-
tion line from the ith LP to the jzh LP in the logical system
(simulator) if and only if the izh PP sends messages to the jth
PP, in the physical system. Hence there is no central process
which controls synchronization among the various processes.
Note that this implies there is no variable, such as simulated
time, shared by all LP’s.

Asynchronous Behavior of the Logical System

The logical system is asynchronous: we place no restriction
on processor speeds. The key to achieving asynchronism in
the logical system is the encoding of physical time as a part
of messages communicated among LP’s. A message m sent
by the ith process to the jth process at time t in the physical
system is simulated by a message (t,m) from the ith LP to
the jth LP in the logical system.

The communication in the logical system can be based on
any protocol; in particular we consider a very simple protocol
which is easily implemented. This protocol was suggested in
a pioneering paper by Hoare [9] on distributed programming.

Simulation Through Encapsulation

The logic of each LP, in our solution, consists of two parts:
simulation of the corresponding physical process (determining
what messages go from one physical process to another, at
certain times) and communication with other LP’s (sending
tuples of the form (t, m) along certain selected lines and select-
ing lines on which messages should be received next). The
simulation of a physical process by its corresponding logical
process is totally independent of the rest of the system. In
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fact, if the physical process were a computing process, we
could create a logical process by calling upon the physical
process (with very slight changes in interface) to produce mes-
sages. We call this notion encapsulation; this allows us to
study the distributed aspect of simulation (message com-
munication, etc.) independent of the characteristics of the
physical processes being simulated. In particular, we can
use existing simulators of physical processes in developing
distributed simulations (see Appendix).

Deadlock Prevention without Global Control

A major problem in concurrent programming is to avoid
deadlock. In our system, deadlock is avoided without global
control and in a manner independent of the structure of the
network. Each process in the logical system can be thought
of as an elementary building block and arbitrarily complex
structures can be created by connecting elementary building
blocks together. Absence of deadlock in the resulting arbi-
trary structure results from the logic of each process even
though each process’s logic is independent of the overall struc-
ture of the network.

Minimal Memory Requirements

Any simulation algorithm must need at least as much mem-
ory as is required by the corresponding physical process; in
particular if the physical process produces its outputs based
on all inputs received so far, the simulator cannot in general
avoid storing the entire history of inputs. In addition to the
memory required for simulation of the physical process,
every simulator requires some extra storage, such as for the
“event-list” in conventional simulation. In the case of distrib-
uted simulation, extra storage is often required, particularly
for avoiding deadlock. It is easier [15], [16] to obtain dead-
lock free distributed programs if the LP’s have infinite amounts
of memory for storing arbitrary numbers of messages. Our
solution requires a bounded amount of extra storage for each
LP.

Correctness without Global Control

The correctness of the overall system is deduced even though
the logic of each LP depends only on the physical process that
it simulates and is otherwise independent of the system.

Proving Distributed Program Properties

All our proofs regarding the behavior of the logical system
have the following structure:
first: prove a property of each individual process in the
system assuming that all other processes in the sys-
tem satisfy that property;
second: use inductive arguments to prove that the system
as a whole satisfies this property.

Evaluation of Performance

The performance of our distributed program is discussed in
[13]. A problem with some distributed systems is that there
is such a large volume of communication traffic between pro-
cesses relative to the amount of computation required, that
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the time required to run the distributed program is not sig-
nificantly less than the time required to run a sequential pro-
gram. We show that the time required to run our distributed
program for the specific problem of queuing network simula-
tion is generally less than the time required to run correspond-
ing sequential programs. This efficiency is achieved since there
is no global process which could be a bottleneck.

C. Related Work*

The work reported here has been influenced by many other
pieces of work. Our approach borrows concepts from data
flow architectures proposed by Dennis [3], [4], problem de-
composition schemes of Dijkstra [5] and Wirth [14], and
interprocess communication of Hoare [9]. A subsequent
paper uses Hoare’s elegant notation to describe solutions for
a specific simulation problem.

An attractive proof technique for general parallel programs
has been presented by Owicki and Gries [11]. Since we work
with much more restricted programs our proofs are much
simpler; in particular our concurrent processes cannot interfere
with each other. Our proof of correctness has similarities
with Patil’s [12] work on determinism; however our absence
of deadlock proof is novel.

Hoare and Kaubisch [10] have proposed a method of dis-
tributed simulation using a central clock. Peacock, Wong,
and Manning [16] and Holmes [15] propose schemes for
distributed simulation without using central clocks on specific
existing architectures. Both the schemes require buffers of
unbounded length to guarantee absence of deadlock.

A more detailed tutorial version of this paper including
several examples may be found in [17].

D. Overview of the Paper

In Section 11, the class of physical systems is described, for
which distributed simulation algorithms will be given. In Sec-
tion I, the algorithm for each logical process in the distrib-
uted simulation solution is given. An explanation of the algo-
rithm and some of its properties are described intuitively in
Section IV. Section V contains some preliminary empirical
results on the performance of the algorithm.  The reader can
get an intuitive idea of the algorithm by studying these four
sections.  Section VI contains proofs about correctness,
absence of deadlock, and termination properties of the dis-
tributed solution. The reader, who is not interested in proofs
and proof methodology, may skip Section VI. The Appendix

tRecently, it has been brought to our attention that R. E. Bryant
has independently developed the idea of distributed simulation. His
work appears in “Simulation of packet communication architecture
computer systems,” MIT/LCS/TR-188, MIT, Nov. 1977. The most
important difference between our work and his work is that he assumes
that a logical process is able to output a message whenever it wants to.
This implies that 1) processes would require buffers of unbounded
length and 2) the only possibility of deadlock arises when all processes
in a loop wait for input, which can be easily shown to be impossible.
We however require that a logical process must wait to input/output to
another process until the second process is ready to output/input. This
leads to memory requirements which are bounded. Furthermore our
algorithm is constructed differently and the absence of deadlock proof
is considerably more involved,
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contains a detailed description of the encapsulation of physical
processes.

II. THE PHYSICAL SYSTEM
A. Introduction

We shall simulate a system of N processes which communi-
cate with each other exclusively through messages. Let the
processes be indexed 1,---,N. This system will be repre-
sented by a directed graph G of N vertices {vy, " VN
where v; represents process i. There will be an arc from v;
to v; if and only if process i sends messages to process j. We
will not allow a process to send messages directly to itself
because that effect can be achieved by a process looking at
its own computation.

At any given time t, a process i may decide to send a mes-
sage to another process j; the decision to send the message and
the message content are determined uniquely by process i’s
(internal) logic and by the messages it has received so far.

The actual time spent in transmitting a message from process
i to process j is assumed to be zero. (If it is important to
simulate the fact that process i takes some time T > 0 to send
a message to process j, we shall assume that process i spends
zero time in initiating the message send, and then spends T
time units without carrying out any other function. Similarly
if it is important to simulate the fact that process j takes some
time T > 0 to receive a message, we shall assume that it spends
zero time in initiating the receive and then spends T time units
without carrying out any other function.)

A system is simulated for some time period [0,Z] where Z
is referred to as the termination time. During this time, any
process sends a finite number of messages (or more accurately,
initiates a finite number of message sends) to other processes.
Let some process p; send some other process p;, messages at
some instants t;, -, tg, where

0<t; < - <tg<Z )

We restrict attention to systems in which some time must
elapse after a process sends one message before it sends another.
We do not lose generality due to this restriction because there
do not exist systems in which a process i can generate and
transmit two or more messages to another process j in arbi-
trarily small time. We assume that there exists a prespecified
positive constant e, such that

tg = tg-, >€e for k=2,--- K (2)
Let my be the kth message sent from process i to processj,
k=1, -+,K. The stream of messages from process i to pro-

cess j is described by the tuple sequence for arc (i, j):
Sij = ((tls ml): T, (tK7 mK)) (3)

The message history of arc (i,j) at time t= 0, hy;(t) is de-
fined to be the following initial subsequence of s;;:

() if t; >t
Sij if t>tK

((ty, my), -, (t, my))

“

if e <t<tysy

h;;(t) =

for k=1,---,K-1
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Thus the message history of arc (i, j) at t is the sequence of all
tuples (t, m) corresponding to messages sent at or before t;
this history is a complete specification of messages transmitted
along arc (i,j) at or before t. For convenience, we define
hy;(t) to be () for all t, if there is no arc (i, j).

We restrict attention to systems where the output of a pro-
cess at time t depends solely upon the messages received by
the process at or before t. All physically realizable systems
meet this assumption.

From this restriction it follows that there exists a function
f;; such that

hy;(1) = f35(t, hy (1), -+ -, hna (1)

B. Predicting Future Qutput from Current Histories

In some cases it is possible to deduce the histories of mes-
sages that will be sent by a process i to a process j up to some
time t' solely from the histories of messages received by pro-
cess i up to some earlier time t. In this case, messages (if any)
sent by process i to process j in the interval (t, t") are inde-
pendent of messages received by process i after t. We define
lookahead for the arc (i,j) as t’ - t. The value of lookahead
depends only upon t, and the message histories obtained by
processiat t. Formally,lookahead for arc (i, j) is the function:

Lij(t, hyi (1), - -+, hg (D) =t - t 6

We assume that the functions Lj;( ) are computable, and in the
simulation we will compute this function for several values of
t and hy;. For brevity we shall not show the explicit depen-
dence of Ly; on the input histories and we use the short form

t' is the point to which the output of process i to process j
can be predicted given the input histories up to time t. Let
t” be the point to which this output can be predicted given
the input histories up to some later time t + A (where A > 0).
We make the reasonable assumption that

&)

tII > tI
ie.,
(t+A)+Lij(t+A)>t+Lij(t) 7

In other words, additional input information cannot reduce
the point to which the output can be predicted.

Equations (5) and (6) imply that there exists a function Fj;
where

hy;(t+ Li(9) = Fy5(t, hys (1), -+ b (1)

We assume that the Fj; are computable.

(®

C. The Predictability Property

If the graph representing the system of processes has loops,
the information input to a process i may be a function of the
information output from that process. If the input to process
i at t is a function of the output from it at t, and if the output
from it at t is a function of the input to it at t, we have a
circular definition where the information input to process i
at t is a function of itself. To avoid such a situation we re-
strict attention to systems where in every loop there exists
an arc (i, j) with



CHANDY AND MISRA: DESIGN AND VERIFICATION OF DISTRIBUTED PROGRAMS

Lij(t)>e€ &)

for all t, where € is the prespecified positive constant defined
in (2). We call such arcs (i, j), predictable arcs.

Note that L;;(t) is a property of process i and the messages
it receives, and is otherwise independent of the system. Look-
ahead is a local property. On the other hand predictability is
a system property because it depends on how processes are
configured into a system.

D. Source and Sink Processes

It is helpful to identify two special types of processes:
sources and sinks. A source process is one which sends mes-
sages to other processes but does not receive messages from
other processes. A sink process is one which receives mes-
sages but does not send any. We shall not consider processes
which neither send nor receive messages.

II1. THE LoGicAaL SYSTEM

. A. Introduction

We are given a physical system of N processes. Graph G
(see Section II) represents the topology of information flow
between processes. We simulate this system by a network of
N processes: vy, *,Vn. To distinguish between processes
in the physical system and processes in the simulator we refer
to the former as physical processes (PP) and to the latter as
logical processes (LP); the ith LP simulates the izh PP. In-
formation is transmitted from LP i to LP j if and only if PP
sends messages to PP j. For purposes of exposition it is con-
venient to assume the existence of an imaginary communica-
tion channel from LP i to LP j in such a case: this channel
will be referred to as line (i, j).

LP’s communicate exclusively be sending messages to one
another; an LP does not have shared variables with any other
LP. The communication in the logical system can be based
on any protocol. In this paper we assume a very simple
protocol: a message is sent from LP i to LPjif and only if
LPiis ready to send the message and LP j is ready to receive
it. We assume the existence of an implementation which
ensures that messages are transmitted correctly between
LP’s. These protocols were presented by Hoare [9] who
developed an elegant language to describe communication
between processes.

The only aspect of the physical system that is of interest
to us is the sequence of messages communicated between
physical processes. Fach event PP i sends PP j a message m
at time t’is simulated by LP i sending LP j a 2-tuple: <t,m>.
All messages between LP’s will be 2-tuples, <t,m> where
0<r<7Z and m is either a message sent at time t in the
physical system or is a special symbol: NULL, which does not
occur in the physical system.

Definition: For a tuple <ty,my>, ty is called the f-value
of the tuple and m, is cailed the m-value of the tuple.

B. Description of Tuples Transmitted by Logical Processes

Let s;; be the tuple sequence describing messages sent from
PP i to PPj. [See (3).] Let the sequence of messages sent
from LPito LPj, in the simulation, be

S = ((T1, My), -, (Ty, Mp)) (10)
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We will establish in Section VII that (11)-(15) hold;these equa-
tions are concerned with the correctness of the simulator.
There exist constants A and B (independent of Z) such that

I<AZ+B (11)

That is, the number of tuples sent on any line in the simulator
is bounded by a linear function of Z.

0T, <T, <---<T,<Z (12)

That is, the sequence of tuples sent from one LP to another
are in strictly increasing order of t-values.

(tx, my) € 855 = (ty, my) €8y

(13)
That is, every tuple in s;; is also in S;;; thus we will simulate
every message from PP i to PPj.

(Ty, My) €8y5= [(Ty, My) €s;5 or My =NULL]  (14)

That is, the only tuples in S;; which are not in s;; have NULL
m-values. LP i sends LP j a tuple <t,m> where m is not
NULL if and only if PP i sends PP j the message m at time t;
in addition to these tuples LP i may send LP j an arbitrary
(though bounded) number of tuples with NULL m-values.

T,=2 (15)

That is, the last tuple sent from one LP to another must have
a t-value equal to the termination time.
C. Specification of Tuple Histories

We shall define a history of tuples along line (i,j) in the
logical system in a manner analogous to the definition of the
message history for arc (i, j) in the physical system [see (4)].

Let S;; be a sequence of tuples as defined in (10)

() if t<T,
((Tl)Ml)a T, (TraMr))a where
T, <t andeither r=1 or t<T,,;.

Hij (t) = (16)

hy;(t), the history of messages from PP i to PP j at time t
[see (4)] isobtained by removing all tuples with NULL m-values
from H;;(t). Hence, when LP j receives a tuple <Ty, My>
from LP i, LP j knows that it has obtained a complete specifi-
cation of the message history from PP i to PP j at Ty ; note that
this statement is true regardless of whether My is NULL. Thus
the purpose of tuples with NULL m-values is to extend the
times up to which message histories are known.

D. Predicting Output Information from Specifications
of Message Histories

Define Ty; as the t-value of the last tuple transmitted along
line (k, i) and if no tuple has been transmitted along that line
set Ty; to 0. We shall refer to Ty; as the clock value of line
(k,i). The clock value of line (k, i) is the point in physical
time up to which the line (k,i) has been simulated by LP
kand LPi.

Let TIN; = mini}r(num Tyi (17
Then LP i knows that it has a specification of all inputs to PP
i up to time TIN; and hence LP i can determine [see (8)] all
the messages sent from PP i to PP j up to time
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TOUT;; = TIN; + Ly;(TIN;) (18)

From (7) it follows that increasing TIN; will not decrease
TOUT;;. Note that TIN; and TOUT;; are undefined for source
and sink, respectively.

E. Input/Output (I/O) Operations in the Logical System

We are only interested in messages transmitted in the physi-
cal system and in tuples transmitted in the logical system.
Hence we focus attention on the I/O’ carried out by each
LP. The simulation can be described by sequences of 1/O’s.

An I/O operation is the receiving/sending of one tuple
along a line. Recall that an I/O operation takes place only
when an LP at one end of a line wants to receive/send a tuple
along that line and the LP at the other end of the line is
ready to send/receive a tuple along that line. Note that an
LP may have to wait to receive/send a tuple if the LP at the
other end of the line is not ready to send/receive. In some
cases an LP may wish to carry out (and if necessary, wait)
simultaneously for I/O operations on several lines. In such
cases, the individual 1/O operations are carried out in a non-
deterministic order. The composite operation consisting of
I/O operations on one or more lines, in the above manner, is
called a parailel I/O operation. The parallel I/O operation
is completed when all its component individual I/O operations
are completed.

Simulation Overview

After the initialization, the simulation algorithm for each
LP i repeats the following sequence of steps until zermination.

1) (Selection): Select the set of lines NEXT;, on which the
1/O operations will next be carried out in parallel. NEXT;
may contain only input lines or only output lines or both.

2) (Computation): For every output line in NEXT;, de-
termine the next tuple to be transmitted along that line.

3) (I/O operation): Carry out the parallel I/O operation
for all lines in NEXT;.

For the source LP, there are no input lines and hence the
sequence of output messages is determined @ priori. The
source follows steps @), @), 3 exactly like any other LP.

1) Selection

Recall from the definition of TOUT; [(18)] that it is pos-
sible to predict the output tuples on the line (i,j) with t-
values up to TOUTy;. If,

TOUTy; > Tj;

then LP i can send more tuples along line (i, j) without wait-
ing for additional input; such an output line is said to be
open. Let

(19)

Ti = minimum (Tij: Tki)
forall j, k

T; will be called the clock value of LP;; this value is the mini-
mum t-value over all incident lines on LP i; T; represents the
point in time up to which LP i has simulated PP i. Let

I\T:E‘:X:T1 = {k‘Tkl = Tl} U {] ITU = Ti and TOUTU > TIJ}
(20)
Thus NEXT; is the set of all input and open output lines
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with clock values equal to the clock value of LP i. LP i will
carry out I/O operations on all the lines in NEXT;.

The t-value of a line is the point in (physical) time to which
the line has been simulated by LP’s at both ends. The LP
clock value is the point in (physical) time to which the cor-
responding PP has been simulated. The goal of the algorithm
is to move the LP clock value forward. This goal forces us to
wait on at least all the lines in NEXT;. We show later that this
definition of NEXT; avoids deadlock. Furthermore, we show
in the Appendix that memory requirement is bounded for
each LP, due to this definition of NEXT.

Note that for an output line (i,j) for which TOUT;; =Ty
the line has already been simulated up to TOUT;; and hence
no further tuples can be sent along that line until TOUT;; is
increased. Hence such lines cannot be included in NEXT;.

2} Computation

The following algorithm shows the steps taken in com-
puting the next tuple to be sent along an output line (i, j),
where j ENEXT;. Recall that j € NEXT;, where (i,j) is an
output line, if T;; <TOUTj;.

Algorithm (III-E-2):

{Given line (i, j), j € NEXT;, compute the next tuple (t, m)

to be output along (i, j)}.

1) From TIN;(= miny Ty;) and all the input histories up to
TINI, compute hU(TOUTU) by (8), le, hu(TOUTu)=
F(TIN; hy; (TINg) - - -, hyys (TINg)).

This is computable since Fy; is computable. Details of com-
puting Fj;( ), which amount to simulating the corresponding
physical process, are explained in the Appendix. The correct
computation of Fj; implies that hy(TOUTy;) is correct if
h;(TIN,), - - -, hy; (TIN;) are correct.

We now consider the following two cases for computing the
next tuple (t, m).

Case 1: hU(TlJ) #* hij (TOUTU)

This implies that PP i sends a message on line (i,j) in the
interval (Tij’ TOUTU] .

If PP i sends out the sequence of messages my,my * - at
times t;, t; - - - in the interval (T;;, TOUT;;], then set (t, m) =
(t1, my).

Case 2: hij(Tij) = hu(TOUTU)

This implies that PP i does not send any message on line
(1,]) in the interval (Tij,TOUTij]. Set (t,m) = (TOUTij,
NULL).

Note:

1) Ty <t<TOUTy

2) Following the output operation (discussed next), Tj;
would be increased to t computed in this step. Tj; is in-
creased to TOUT;; following output of a tuple with NULL
m-value.

3) Case 1) computes only (and all) non-NULL m-values and
Case 2) computes only (and all) NULL m-values.

3) I/O Operation

This step of the algorithm consists of waiting in parallel to
input/output along the selected lines in NEXT; and updating
the clock value and value of the last message on every such line.
If (1, m) is the tuple seceived or sent along line (1,7) as a result
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of the I/O operation, then the corresponding line clock value
is increased to t and the value of the last message is updated
to m, immediately following transmission of this tuple.

4) Initialization

The local data maintained by LP i are the following: (Ty;,
My;), for each input line (k, i) denotes the tuple last received
on this line at the beginning of the selection step. Initially
this is set to (0, NULL), which indicates that the line has been
simulated up to time 0. Similarly (Tj;, M;;), maintained for
each output line (i, j), denotes the tuple last transmitted on
that line at the beginning of the selection step; this is initially
(0, NULL). Let (NEWT;;, NEWM;;) denote the next tuple to
be transmitted along line (i,]); these temporary variables are
maintained for every output line. Algorithm II-E-2 computes
(NEWT;;, NEWM;;) whenever j € NEXT;. Furthermore, Tj,
the clock value of LP i, is also maintained; this is set to O
initially.

5) Termination

Since it is required that the simulation should proceed up to
Z, the LP should repeat the steps of Section HI-E (selec-
tion, computation, and I/O operation) as long as the clock
value of the process is less than Z. For simplicity, it is prefer-
able to have the clock value of every line to be Z at the termi-
nation of the simulation. There is a possibility that the next
tuple (t, m) to be output on some line (i,j) may have t > Z.
In such a case, the LP outputs (Z,NULL) along that line,
This is a correct output, since in the physical system no mes-
sage is sent along (i,]) in the interval (Ty;, Z). Furthermore,
this must be the last output along that line, since the line
will never be selected again.

F. Summary of the Algorithm for Logical Process i
Algorithm (III-F):

{Initialization}
Tij = 0; Mij = NULL, for every j;
Ty = 0; My, := NULL, for every k;
T =05
while T; < Z do
{selection}
NEXTi 1= {k‘Tki = Ti} U {leij
{computation}
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IV. INTUITIVE EXPLANATION OF THE ALGORITHM

We will show in a later section, that any network of logical
processes each of which executes the algorithm of Section
II-F, is correct, deadlock free, and terminates properly. In-
tuitive definitions of these terms and some of the difficulties
in proving these facts for arbitrary networks are sketched out
in this section.

We say that a sequence of tuples is chronological if succes-
sive t-values strictly increase. If the logical system correctly
simulates the physical system, it must produce a chronological
sequence of tuples whose m-values are non-NULL. It is not
obvious that the proposed algorithm does so; we shall formally
prove this property in Section VI. The sequence of tuples
produced on line (i,j), Sy;, is correct if it matches the cor-
responding sequence s;; in the physical system, upon removing
the tuples with NULL m-values from S;;. The proof of cor-
rectness of the logical system will be established in two steps:
we will first show that every individual LP is correct, i.e, it
produces correct output on every line given correct input on
every line at any point in simulation; we next show that any
arbitrary interconnection of correct LP’s results in a correct
overall system.

We also show that our system is deadlock-free, i.e., irrespec-
tive of the sequence in which various I/O operations in the
system are executed, there is always an I/O operation that
can take place; in other words there will never be a set of
processes which are waiting for each other. This problem, a
serious one in any distributed program, was avoided by care-
ful selection of the lines on which the next I/O operation
may take place.

Absence of Deadlock

An intuitive explanation of the proof of absence of dead-
lock is as follows. Suppose deadlock occurs, then consider

=T; < TOUTij};

for every output line (i, j) where j € NEXT; do
compute next output tuple (NEWTij, NEWMij); {algorithm (III~E-2)}

if NEWTij > Z then (NEWT;;
endfor;
{1/O operation}

ij

NEWM;;) := (Z, NULL) endif

Do the operations 1 and 2 in parallel:

1. for every output line (i, j), j € NEXTj, wait to output

(NEWT; i

NEWMIJ) and set (Tij’ MU) to (NEWTij, NEWM”)

immediately following transmission of the tuple and

2. for every input line (k, i), k € NEXT;, wait for input and then

set (Ty;. My;) equal to the incoming tuple on line (k, 1);
{compute T;: the clock value of the process}

Ti .= minimum (Tki7 Tij}
ik
endwhile
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i, is waiting to output to i

k
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k+1

i ,".O( \1 is waiting for input from 1

O—/—g /Z@o
A

Fig. 1. A pseudoloop of waiting processes in case of a deadlock.

any LP i, that is waiting to carry out either an input or
output operation; let i; be the LP for which it is waiting.
Similarly let i, be the LP for which i; is waiting. In gen-
eral let i;., be the LP for which i, is waiting. Continuing
in this manner, we must repeat an LP since the network is
finite. [t is instructive to consider the sequence of LP’s so
computed and their waiting relationships. There is a line
(ig.ig+1) if iq is waiting to output to igsq; there is a line
(ig+1, ig) if iq is waiting to input from ig.,. The set of LP’s
and the lines as given above constitute a pseudoioop of the
form in Fig. 1.

We will show that Tiq = Tiq +,- Hence all the process clock
values in this pseudoloop must be identical. Furthermore, we
will show that if ig is waiting to output to ig.; then Tiq >
qu+ ,- Hence no such line (iq,qu) can exist. Thus the
pseudoloop can only be a loop in which every LP ij is waiting
to input from ig,;. The loop must contain a predictable line
(Section II-D) and we will show that in such a case, waiting of

the above form is impossible because Tiq > Tiq+ , in this case.

Termination

It may seem that a proof of correctness of output and a
proof of absence of deadlock are sufficient to establish the
correctness of the entire logical system. This is not so: it is
likely that the simulation may never terminate if tuples are
output with an arbitrarily small increase in t-values. In par-
ticular, in the example of Fig. 2, an infinite sequence of tuples
can be output by process 1, each of which has a t-value strictly
less than 1. This possibility arises since we allow t-values to be
arbitrary real numbers, and an unbounded number of NULL
m-values.

Assume that LP 1 outputs (t; + (1/2}), NULL), for the ith
output tuple and LP 2 simply transmits (t, m) from input to
output. Then the successive t-values on line (1,2) are 1/2,
1/2 + 1/4 - - - and hence can never reach any Z 2 1.

We show that such a situation is impossible and that every
simulation will terminate in a finite number of steps.

Reason for NULL m-values

It is not obvious from the algorithm why a NULL m-value
is useful: whether it is for efficiency alone (to move the clock
value of the line as far as possible) or strictly required for cor-
rect operation of the system. We show in the example of
Fig. 3 that deadlock is possible in the logical system if no
tuples with NULL m-values are output. In fact deadlock is
possible even in an acyclic network in such a case.

(1,m) : :

(0,NULL)

Fig. 2. A simulation that never terminates.

Fig. 3. An acyclic network that may deadlock.

Assume that in the physical system, the source produces
messages my, m,, ms at times 50, 100, 150; PP 1 outputs
messages m;, m,, ms to PP 2 at times 50, 100, 150. PP 2
processes these messages and outputs m;, m,, ms to PP 3
at times 55, 105, 155, We show that if no tuples with NULL
m-values are sent to LP 3 from LP 1 then the logical system
deadlocks. Consider the sequence of steps in the logical
system.

1) Source outputs (50, m;) to LP 1.

2) LP 1 outputs (50, m;) to LP 2.

3) LP 2 outputs (55, m,) to LP 3.

{LP 3 is now waiting for input from LP 1 alone}

4) Source outputs (100, m,) to LP 1.

5) LP 1 outputs (100, m,) to LP 2.

6) LP 2 waits to output (105, m,) to LP 3.

7) Source outputs (150, m3) to LP 1.

8) LP 1 waits to output (150, m3) to LP 2.

At this point LP 3 is waiting for LP 1 which is waiting for
LP 2 which is waiting for LP 3.

This deadlock is avoided in our algorithm by LP 1 sending
(50, NULL), (100, NULL), (150, NULL), etc., to LP 3.

What Happens When the Physical System Deadlocks?

It is interesting to note that the logical system never dead-
locks: when the physical system deadlocks, the logical system
continues computation by transmitting tuples with NULL m-
values only and increasing t-values. This correctly simulates
the corresponding physical situation in that while the time is
increasing, no messages are being transferred in the physical
system. Ultimately, the simulator will terminate with the
clock value of every line at Z.
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Choice of NEXT;

The selection of lines NEXT;, on which the next set of
parallel operations are carried out in LP i, is crucial to the
memory requirement of LP i and the absence of deadlock
in the system. If waiting is permitted on a different set of
lines, which does not include NEXT; as a subset, it can be
shown that deadlock may arise. Hence LP i must wait on
at least all the lines in NEXT;.

If waiting is permitted on a superset of NEXT;, for instance,
on all input and output lines in each I/O operation step, then
memory requirements become severe.

Taking Snapshots in a Distributed Simulation

Another interesting aspect of the algorithm is that a “snap-
shot” taken in the logical system does not in general cor-
respond to any snapshot in the physical system. This is
because the different lines have different line clock values,
in general, indicating that they have been simulated up to
different time instants. The proposed algorithm differs
radically in this respect from conventional simulation algo-
rithms. Note that it is possible to obtain a snapshot of our
distributed system in the following way: each LP takes a
snapshot of itself when its t-value is equal to the snapshot
time t; the composite of all these process snapshots is the
system snapshot at t. Use of snapshots in computing queuing
statistics is described in [1].

V. PERFORMANCE ANALYSIS

We are in the process of empirically evaluating the per-
formance of the suggested algorithm. In the absence of a
distributed system of CPU’s, we have been forced to simulate
the logical system on available uniprocessor systems at the
University of Texas. The physical system consists of a queuing
network whose elements are sources, sinks, forks, merges, and
queues. The logical process corresponding to fork or merge
was assumed to take a third as much time as a queue process.
A more efficient variant [13] of the algorithm was coded in
Pascal. Preliminary performance results appear below.

Case 1) A Tandem Sequence of N queues:

Empirical observation:

Turnaround time with N processors __ 1N
Turnaround time with 1 processor

Empirical studies were conducted for N = 2,3, and 4, with
1000 jobs, which confirm this formula.

Case 2} Physical System Shown in Fig. 4.

Empirical data were generated where each branch of the
fork was chosen with equal probability and 1000 jobs were
run through the system.

Empirical observation:

Turnaround time with 6 processors _ 2055

Turnaround time with 1 processor  7000°

These results are encouraging. Thus turnaround time is re-
duced to 30 percent of its value by multiprocessing. Ideally,
turnaround time should be reduced to % of its value since six
processors are being used; in this sense, the utilization of
processors is low. However, as mentioned earlier, t

in-
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QUEUE
FORK MERGE
]l
SOURCE :; SINK
QUEUE

Fig. 4. An example of a physical system.

creasing availability of processors makes it inappropriate to
consider processor utilization as the key performance metric.
Turnaround time is the only metric of interest.

Fifteen other loop-free examples have been evaluated [13]
which show that the distributed algorithm is significantly
faster than the conventional sequential one. The examples
are not included here for purposes of brevity. Evaluation of
networks with loops is proceeding.

VI. Proor oF CORRECTNESS OF SIMULATION

In order to show that the proposed network of LP’ cor-
rectly simulates the physical system, we have to prove (11)-
(15). We divide the proof into the following four parts: 1)
chronology of the tuple sequence, 2) correctness of every
tuple sequence at any point in simulation, 3) absence of dead-
lock, and 4) termination of simulation. Each of these four
proofs has two parts to it: proving certain facts about an
individuai LP from algorithms in Sections II-E-2 and II-F
and then proving the desired property of the system based
solely on the properties proved about individual LP’s.

This proof methodology of dividing the proof into a local
proof about individual LP’s and a global proof based only on
the properties shown in the local proofs hasthe following im-
portant implications.

1) The algorithm for one or more LP’s could change with-
out affecting the global proof and hence global correctness,
provided the new algorithms have the same properties (as the
old ones). Hence redesign of the system is straightforward.

2) The task of proving is considerably simplified in that in-
ternal details of processes are unnecessary for proving global
properties. Local proofs abstract the relevant properties
which are necessary for global proofs.

3) In the class of distributed programs that we have con-
sidered, correctness and chronology follow simply by showing
that every individual process is correct and has the desired
chronology properties. For a large class of properties, it is
possible to show using induction that if individual processes
possess these properties, then the system as a whole possesses
these properties.

A. Chronology

We show that every sequence of tuples transmitted along
any line has strictly increasing t-values, ie., the sequence is
chronological.

1} Process Chronology

Theorem 1: Consider any LP i at any point in the simula-
tion. If every input sequence to i is chronological, at that
point, then every cutput sequence is alsc chronological.

Procf: We show that for any output line i, j of i, (NEWTy;,
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NEWM;;) computed in the computation step of the algorithm
in II-F must have NEWT; > Tj;. t computed for line (i,j)
in algorithm III-E-2 has, from the note, t>Tj;. Further-
more, Ty =T; since jENEXT; and T;<Z from the loop
iteration condition in algorithm III-F. The computation step
sets NEWT;; to minimum (t,Z). Since both of these exceed
Tij, NEWT;; > Tj; following the computation step. Following
the I/O operation step, T;; equals NEWT;; and hence every
output sequence is chronological.

Note: This proof shows that any output sequence is chrono-
logical even if the input sequence is not chronological. This
may be used to prove system chronology (Theorem 2) trivially.
We, however, prefer to use the weaker property of the pro-
cesses stated in Theorem 1—this will permit us to interconnect
any network of processes satisfying this weaker property and
still achieve system chronology.

2) System Chronology

We assume that the source produces a chronological se-
quence of tuples.

Theorem 2: At any point in the simulation, the sequence
of tuples along any line is chronological.

Proof: This theorem may be proven by induction on the
number of times that an I/O operation takes place in the sys-
tem. The proof is analogous to that of system correctness
(Theorem 4) and hence is not repeated here.

B. Output Correctness

We show that the sequence of tuples transmitted along any
line, at any point in the simulation is correct.

Recall definitions of hyj(t) [(4)] and Hjy(t) [(16)]. Define
H;;(t) to be correct with respect to h;;(t), denoted by H;;(t) =
hy;(t), if and only if,

(ty, my) € hy;(t) = (tx, mg) € Hy(t)
(Ti, My) € H;(t) = (Ty, My) €hy(t) or My =NULL

(22)

D

Note that (13)~(15) merely assert that
Hj; @)= hij (2), for every line {,j)-

1) Correctness of Process Qutput

The following theorem establishes the correctness of the
output of an LP at any point in the simulation given that it
has received correct inputs up to that point.

Theorem 3: (Correctness of Process Output)

Consider any LP i at any point in simulation. Assume that
it has received correct input on every line up to that point;
ie., forevery k,

Hyi (Tki) = hyei(Tks)-

Then every output sequence produced so far is correct;ie.,
for every j,

H;;(Ty;) = hy(Ty)-

Proof: We use induction on the number of iterations e
of the loop in algorithm HI-F.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 5, SEPTEMBER 1979

When e = 0, T;; = 0 for all j (initial conditions).
Hij(O) = ( ), from (16)

h;5(0) = ( ), from (1) and 4).

Hence the theorem holds.

Now assume that the theorem holds after e iterations.
Consider the program point immediately following the com-
putation step in algorithm III-F at the (e + 1)zh iteration:

Hy;(Tx;) = hyi(Ty;) for all k, from conditions of the theorem.
H;;(T;;) = hyy(Ty;), for all j, from the induction hypothesis.

For any output line (i,j), we consider the following three
cases.
Case 1: hij(NEWTij) = hij (TU)

Then (NEWTj;, NULL) is output along line (i, j) and Tj; is
set to NEWTy; following the 1/O operation. This follows
directly from algorithm III-E-2, Case 2.

Hence at the end of the (e+ 1)th iteration, H;(Ty) =
h;;(T;;), using the induction hypothesis.

Case 2: hij(NEWTij) = (hij(Tij), (NEWTij, NEWMij)).

Then (NEWT;;, NEWM;;) is output along line (i, j) and
T;; is updated to NEWT;; following the I/O operation. This
follows directly from algorithm III-E-2, Case 1.

Hence at the end of (e + 1)tk iteration, H;;(Ty;) = hy(Ty;).

Case 3: hy;(NEWT};) is none of the above.

Then there exists (t', m’), t' <NEWT;;, in hy;(NEWTy).
This violates the operation of algorithm III-E-2, since NEWTj;
is set to the smallest t for which a (t,m) is in the history.
Hence this case is impossible!

Thus we can assert following the (e + 1)t/ iteration that,

H;;(Ty;) = hy(Ty;)-

Applying induction on e, the theorem is thus proven for
all e.

2) Correctness of System Qutput

Theorem 3 (correctness of process output) is not sufficient
by itself for system correctness since there may appear to be
a possibility that all outputs in a loop could be incorrect. We,
however, show that this cannot happen; i.e., at any point in
simulation all sequences transmitted along all lines are correct.

Simulation proceeds by LP’s executing their I/O operations
in an asynchronous fashion. At any point in simulation, many
LP’s may be in the process of executing their I/O operations
simultaneously. We define an LP i to be in a halt state if
T;>Z; ie., no computation or I/O operation takes place in
LPi. LPiisin await state if it is waiting for some I/O opera-
tion. LP’s i and j are waiting for each other if LP iis waiting
to output to LP j and LP j is waiting to input from LP i.

In a simulation run, the only events that we consider are the
transmissions of tuples. For any particular simulation run, we
may order the events in the sequence in which they occur in
that run and if more than one event happens simultaneously,
we order the simultaneous events arbitrarily; note that for
different simulation runs different sequences of events may
result. The actual instants at which the tuples are trans-
ferred are of no consequence; only the above ordering among
events is of importance.
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We formally define a simulation run R by a sequence of four
tuples:

R= ((tls my, i17j1) e (tka Ty, ik3jk) T (tr: My, irajr))

(23)
(ty, my, iy, ji) denotes that the ki event to happen in the
logical system (in the above ordering) is the transfer of the
tuple (t,my) along line (i, jx). Following the 1#h event,
all LP’s are in either halt or wait state and no further event
is possible; i.e., no two LP’s are waiting for each other. Note
that ty,; may be smaller than t; (provided (iy, jix) 7 (k+1»
jk+1)); this means that the logical system does not duplicate
the sequential behavior of the physical system; a snapshot
of the logical system taken after the k72 event may corre-
spond to no physical time instant since clock values of all
lines will not in general be identical.
Let R, denote the initial subsequence of R consisting of
the first e 4-tuples. Define R, to be correct if and only if
for every 4-tuple (ty, My, iy, ji), k< et

Hikjk(tk) = hikjk(tk) (24)
A simulation run R is correct if R, is correct for all e and
there exists (Z,m, 1,j) in R, for every line (i,j). The logical
system is correct if all possible simulation runs are correct.
(25)
Theorem 4: (Correctness of System Output)
For every simulation run R, R, is correct for ali e.

Proof: For any simulation run R, we show that R, is
correct for e=0, 1, -1. Proof is by induction on e. For
e=0, R, =( ) and hence the theorem holds trivially. Now
assume for any e>1 that R._, is correct. Then it is suf-
ficient to show for correctness of R, that,

Hi j (te) =hj ;. (te)

Consider the LP i, following the transfer of the tuple (t.,
me) from ie to jo. The history of outputs on line (i, jo) up
to and including the tuple (te, me}, ie., Hj j (te), is a func-
tion of the inputs received so far by i, i.e., inputs that appear
in R,_,. According to the induction hypothesis, these inputs
are all correct and applying Theorem 3 the corresponding
output on line {ig, je), L.e., H; ;. (te), is correct. Hence,

Hieje(te) = hieje(te)~

C. Absence of Deadiock

We show in this section that the logical system cannot stop
prematurely; ie., nc simulation run can stop {a simulation
stops when every process is in a halt or wait state and no two
processes are waiting for each other) unless every line’s clock
value reaches Z. Another fact that is proven in the following
subsection is that every line’s clock value reaches Z in a finite
number of simulation steps in every simulation run.

Call a line (i, j) WN line {waiting-nonwaiting} at some point
in the simulation if LP i is waiting to output LP j, LP jisnot
waiting for input from LP i, and both LP’s i, j are in 2 wait
state. This means that LP j is waiting for some other LP K,
K #1i. Similarly line {i,}) is NW (nonwaiting-waiting} at some

point in the simulation if LF { is not waiting to output to LP

iele
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j, LP j is waiting for input from LP i, and both LP’s are in a
wait state. NN and WW lines may be defined similarly.

1) Clock Values of Waiting Processes

Theorem 5: (Clock Values of Waiting Processes are Higher)
At any point in the simulation,

1) if (i,j) is 2 WN line then T; > T, and
2) if (i,j) is a NW line then T; <Tj, and
3) if (i, j) is NW line and is predictable then T; <T;.

Proof: We observe the following for any LP i which is in
a wait state.

a) If i is waiting on some line then the clock value of LP
i= clock value of this line.

b) If LPiisnot waiting on some input line (k, i) then,

T; < Ty

This follows from definition, if k & NEXT;. If k € NEXT;,
then i must have already read the input along (k,1) and is
now waiting on some other line. Prior to input along (k, i),
Ty; =T;. Foliowing input, Ty; has increased (system chro-
nology theorem) and T; has remained the same, since it is
still in a wait state. Thus the result follows in either case.
¢) If LP i is not waiting for an output line (i,j) then
T; <Tj;; using arguments similar to b). T; =Tj; is possible
whenj ﬁ NEXTI, if TOUTU = Tij-
We now use these observations in proving the theorem.
D (i,j) is a WN line.
From observation (a), T; = Tj;.
From observation (b), T; <Tj;.
Hence the result.
2) (i,3) is an NW line.
From observation (¢), T; < Tj;.
From observation (a), T; = Tj;.
Hence T; < T;.
3) If (i, j) is predictable and an NW line then,

TOUT; 2T+ Ly(TH > T,

Since LP i is not waiting on (i, j}, then either j € NEXT;,
ie., T; <Tjy, or j € NEXT; and output has already been
performed along (i, j) and hence T; <Ty;. Since T; =Ty
from observation a), the result follows.

2} Absence of System Deadlock

Define the logical system to be deadiocked, at some point
in the simulation if,

1) there exist one or more LP’s in 2 wait state, and

2) there are no two LP’s waiting for each other;if 2 LP’s
are waiting for each other a message will be sent from one
LP to the other and the simulation is not yet over.

Theorem 6: (Absence of System Deadlock)

The logical system is never deadlocked in any simulation
run,

FProof: Assume the converse. Then there isan LP i which
is in a wait state, If LP i is waiting on line (i, j) {or j, i) then
1P j cannot be in a halt state since one of its incident lines has
T;(Ty) <Z. Hence for every LP i which is in a wait state
there exists i such that either {i,1) is 2 WN line or (j, 1) is an
NW line {and j is in a wait state}.
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Hence, construct a sequence of LP’s iy,1; - where i, is
some LP in wait state and for every q, either (ig,ig.,) is a
WN line or (ig., iq) is an NW line (and iy ,, isin a wait state).
Since the number of LP’s is finite, there exist K, L such that
ik =ip. Let K, L be so chosen that all LP’s ig,q - - - iy are
distinct.

From Theortem 5, To=2Ty =2 Tg=2-2TL ="
Since Tx =Ty, Tg =Tgsy =+ =Tp. Call this common
clock value of processes T. If for some q, K<q<L, (ig,
ig+1) is @ WN line then Ty >Tg,, (from Theorem 5) con-
tradicting that Tq =Tg,,. Hence for every q, K<q<L,
(ig+1,iq) is an NW line. Thus the sequence ip,- " ,ig+1,
iq - -ig forms a directed cycle. From the predictability
property (Section 1I-D) there exists a predictable line (ig+y,
ig) in this cycle. Since (ig+1,iq) is an NW line and predictable,
it follows from Theorem 5 that T; q >T contradicting
that Tiq =Tiq+1-

Corollary: At the end of the simulation, every LP is in a
halt state.

iq+l

D. Termination

We show that after a finite number of steps, every simula-
tion run stops, i.e., every LP enters a halt state. Note that
absence of deadlock (Section VII-C) implies that there will
be no premature stopping; it does not rule out the possibility
of an infinite simulation where the clock value of some line
never gets up to Z.

1) Bounded Properties of Lines Incident on a Process

Theorem 7: Let 7 <Z be the clock value of any given pre-
dictable line (i,j) at some point in the simulation. Then no
more than 27/e tuples could have been transmitted along that
line up to that point in the simulation.

Proof: From (2) and the system correctness theorem
(Theorem 4), there can be no more than 7/e tuples with non-
NULL m-values transmitted along any line whose clock value
isT.

We next show that there can be no more than 7/e tuples
with NULL m-values transmitted along any predictable line
with clock value 7. (Note that no tuple with t-value O is
actually sent.) This is shown by proving the clock value
of a predictable line increases by at least e whenever a tuple
with a NULL m-value is output. More precisely, we will show
that, following the computation step in the algorithm of Sec-
tion HI.F, if

NEWT;; < Z and NEWM;; = NULL then NEWT;; > Tj; + €.
(26)

Since NEWT;; <Z and NEWM;; = NULL, it follows from
algorithm III-E-2 that .

NEWT;; = TOUT;;. 27
TOUT;; = TIN; + Ly (TIN;) [(18)]
> T;; + Ly;(T;;), this follows from TIN; > Tj;
since j € NEXT;
>T;; + €, if line (i, j) is predictable. (28)
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Equation (26) follows from (27) and (28). Hence in any in-
terval 7 <Z, there cannot be more than 7/e tuples with NULL
m-values transmitted along a predictable line (i, j).

Definition: A sequence of tuples along any line is linearly
bounded if there exist constants a, b such that for every 7,
0< 7<Z, there are no more than ar+b tuples in the se-
quence each of whose t-values is smaller than 7.

Note that Theorem 7 implies that the sequence of tuples
on any predictable line is linearly bounded.

Theorem 8: For any LP i, if all of its input sequences are
linearly bounded then all of its output sequences are linearly
bounded.

Proof: Let the LP i have I input lines indexed 1,2 ---1.
Since each input sequence is linearly bounded, for the kh
input line there exist constants ay, by such that no more than
a, T + by tuples with t-values smaller than 7 are received along
that line. Hence the total number of tuples with t-values
smaller than 7, received by this LP, do not exceed A7+ B,
where

1 1
A= Z ag B= Z bk-
k=1 k=1

For any output line (i, j), since TOUT}; is exclusively a func-
tion of input histories, it follows that TOUT}; cannot change
unless TIN; changes. Once a tuple (TOUT;;, NULL) has been
output, no more tuples can be output along the line (i,j)
unless TOUT;; changes (see algorithm III-F), i.e., unless TIN;
changes. Furthermore, every tuple with a NULL m-value is of
type (TOUT;;, NULL). TIN; changes only when messages are
received and this cannot happen more than A7+ B times and
hence there cannot be more than A7 + B NULL tuples on any
output line.

From (2) and the system correctness theorem (Theorem 4)
there can be no more than 7/e tuples with non-NULL m-values
on any line (i, j). Hence the total number of tuples along line
(i, j) cannot exceed (A + 1/¢) 7 + B. This proves the theorem.

O

2) Bounded Property of the System

Theorem 9: The sequence of tuples on all lines are linearly
bounded.

Proof: Proof is by contradiction. Consider any line (i, j)
whose tuple sequence is not linearly bounded. From Theorem
8 it follows that there exists an input line (k,i) to i whose
tuple sequence is not linearly bounded. Continuing in this
manner, we must either reach a source (contradiction) or
form a loop. Since every loop has at least one predictable
line, this loop must have at least one line with a linearly
bounded sequence (Theorem 7). Contradiction!

E. System Correctness

Recall that the system is defined to be cormrect if every
simulation run is correct and every simulation run ends with
clock value of every line at Z. We have shown correctness
of system output (Theorem 4), absence of deadlock (Theorem
6), and a bounded property of sequences (Theorem 9) for
every simulation run. Combining these results we prove sys-
tem correctness.
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Theorem 10: (Termination) ‘
The clock value of every line reaches Z in a finite number
of steps in any simulation run.

Proof: Theorem 9 implies that the sequence of tuples on
every line is linearly bounded. Hence, there exist constants
A and B such that the sequence for any line can have no more
than AZ + B tuples. Thus 1, the length of the simulation run
cannot exceed (AZ + B) X (number of lines in the system).
Hence every simulation terminates (in a finite number of
tuple transmissions), From the corollary to Theorem 6
(absence of system deadlock), it follows that no simulation
run can terminate with the clock value of any line smaller
than Z. This proves the theorem.

Theorem 11: The logical system is correct.

Proof: Combining Theorem 4 and Theorem 10, the result

follows.

APPENDIX
ENCAPSULATING THE PuYSIiCAL PROCESS

We have noted in the Introduction that we observe two
distinct aspects in the simulation of a physical system.

1) Simulation of individual physical processes (which cor-
responds to computing (t,m) in algorithm III-E-2) which
effectively simulates the computation of Fj;( ) as defined in
(8), for every (i, ).

2) Selection of lines for input and output operations and
the actual I/O operations which have been described in algo-
rithm HI-F and whose correctness has been demonstrated in
Section VI, '

The outcome of such a separation is that design and correct-
ness proofs of 1) and 2) may be carried out independently.

We now discuss methods for simulating individual physical
processes.

Definitions: Recall that s;; is the tuple sequence of arc (i, j)
in the physical system [see (3)]. Let

sij = ((t1, my), -+ *, (g, M) (A1)

Define INFORM;;(t), the information on physical arc (i, j)
at time t, as the message (if any) being transmitted on that
arc at t, and as NULL if there is no message on arc (i,j)
at t.

if t#t5,q=1,---,K

(A2)

NULL
INFORM;; () = {

mg if t=14

Define hy(t’, t"), for t" >t the history of messages on arc
(i,}) in the interval (t',t"], as the tuple sequence on arc (i, j)
in that interval. Formally, h;;(t',t"), with t" >t' is that
tuple sequence, such that

hy; (1)), hy (1, ") = hy(t")

where ”,” represents the appending of two tuple sequences.

We define h(t, t) = INFORM;;(t, t). Let STATE;(t) be the
state of the physical process at time t; we assume that the
state at t+, the instant after t, depends only on the state at
t and the information received by the process at {. Similarly,
the output from process i at t depends on the state of pro-
cess i and the information received by processiat f. Let

(A3)
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STATE;(t+) = b;(STATE;(t),
INFORM;(t), - -, INFORMp; (1)) (A4)

and

INFORM;;(t) = ¢;;(STATE;(t),
INFORM;(t), - - -+, INFORMy; (1)) (A5)

Note that the number of states may be potentially infinite.
We also assume the existence of computable functions D;;
and Cy; such that

Lij(t) = DU(STATEI(t), INFORM“(t), RN INFORMNl(t))
(A6)

hij(ts t+ Llj(t)) = CU(STATEI(t),
INFORM,;(t), - - , INFORMy; ()

(A7)

In other words the lookahead value at any time on any arc
(i,}), and the message history on that arc between the cur-
rent time and the point to which the process can look ahead,
is computable from the state of process i at the current time
and the information received at this time.

For simulating the physical system we assume the existence
of a computable function B;( ), such that for any two times
t'and t', where t' <t”,

STATE;(t") = Bi(t", STATE;(t"), hy;(t', t"), - - -, hy(t', "))
(A8)

In other words the state of a physical process at time t” can
be computed from the state of that process at an earlier time
t" and the messages which arrive between t' and t".

B;( ) may appear to be a complex function in comparison
with b; because its arguments include histories. However, in
practice, computation of the next state using B; is simple be-
cause we will only use histories which are either ( ) or con-
sist of a single tuple (t", m), in (A8).

Note that B; can be computed in the logical system by
actually running the physical process (which is equivalent to
obtaining an evaluation of b; and c;; at all points), in the in-
terval (t', t"]; of course, in practice other techniques are pre-
ferred. B; and C;; simulate b; and cy;, respectively.

We now expand on the iteration cycle of algorithm III-F,
for process i. The algorithm proceeds by repeatedly evaluat-
ing functions B, C, and D.

Selection Step

The logical process has saved STATE;(T;) and (Ty;, My;)
for each input line k, i. Let Ty; be the last value of T ;.

NULL  if Ty >T>T,
Mki if Tki = Ti

Compute Lj(T;) from (A6), and then NEXT; as given in
algorithm Ii-F.

INFORMk’ i (Tl} = {



452

For each output line (i,j) such that j is in NEXTj, we com-
pute hy;(T;, T; + Ly;(T;)) from (A7). We next compute (NEWTj;,
NEWM;;) the next tuple to be output on line (i,j) which is
defined as:

(T; + Ly (Ty), NULL),
if hij (T;, T; + Lij (T))) is empty

first tuple in
hy;(T;, T; + Ly(Ty)) otherwise

(NEWTij, NEWMU) =

After the I/O Operation

Compute NEWT;, the new value of T;.
NEWT;) as follows:

Obtain hk, i (Tl 5

O) if Ty >NEWT,
(Tyi, My;)  if Ty = NEWT;

Compute STATE;(NEWT);) from (A8). Set T; = NEWT;.

The amount of memory required by logical process i is the
amount required to store the state information (which is also
required in the physical process) and for the local variables
Ti’ Tkia Mkia Tij’ Mij> NEWT”, NEWM” and the amounts re-
quired to evaluate functions Bj, Cj;, and Dy;; we assume that
the resources (and the times) required to evaluate these func-
tions are bounded. The assumption about requiring bounded
resources is not restrictive because if unbounded resources
were required no computing system could simulate the phys-
ical process.

The simplicity of updating states and output information is
achieved by a judicious design of the algorithm, in pasticular
by the definition of NEXT.

hy; (T, NEWT;) = {
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