Distributed Simulation of Networks

K.M. Chandy, Victor Holmes, and J. Misra

Department of Computer Science, University of Texas,
Austin, Texas 78712, USA

A potentially valuable attribute of message switched net-
works is that all processors in the network can cooperate in
solving a common problem. This attribute has not received
sufficient attention in the literature probably because it is
hard to partition most programs into processes which com-
municate exclusively by exchanging messages. The problem
of partitioning programs and assigning them to processors in
message switched systems becomes acute when programs
appear to be inherently sequential. In this paper we use a
message switched network to solve a problem that has always
been solved in a highly sequential fashion. The specific prob-
lem that is studied is discrete-event simulation though key
concepts can be extended to other areas of message-switched
problem-solving. There are no shared variables in message
switched networks. The shared variable “clock™ typically
used in simulation algorithms, does not appear in the pro-
posed scheme; instead each process maintains an internal
clock that is not usually synchronized with clocks of other
processes. The case where the network is a tandem of servers
is considered in detail in this paper. The core ideas reported
here were significantly developed and radically extended by a
group at the University of Waterloo under the direction of
Professors Manning and Wong.

Keywords: Simulation, distributed systems, queueing net-
works, performance.

® North-Holland Publishing Company
Computer Networks 3 (1979) 105113

105

1. Introduction

1.1. The problem of distributed programming: a sim-
ulation example

The advent of inexpensive and increasingly power-
ful minicomputers has increased pressure to create
parallel programs for a variety of applications. We are
interested in distributed programs which are special
cases of parallel programs; a distributed program is a
collection of parallel processes which only communi-
cate with each other by passing messages. A key fac-
tor in distributed programs is that concurrent pro-
cesses have no shared variables. One method for gener-
ating distributed programs is to recognize parallelism
in programs written from serial machines and to then
reconstruct the program using parallel constructs.
However, many existing algorithms do not lend them-
selves to distribution by this method. In these cases
radically different algorithms are required. We are

K.M. Chandy is Professor and Acting
Chairman of the Computer Sciences
Department at the University of
Texas at Austin. He received his
Ph.D. from MIT in 1969. He has
worked and consulted for Honeywell
and IBM. His interests are in com-
puter performance and distributed
systems design.

Vic Holmes received his Ph.D. from the Computer Sciences
Department at the Univeristy of Texas at Austin in October
1978. He is now at Bell Laboratories at Indian Hill. His major
research interests lie in the areas of distributed system archi-
tecture and design.

Jayadev Misra is an Assistant Professor in the Computer
Sciences Department at the University of Texas at Austin.
He received his Ph.D. from the Johns Hopkins University
in 1972 and worked at IBM, Federal System Division,
Gaithersburg before joining the University of Texasin 1974.
His major research interest is designing verifiable software
systems.

106 K.M. Chandy et al. [Simulation of networks

interested in the creation of distributed algorithms in
general; however, in this paper we shall restrict atten-
tion to distributed algorithms for event driven simula-
tions. The concepts we use in distributed simulations
can be applied to other important areas. Our goal is
to use message switched networks to solve parallel
problems.

1.1.1. The importance of distributed simulation: the
problem of parallel time

a) The apparently sequential nature of simulation.
Conventional simulation algorithms appear to be
inherently sequential for the following reason. The
key data structure in event driven simulations is the
event list, which is a list of expected future events
ordered in increasing order of expected time occur-
rence. Simulations proceed by processing the next
(i.c., top) event in the event list and by moving the
simulation clock to the time of occurrence of this
event. In general, events must proceed in strict chro-
nological order. The processing of one event may
result in the spawning of several new events, one of
which may be the next event to be processed. Thus,
to ensure strict chronological order, events can be
processed only one at a time, resulting in an appar-
ently sequential program. Parallelism can only be
achieved by changing the structure of the event list
$0 as to capture the independence as well as the inter-
dependence of the processes being simulated. Thus
simulation provides an interesting problem for the
creation of distributed algorithms.

Our goal is to construct a simulator consisting of
several parallel processes with no shared variables.
Communication is permitted only by passing mes-
sages between processes. This implies that each pro-
cess must maintain its clock (time) and hence the
strict chronological sequence of events that occurs in
the real system must be realized in the asynchronous
simulator solely by messages between processors.

b) Importance. Simulations are widely used in
analyzing systems including jobshops, computers and
communication networks. Computational expense
and/or the real time required to run a significant
simulation may inhibit the use of simulation in these
areas. Parallelism may reduce this problem.

1.1.2. Desirable criteria for distributed algorithms

a) Inter-processor communication. Communication
between processors may be a sizeable overhead in
distributed processor systems: hence inter-processor
communication should be kept to a minimum.

b) Memory. Each processor in a distributed sys-
tem has access to its local memory only. Hence the
memory available to each processor may be less than
the amount available to conventional processors.
Memory requirements should be kept to a minimum.

¢) Natural representation. Simulations are rarely
checked for correcness in a formal manner. This is
because simulations are not usually specified for-
mally. In many cases the informal specification fora
simulator is an existing system such as a manufactur-
ing job shop (though the values of parameters must
be changed more easily and with less expense in the
simulation than in the real system). It is important
that simulators be natural representations of the
systems to be simulated because even though a simu-
lation is not formally proved to be correct, a decision-
maker is likely to believe in a simulation if he can
easily see the correspondence between events and
processes in the real and simulated systems. An obvi-
ous correspondence between real and simulated sys-
tems is also less likely to lead to errors. Very often,
the system being simulated is a parallel processor sys-
tem; in this case the correspondence between reality
and the simulation model is more obvious if the sim-
ulator is also a parallel processor system.

d) Correctness. An interesting problem in its own
right is to formally specify a simulator and to then
prove that the simulator meets specifications. This
problem becomes doubly interesting when the simu-
lator is a distributed program. In this paper we prove
that the distributed simulation is correct. We shall
show that every process in the distributed simulation
will continue to run until the simulation is over (i.c.,
deadlock is impossible) and that the simulator faith-
fully represents the real system. For a detailed formal
study of correctness of distributed programs see
[CHANDY and MISRA].

1.1.3. An example assembly lines

To illustrate the key concepts associated with dis-
tributed simulation we shall use the simple example
of an assembly line. An assembly line (fig. 1) consists
of a series of n work-stations. Jobs enter the assembly
line at work-station 1; when a job has been processed
at work-station 7 it proceeds to work-station i+ 1,
i=1,2, .., n,untl it is completed and leaves the sys-
tem. Service times at different stations are arbitrary
random variables. There are buffers between stations.
A server at a station takes one job from its input
buffer, processes that job and then places the job in
its output buffer (which is the input buffer to the

K.M. Chandy et al. | Simulation of networks

107

ML
i ~ o
i T CL YT 9 1 O
[Tl $- 0 2 0 100w
! ! AN\ ; PN
source ! STV ;
Gt jubs | | i
jobs | ;
i i
.
i
{ i
| [l
l :
souree station | ! 1 no
! i PHEASSEMBLY LENE
i !
I ; !
.]
L - N
e

Fig. 1. The distributed simulation of an assembly line.

next station). All stations are assumed to be served in
a First-Come—First-Served (FCFS) manner. Initially,
we will assume that buffers have infinite capacity.
Our objective is to find queue length and wait time
distributions.

Conventional simulations. In conventional simula-
tions the key data structure is the event list which
consists of the departure times from all the work-
stations and from the job source. To process the next
event we (a) determine the next work-station (say
work-station i) to have a departure and the time 7 of
the departure, (b) move the simulator clock up to ¢,
(c) remove this event {departure at t from work-
station i) from the event-list, (d) decrement the num-
ber of jobs in work-station i by 1 and increment the
number in work-station i + 1 by 1, (e) if the number
of jobs at work-station 7 is non-zero, compute the
time of the next departure from i and insert this
event into the event list, (f) if there is currently no
event in the event list corresponding to a departure
from i+ 1 compute the time of the next departure
from i + 1 and insert this event into the event list.

In conventional simulations the behavior of any
subsystem may depend upon the state of any other
subsystem (or possibly upon the entire system). For

instance, the service time at the ith work-station may
depend upon the numbers of jobs at work-station
1, ..., n. The generality of the conventional simulation
approach has resulted in its widespread use. However,
it is difficult to run such a simulator on multiple
Processors.

Distributed simulations: time exchange systems.
There is a limited class of problems which lends itself
naturally to distributed simulation. The goal of dis-
tributed simulation is to (a) partition the system
being simulated into relatively independent subsys-
tems which communicate with each other in a simple
manner (such as passing customers or jobs from one
subsystem to another), and (b) simulate each subsys-
tem on a different processor. For instance, in the
assembly-line example, if the service time at each
work-station were independent of all other work-sta-
tions, then each work-station could be treated as an
independent subsystem and simulated on a different
processor. If all the parts of a system are mutually
interdependent then distyibuted simulation provides
no advantage, because the overhead involved in com-
municating (information about the status of several
subsystems to other subsystem)negates the advantages
derived from concurrent processing. In a forthcoming

108 K.M. Chandy et al. [Simulation of networks

paper we shall discuss the simulation of systems with
interdependent subsystems.

The crucial issue in distributed simulation is that
of simulating time on multiple processors. Two meth-
ods are suggested: the first method is not a distributed
program because it has a global variable.

(2) Time driven simulation: a method that is not a
distributed program. All processors keep the same
simulated time. In this case there is a single master
clock which drives all the processors. The master
clock moves forward in time in discrete steps of fixed
size. At each clock step, all the processors transmit
information about the events that happened dur-
ing that incremental interval of simulated time. In
the assembly-line example, in every clock-step, each
processor determines if a job leaves the corresponding
work-station and communicates that information to
the next processor downstream. The advantage of
this approach is that the correspondence between the
simulator and the simulated system is obvious. The
disadvantage is common to all time-driven simula-
tions: the clock-step must be short for purposes of
accuracy, but short clock-steps result in long simula-
tions.

(b) TEXS: Time exchange systems. In our method
a different clock is associated with each connection
between subsystems. For example, in the assembly-
line case (fig. 2), there is a clock (number 0) associ-
ated with the connection from the source to the first
work station, and a clock (number i, i =1, ..., n) asso-
ciated with the interface between the ith work-station
and the next one downstream. Each clock moves for-
ward in time in an asynchronous manner. Thus we
cannot take a ‘*‘snapshot” of the entire system by
stopping all processors at the same instant. Each pro-
cessor maintains the clocks for all the connections
going out of it (fig. 2).

The basic idea is simple. All processors continu-

cutput buffer for
output buffer for processor 1 and
iaput buffer for porcessor 2

source and input
buffer for
processor 1

A L 2 R I

source processor pravessor 1

Fig. 2. Processor interconnections for the assembly line case.

ously repeat a two-step cycle. (1) Whenever an event
occurs on the output line of a processor it sends a
message to each processor that it is directly con-
nected to. This message includes the current clock-
time of the line connecting the two processors and a
description of the event which occurs at that time.
(2) Each processor inspects the messages correspond-
ing to all of its input lines and based on these mes-
sages it determines the next event on its output lines
and moves its output lines forward in time to this
event. Now, the next cycle starts with the new inter-
face times.

In the assembly-line example, the clock for the
interface between the ith and (i + 1)th processors is
moved forward in discrete steps through a sequence
of times t,, t5, ..., which are the instants at which
jobs move from the 7th station to the (i + 1)th. The
ith processor (i = 1, ..., n) computes the time at which
the next job will depart from the ith work-station
and enter the (7 + 1)th station; this time is the clock-
time of the interface between the ith and (i + 1)th sta-
tions. Given the sequence of arrival times into a work-
station (i.e., the sequence of values of the input line’s
clock) a processor merely computes the sequence of
departure times from the station (i.e., the sequence of
values of the output line’s clock).

Consider an arbitrary work-station. Let A4;, S, and
Dj be the arrival, service and departure times (respec-
tively) of the jth job,j = 1,2, ... Since the ith job can-
not begin to get service until it arrives and the previ-
ous job departs, a formal specification of departure
times is:

Dy=0

D;=S; + maximum {4;,D;_,},

(assumed for convenience) ,
i=1,2,3,..

The ith processor has three local variables: 4, D, §
which are the arrival, service and departure times for
this job. (Processors also keep local variables for com-
puting statistics, but these are not discussed.) There is
a one word buffer that the ith processor writes into
and the (7 + 1)th processor reads from. We call this
buffer the (4, i + 1) buffer. We assume the existence
of a protocol which ensures that the (i + 1)th proces-
sor waits to read the buffer until the ith processor has
written into it.
The ith processor repeats the following four-step
cycle:
(1) Compute S (The service time is normally com-
puted using the random number generator).
(2) Read the (j — 1,7) buffer into A

K.M. Chandy et al. | Simulation of networks 109
32,30,7.5 31,19,9 23 23
el A B O e —

:;n\;;';w\—)—(A i el (D e RN

Fig. 3. 3 tandem processes.

(3) D := S+ max{4,D)
(4) Write D into the (i, i + 1) buffer

An example. Assume that we have three processes
A, B, C connected in sequence as shown above, to
a source and a sink (see fig. 3). Source produces 4
jobs 1, 2, 3, 4 at times shown in table 1. Service-
times for each of the jobs on each processor is also
given in the table.

Sequences of departure times corresponding to dif-
ferent jobs, produced by the various nodes are shown
in table 2. .

If we were to stop all the processes in the simu-
lator at some point in time and take a “snapshot” of
the simulator we may get the picture of fig. 4. The
sequence of departure times produced by each pro-
cess is shown on the corresponding line. The source
has produced all jobs including job 4; node A has pro-
cessed up to job 3 and has output it to B; B has pro-
cessed job 1 and has output it to C; C has finished
processing job 1 and output it to the sink. There are
1, 2, 0 jobs waiting to be processed by A, B, C respec-
tively. As a next step A, B can process their next

Table 1
node\\\\ job
h 1 2 3 4
source 5 7 30 32
(production time)
Processing | A 4 10 1 5
Times B 12 15 2 7
C 2 3 1 4
Table 2
node job
1 2 3 4
source 5 7 30 32
A 9 19 31 37
B 21 36 38 45
C 23 39 40 49

Fig. 4. A snapshot of 3 tandem processes.

input jobs, possibly in parallel. Note that each proces-
sor is working at its own point in simulated time. If
we were to stop the real system at some point in
time, all processes of the real system would be at that
point in time. A radical difference between distrib-
uted and conventional simulations is that snapshots
of distributed simulations do not correspond to snap-
shots of conventional ones.

We discuss initial and termination conditions and
the computation of statistics later; our goal here is to
provide a simple intuitive explanation of TEX Sys-
tems.

The advantage of TEX Systems is that many pro-
cessors can work in parallel in a pipe-lined fashion.
The primary problem is that it is difficult to deter-
mine the state of the system (including such informa-
tion as queue-lengths) at any instant of real-time
whereas this is easily done in conventional simula-
tions. This difficulty is serious since many statistics
(such as queue-length) are defined over time. We next
discuss a method for solving this problem.

2. Queue-length distributions

It is often necessary to determine the length of
time in a simulation that a buffer contains n or more
jobs, n=1, 2, Once again consider the simulation
of a single queue. Let Q(n) be the length of time in a
simulation that there are n or more jobs at a service
station (waiting for or receiving service). We can spec-
ify Q(n) formally in terms of the sequences of arrival
times 4, A,, ... and departure times D¢, Do,

2.1. Specification

Let ¢ be a non-negative real variable representing
time and let x,(r), n =1, 2, ... be indicator functions
which can take on the values 0 or 1. Define x,(¢) in
the following way. Set x,,(¢) to 1 if there exists some
i such that 4; <t <D;_,+;; otherwise set it to 0.

x,(@)=11if and only if there are n or more jobs in
the queue at time ¢; this is because x,(r) = 1 implies
that for some i, the ith, (i — 1)th, (f —n + 1)th jobs
depart after ¢ and all of these jobs arrived at or before
time 7. Hence

110 K.M. Chandy et al. | Simulation of networks
T correctly by this program, appears in Appendix A. We
Q) = [xa() de, note that SUM holds the correct value of Q(V) up to
=0 at least time A; at the end of the ith cycle, since

where T is the length of the simulation.
2.2. The problem with distributed simulation

In our simulation a processor gets a job from a
processor upstream and immediately passes the job
on to the next processor downstream. Hence we have
to employ some ingenuity in estimating how many
jobs there would be in the real system at some time 7.
An obvious solution is to keep a record of all arrivals
and departures, and to deduce queue-lengths from
this log. However, this solution is infeasible due to
the tight constraints on available memory in mini and
microcomputers. We present a solution which does
not require storage of more than n + 1 variables; this
memory requirement (for typical n) is within the
capability of most configurations.

2.3. Computation of queue-length distribution

We show how Q@) for some specific N, may be
computed on-line by a processor. The processor will
maintain two local variables SUM and CURSOR, and
after the fth cycle,

CURSOR
SUM = f
0

XN([) dr N

and
CURSOR = max(4;, D;_n+1) -

Initially, 4 = D_n=D_n41= ... Do :=0; SUM =
0; CURSOR:=0. Thus definitions of SUM and
CURSOR are trivially satisfied initially. At the
beginning of the ith cycle the processor reads the
next arrival time 4;. Then it computes the following
quantities.

(1) D; := S; + max(4;, D;_;); {ith departure time}

Q) W;:=D; — A {ith wait time; needed to

compute the histogram}
(3)if 4; SDi—n+1 then SUM = SUM + D; _n+1
— max(CURSOR, 4));
(4) CURSOR := max{4, D; _n+1)

A proof that SUM and CURSOR are computed

CURSOR = 4.

Note that the algorithm given above requires a
history of the last V departure times to be kept—we
call this a “window” of length V. After each new
arrival, the window is moved once by discarding the
first departure time and appending the new departure
time. Clearly 0(1), Q(2) ... Q(N-1) can be computed
without need for any extra information if we are
computing @@V). Furthermore, this technique is inde-
pendent of the particular structure of the network,
e.g., tandem structure considered so far. It can be
applied in the general case whenever the departure
time for a new arrival can be predicted.

Typical outputs of a simulation program are statis-
tics collected at every node at prespecified times 7'y,
T, T,. These are the instants when a conventional
simulation can take a snapshot and output the proper
statistics. As we have shown, the proposed algorithm
does not directly produce snapshots which corre-
spond to snapshots of the real system. However this is
not a major problem. Every processor could keep a
table of T, T,, ..., T,. Statistics corresponding to
time 7; are recorded when A; <7;<D;. Thus the
processor need only compare the next T against the
arrival and departure times to determine if the statis-
tics should be recorded and output.

3. An overview of TEXS

We now present an overview of how TEX Systems
work on general networks. Crucial to the general solu-
tion is the notion of a “null” job: a fictitious job
created by the simulator solely for its own operation.
Null jobs do not appear in the real system. A special
indicator needs to be used to differentiate a null job
from a real job. This notion is of fundamental impor-
tance in avoiding deadlock in the general case. Crea-
tion of null jobs makes the simulator differ in a non- -
trivial manner from the real system.

We show, with an example below, that the general
problem is not just a trivial extension of the assembly
line case, considered earlier. In the case of an assem-
bly line, every subnetwork having one input line and
one output line preserves the FCFS property; any job
Ji, which enters the subnetwork before job J, must
leave the subnetwork ahead of J,. This property is
not preserved in the general case even when the net-

K.M. Chandy et al. | Simulation of networks 111

Gucue

1O~

branch
%

Fig. 5. A non-tandem case.

work has no loops. Consider the subsystem shown in
fig. 5 and where A, B and C are queues with First
Come First Served service, jobs branch at X and
merge at Y. Assume that we wish to carry out a dis-
tributed simulation with one processor assigned to
each node. Thus the (logical) interconnection
between processors is exactly as shown in fig. 5.

The difficulty is to ensure that the correct chronolog-
ical sequence of jobs is input to C, while all proces-
sors maintain local information; this problem is illus-
trated by the following example: assume that the sys-
tem is initially empty and that jobs 1, 2 and 3 enter
branch point X at times =1, 2 and 5 respectively
(fig. 6). Assume that jobs 1 and 3 are directed to A
while 2 is directed to B. Let the service times for
these jobs 1, 2 and 3 be 3, 1 and 2 respectively. As
shown in fig. 6, job 2 will arrive at C before job 1.
However, if we use exactly the same method used in
the assembly line example, processor C will receive
messages regarding job 1 first (from A), then regard-
ing job 2 (from B)and finally, regarding job 3. Thusthe
sequence of messages received by processor C in the

simulator does not match the chronological sequence

of jobs arriving at work-station C in the real system.
The solution to the problem is obvious if we insist

on a separate clock for each line between processors
and if we move all clocks as far ahead in time as pos-
sible, based on the local information at hand. When

job 1 arrives at =1 to node X and is directed to A,

we move the clock on line (X, A) up to £ = 1 and send

a message to processor A stating that a job will arrive

at = 1; we will also move the clock along line (X, B)

to ¢ =1 stating that no job will arrive at B until r = 1.

Processor A moves the clock on the line (A, Y) up to

t = 4 because the next job arrives at that time. Proces-

sor B moves the clock along line (B, Y) up to ¢ = 2,

and sends a message stating that no job can leave B

before ¢ =2 (this is because no job can enter B until

t=1 and the next service time at B will be 1 unit).

Now processor Y inspects the clocks on its input lines

and moves the clock along its output line to the mini-

mum of the values of the input clocks. Thus the key
information exchanged between processors is the
clock-time of the connecting lines and each processor
attempts to move the clocks of its output lines as far
forward as possible. This method ensures that mes-
sages flow in the right order. The algorithm is dis-

cussed more formally in another paper [4].

The key points of our method are the following.

(1) There is a separate clock (time) associated with
each line connecting processors.

(2) Processors transmit messages including time infor-
mation.

(3) Each processor attemptsto move the output clocks
as far ahead in time as possible based upon cur-
rently available information.

(4) The output message on a line may state that no
job will arrive on that line between the current

Fig. 6. A snapshot of the non-tandem case.

112 K.M. Chandy et al. | Simulation of networks

clock-time and some future time. The use of no-
job messages is crucial to the correct operation of
distributed simulators.

(5) Since the sequence of clock times on a line are
monotone increasing, merging of two lines at a
processor can be achieved on-line based on the
well known merging algorithm which appears in
merge-sort, for instance.

4. Earlier work

Techniques for parrallel simulations, with central-
ized clocks were reported by Parent, et al. [2], and
Kaubisch and Hoare [3]. To the best of our knowl-
edge the concept of a distributed clock simulation
was discovered by the authors. The distributed clock
simulation concept has been radically extended by
Peacock, Wong and Manning [1].

5. Summary and discussion

We have proposed a distributed algorithm for an
important problem which is typically solved in a
sequential manner. Distributed algorithins have the
advantage that many processors may operate in paral-
lel; since there are no shared variables (except mes-
sage buffers between two connecting processors)
protocol issues for shared data access are largerly
avoided. We have suggested an algorithm for the gen-
eral network whose formal description and proof
appears elsewhere [5].

We have assumed that each processor has a buffer
size large enough to store all incoming messages prior
to processing. In practice, the buffer size can be quite
small if all simulator processors take approximately
the same time to handle a job (i.e., compute its
departure time and maintain statistics); in this case
jobs arrive at approximately the same rate at which
they are processed.

A formal solution to the problem with very short
buffers, is desired since memory can be a scarce
resource in minicomputers; this solution must for-
mally prove that no processor will be deadlocked
with buffers permanently empty or full.

Deadlock is an important issue in any distributed
algorithm. Usually avoidance of deadlock is con-
sidered a global property and is solved by methods
which are based upon collection of global informa-

tion. Solutions to this problem based upon collection
of global information and unbounded buffers appears
in (1). A general solution which avoids deadlock with
bounded buffers and without collecting any global
information is clearly desired; this problem is cur-
rently under active investigation.

The algorithm proposed here has been imple-
mented on 2 NOVA processors with communication
capability at the University of Texas. A major prob-
lem in implementation has been the short (16 bit)
word length in the computer. This makes it impossi-
ble to generate a long nonrepeating random sequence
unless several words are used. We anticipate this to be
the major problem in implementing simulation
algorithms (conventional or the proposed scheme) on
a microcomputer.

Appendix A
A proof of correctness of queue length computation

We show that the algorithm given in Sec. 2.3 is
correct, i.e., at the end of the ith cycle,
CURSOR
SUM = f
0

XN([) dr,

and
CURSOR = max(4;, D;_n+1) -

We consider a slightly altered form of the algorithm
that includes the parts that modify SUM and CUR-
SOR. Initially,

Ao=D_N=D_pn41=... Do :=0;S8UM := 0; CURSOR := 0.

Thus trivially the definitions are satisfied. At the
beginning of the ith cycle:

(1) read A; and compute D;;

(2) if A;<D;_py, then SUM :=SUM +D;_pyiq1—
max(CURSOR, 4,);

(3) CURSOR := nlaX(A,', Di‘N‘rl)

We will show that the steps (2), (3) properly up-
date SUM and CURSOR to meet the given defini-
tions. Step (3) clearly maintains the definition of
CURSOR. In order to show that step (2) properly up-
dates SUM,

(i) We will assume that prior to step (2),

CURSOR
SUM = f
0

xpy(t)y dr,

K.M. Chandy et al. | Simulation of networks 113

CURSOR = max(4;_1, Dj_p)
(ii) and show that after step (%)

max(4;, Di_n+1)
SUM = f X0 dr .
0

Proof is based on the following lemma.

Lemma: Prior to step 2, if A;> CURSOR then
xnft) =0, CURSOR <t < 4,

Proof: Suppose x (1) # 0 for some ¢, CURSOR <7 <
Aj;. Then there is some j such that

Aj<t<Dj_pj+1

Ajét,l‘<Ai¢Aj<Ai=>j<i.

Hence CURSOR <1, t<D;_n; = CURSOR<L
D;_n+1 < Dj_y. However CURSOR > D;_y prior to
step (2). Contradiction!

In order to prove correctness of step (2), we con-
sider the following 3 cases one of which holds prior
to executuion of step (2).

Case a) A;> D;_n+1: Then A; > CURSOR. Then,
xn(£)=0, CURSOR<r<4; from the lemma;
max{4;, D; _n+1) = A;. According to definition:

Aq
New value of SUM = f x (8 df
0
CURSOR Ai
=f xpn(t) dz + f x (1) dr
0 CURSOR

=SUM + 0 =SUM.

Note that the value of SUM remains unchanged in
step (2) in this case, as required.

Case b) A;<D; n+1, A;<CURSOR: Here
CURSOR =D, _n <D;_p+1- Then, xp(1)=1,
CURSOR < ¢t < D;_py+1 since from the definition,
xy() =1, A;<t<Di_yv; max(d;, Dp yi)=
D; .n+1 {according to definition):

Di_N+1
New value of SUM = f x (2 dt
0
CURSOR Dj N+1
=f X0 dz+f X dr
0 CURSOR

=SUM + (D; _ y+ 1 — CURSOR),
provided D;_ y+3 = CURSOR.

Case ¢) A; < Di_py +1,A; > CURSOR. Then,

0, CURSOR < t < 4y, from the lemma .
XN(Z‘) =

1,4; <t < Dj;_ n+ , from definition .

max(A4;, D;_ n+1) = Dj_p+1. According to definition:

Di_ N+1
New values of SUM = f xp(t) dt
0
CURSOR Aj
= f x (t) dr +f xp(6) dr
0 CURSOR
Dj_n+1
+ xn(t) de
Aj

:SUM‘I”O‘*'(Di,N.fl—Ai).

In cases b) and ¢) SUM must change to SUM +
D;_n+i—max(CURSOR, 4,), whichisaccomplished in
step (2).

Acknowledgements

1. The initial ideas on distributed programs were devel-
oped by the authors in an attempt to parallelize inherently
sequential problems in an attempt to use a large parallel
pipelined computer, the Texas Instruments ASC. We are
grateful to TI for giving us a grant of time on their machine
in1976.

2. The ideas presented here were discussed in a course
taught at the University of Waterloo by K.M. Chandy in
Summer 1977. We are grateful for this support from the
University ot Waterloo and to course participants for valu-
able discussions.

3. We are especially grateful to Professors Manning, Wong,
and Peacock of the University of Waterloo for pointing out
that these core ideas could be significantly extended to gen-
eral networks [3] by considering deadlock detection and
avoidance schemes, and for their continued cooperation.

4. We are grateful to the National Science Foundation for
support under grant MCS66-09812.

References

[1] J K. Peacock, J.W. Wong and E. Manning, “Distributed
simulation using a network of microcomputers,” Com-
puter Networks 3 (1979) 44--56.

[2] M. Parent, F. Prunet, JM. Dumas and Y. Moreau,
“Graphical models and the LAM hardware discrete event
simulator,” in Computer Performance (eds. KM. Chandy
and M. Reiser), North-Holland, 1977.

[3] W.H. Kaubisch and C.A.R. Hoare, “Discrete event simula-
tion based on communicating sequential processes,” to
appear in CACM.

[4] KM. Chandy and J. Misra, ““A nontrivial example of con-
current processing: distributed simulation,” Proceedings
of COMPSAC ’78, available from [EEE.

[§] KM. Chandy and J. Misra, “Issues in the design of cor-
rect distributed systems,” Technical Report, Computer
Sciences Department, University of Texas, 1978.

